/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2024 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include // for KiROUND #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kiface_base.h" #include "pcbnew_settings.h" using KIGFX::PCB_PAINTER; using KIGFX::PCB_RENDER_SETTINGS; PAD::PAD( FOOTPRINT* parent ) : BOARD_CONNECTED_ITEM( parent, PCB_PAD_T ), m_padStack( this ) { VECTOR2I& drill = m_padStack.Drill().size; VECTOR2I& size = m_padStack.Size(); size.x = size.y = EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 60 ); // Default pad size 60 mils. drill.x = drill.y = EDA_UNIT_UTILS::Mils2IU( pcbIUScale, 30 ); // Default drill size 30 mils. m_lengthPadToDie = 0; if( m_parent && m_parent->Type() == PCB_FOOTPRINT_T ) m_pos = GetParent()->GetPosition(); SetShape( PAD_SHAPE::CIRCLE ); // Default pad shape is PAD_CIRCLE. SetAnchorPadShape( PAD_SHAPE::CIRCLE ); // Default shape for custom shaped pads // is PAD_CIRCLE. SetDrillShape( PAD_DRILL_SHAPE::CIRCLE ); // Default pad drill shape is a circle. m_attribute = PAD_ATTRIB::PTH; // Default pad type is plated through hole SetProperty( PAD_PROP::NONE ); // no special fabrication property // Parameters for round rect only: m_padStack.SetRoundRectRadiusRatio( 0.25 ); // from IPC-7351C standard // Parameters for chamfered rect only: m_padStack.SetChamferRatio( 0.2 ); m_padStack.SetChamferPositions( RECT_NO_CHAMFER ); // Set layers mask to default for a standard thru hole pad. m_padStack.SetLayerSet( PTHMask() ); SetSubRatsnest( 0 ); // used in ratsnest calculations SetDirty(); m_effectiveBoundingRadius = 0; m_zoneLayerOverrides.fill( ZLO_NONE ); } PAD::PAD( const PAD& aOther ) : BOARD_CONNECTED_ITEM( aOther.GetParent(), PCB_PAD_T ), m_padStack( this ) { PAD::operator=( aOther ); const_cast( m_Uuid ) = aOther.m_Uuid; } PAD& PAD::operator=( const PAD &aOther ) { BOARD_CONNECTED_ITEM::operator=( aOther ); ImportSettingsFrom( aOther ); SetPadToDieLength( aOther.GetPadToDieLength() ); SetPosition( aOther.GetPosition() ); SetNumber( aOther.GetNumber() ); SetPinType( aOther.GetPinType() ); SetPinFunction( aOther.GetPinFunction() ); SetSubRatsnest( aOther.GetSubRatsnest() ); m_effectiveBoundingRadius = aOther.m_effectiveBoundingRadius; return *this; } void PAD::Serialize( google::protobuf::Any &aContainer ) const { using namespace kiapi::board::types; Pad pad; pad.mutable_id()->set_value( m_Uuid.AsStdString() ); kiapi::common::PackVector2( *pad.mutable_position(), GetPosition() ); pad.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED : kiapi::common::types::LockedState::LS_UNLOCKED ); pad.mutable_net()->mutable_code()->set_value( GetNetCode() ); pad.mutable_net()->set_name( GetNetname() ); pad.set_type( ToProtoEnum( GetAttribute() ) ); google::protobuf::Any padStackMsg; m_padStack.Serialize( padStackMsg ); padStackMsg.UnpackTo( pad.mutable_pad_stack() ); DesignRuleOverrides* overrides = pad.mutable_overrides(); if( GetLocalClearance().has_value() ) overrides->mutable_clearance()->set_value_nm( *GetLocalClearance() ); if( GetLocalSolderMaskMargin().has_value() ) overrides->mutable_solder_mask_margin()->set_value_nm( *GetLocalSolderMaskMargin() ); if( GetLocalSolderPasteMargin().has_value() ) overrides->mutable_solder_paste_margin()->set_value_nm( *GetLocalSolderPasteMargin() ); if( GetLocalSolderPasteMarginRatio().has_value() ) overrides->mutable_solder_paste_margin_ratio()->set_value( *GetLocalSolderPasteMarginRatio() ); overrides->set_zone_connection( ToProtoEnum( GetLocalZoneConnection() ) ); ThermalSpokeSettings* thermals = pad.mutable_thermal_spokes(); thermals->set_width( GetThermalSpokeWidth() ); thermals->set_gap( GetThermalGap() ); thermals->mutable_angle()->set_value_degrees( GetThermalSpokeAngleDegrees() ); aContainer.PackFrom( pad ); } bool PAD::Deserialize( const google::protobuf::Any &aContainer ) { kiapi::board::types::Pad pad; if( !aContainer.UnpackTo( &pad ) ) return false; const_cast( m_Uuid ) = KIID( pad.id().value() ); SetPosition( kiapi::common::UnpackVector2( pad.position() ) ); SetNetCode( pad.net().code().value() ); SetLocked( pad.locked() == kiapi::common::types::LockedState::LS_LOCKED ); SetAttribute( FromProtoEnum( pad.type() ) ); google::protobuf::Any padStackWrapper; padStackWrapper.PackFrom( pad.pad_stack() ); m_padStack.Deserialize( padStackWrapper ); SetLayer( m_padStack.StartLayer() ); const kiapi::board::types::DesignRuleOverrides& overrides = pad.overrides(); if( overrides.has_clearance() ) SetLocalClearance( overrides.clearance().value_nm() ); else SetLocalClearance( std::nullopt ); if( overrides.has_solder_mask_margin() ) SetLocalSolderMaskMargin( overrides.solder_mask_margin().value_nm() ); else SetLocalSolderMaskMargin( std::nullopt ); if( overrides.has_solder_paste_margin() ) SetLocalSolderPasteMargin( overrides.solder_paste_margin().value_nm() ); else SetLocalSolderPasteMargin( std::nullopt ); if( overrides.has_solder_paste_margin_ratio() ) SetLocalSolderPasteMarginRatio( overrides.solder_paste_margin_ratio().value() ); else SetLocalSolderPasteMarginRatio( std::nullopt ); SetLocalZoneConnection( FromProtoEnum( overrides.zone_connection() ) ); const kiapi::board::types::ThermalSpokeSettings& thermals = pad.thermal_spokes(); SetThermalGap( thermals.gap() ); SetThermalSpokeWidth( thermals.width() ); SetThermalSpokeAngleDegrees( thermals.angle().value_degrees() ); return true; } bool PAD::CanHaveNumber() const { // Aperture pads don't get a number if( IsAperturePad() ) return false; // NPTH pads don't get numbers if( GetAttribute() == PAD_ATTRIB::NPTH ) return false; return true; } bool PAD::IsLocked() const { if( GetParent() && GetParent()->IsLocked() ) return true; return BOARD_ITEM::IsLocked(); }; bool PAD::SharesNetTieGroup( const PAD* aOther ) const { FOOTPRINT* parentFp = GetParentFootprint(); if( parentFp && parentFp->IsNetTie() && aOther->GetParentFootprint() == parentFp ) { std::map padToNetTieGroupMap = parentFp->MapPadNumbersToNetTieGroups(); int thisNetTieGroup = padToNetTieGroupMap[ GetNumber() ]; int otherNetTieGroup = padToNetTieGroupMap[ aOther->GetNumber() ]; return thisNetTieGroup >= 0 && thisNetTieGroup == otherNetTieGroup; } return false; } bool PAD::IsNoConnectPad() const { return m_pinType.Contains( wxT( "no_connect" ) ); } bool PAD::IsFreePad() const { return GetShortNetname().StartsWith( wxT( "unconnected-(" ) ) && m_pinType == wxT( "free" ); } LSET PAD::PTHMask() { static LSET saved = LSET::AllCuMask() | LSET( 2, F_Mask, B_Mask ); return saved; } LSET PAD::SMDMask() { static LSET saved( 3, F_Cu, F_Paste, F_Mask ); return saved; } LSET PAD::ConnSMDMask() { static LSET saved( 2, F_Cu, F_Mask ); return saved; } LSET PAD::UnplatedHoleMask() { static LSET saved = LSET( 4, F_Cu, B_Cu, F_Mask, B_Mask ); return saved; } LSET PAD::ApertureMask() { static LSET saved( 1, F_Paste ); return saved; } bool PAD::IsFlipped() const { FOOTPRINT* parent = GetParentFootprint(); return ( parent && parent->GetLayer() == B_Cu ); } PCB_LAYER_ID PAD::GetLayer() const { return BOARD_ITEM::GetLayer(); } PCB_LAYER_ID PAD::GetPrincipalLayer() const { if( m_attribute == PAD_ATTRIB::SMD || m_attribute == PAD_ATTRIB::CONN || GetLayerSet().none() ) return m_layer; else return GetLayerSet().Seq().front(); } bool PAD::FlashLayer( LSET aLayers ) const { for( PCB_LAYER_ID layer : aLayers.Seq() ) { if( FlashLayer( layer ) ) return true; } return false; } bool PAD::FlashLayer( int aLayer, bool aOnlyCheckIfPermitted ) const { if( aLayer == UNDEFINED_LAYER ) return true; if( !IsOnLayer( static_cast( aLayer ) ) ) return false; if( GetAttribute() == PAD_ATTRIB::NPTH && IsCopperLayer( aLayer ) ) { if( GetShape() == PAD_SHAPE::CIRCLE && GetDrillShape() == PAD_DRILL_SHAPE::CIRCLE ) { if( GetOffset() == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize().x ) return false; } else if( GetShape() == PAD_SHAPE::OVAL && GetDrillShape() == PAD_DRILL_SHAPE::OBLONG ) { if( GetOffset() == VECTOR2I( 0, 0 ) && GetDrillSize().x >= GetSize().x && GetDrillSize().y >= GetSize().y ) { return false; } } } if( LSET::FrontBoardTechMask().test( aLayer ) ) aLayer = F_Cu; else if( LSET::BackBoardTechMask().test( aLayer ) ) aLayer = B_Cu; if( GetAttribute() == PAD_ATTRIB::PTH && IsCopperLayer( aLayer ) ) { /// Heat sink pads always get copper if( GetProperty() == PAD_PROP::HEATSINK ) return true; PADSTACK::UNCONNECTED_LAYER_MODE mode = m_padStack.UnconnectedLayerMode(); if( mode == PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL ) return true; // Plated through hole pads need copper on the top/bottom layers for proper soldering // Unless the user has removed them in the pad dialog if( mode == PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END && ( aLayer == F_Cu || aLayer == B_Cu ) ) { return true; } if( const BOARD* board = GetBoard() ) { // Must be static to keep from raising its ugly head in performance profiles static std::initializer_list types = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T }; if( m_zoneLayerOverrides[ aLayer ] == ZLO_FORCE_FLASHED ) return true; else if( aOnlyCheckIfPermitted ) return true; else return board->GetConnectivity()->IsConnectedOnLayer( this, aLayer, types ); } } return true; } int PAD::GetRoundRectCornerRadius() const { return m_padStack.RoundRectRadius(); } void PAD::SetRoundRectCornerRadius( double aRadius ) { m_padStack.SetRoundRectRadius( aRadius ); } void PAD::SetRoundRectRadiusRatio( double aRadiusScale ) { m_padStack.SetRoundRectRadiusRatio( alg::clamp( 0.0, aRadiusScale, 0.5 ) ); SetDirty(); } void PAD::SetChamferRectRatio( double aChamferScale ) { m_padStack.SetChamferRatio( alg::clamp( 0.0, aChamferScale, 0.5 ) ); SetDirty(); } const std::shared_ptr& PAD::GetEffectivePolygon( ERROR_LOC aErrorLoc ) const { if( m_polyDirty[ aErrorLoc ] ) BuildEffectivePolygon( aErrorLoc ); return m_effectivePolygon[ aErrorLoc ]; } std::shared_ptr PAD::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING flashPTHPads ) const { if( aLayer == Edge_Cuts ) { if( GetAttribute() == PAD_ATTRIB::PTH || GetAttribute() == PAD_ATTRIB::NPTH ) return GetEffectiveHoleShape(); else return std::make_shared(); } if( GetAttribute() == PAD_ATTRIB::PTH ) { bool flash; if( flashPTHPads == FLASHING::NEVER_FLASHED ) flash = false; else if( flashPTHPads == FLASHING::ALWAYS_FLASHED ) flash = true; else flash = FlashLayer( aLayer ); if( !flash ) { if( GetAttribute() == PAD_ATTRIB::PTH ) return GetEffectiveHoleShape(); else return std::make_shared(); } } if( m_shapesDirty ) BuildEffectiveShapes( aLayer ); return m_effectiveShape; } std::shared_ptr PAD::GetEffectiveHoleShape() const { if( m_shapesDirty ) BuildEffectiveShapes( UNDEFINED_LAYER ); return m_effectiveHoleShape; } int PAD::GetBoundingRadius() const { if( m_polyDirty[ ERROR_OUTSIDE ] ) BuildEffectivePolygon( ERROR_OUTSIDE ); return m_effectiveBoundingRadius; } void PAD::BuildEffectiveShapes( PCB_LAYER_ID aLayer ) const { std::lock_guard RAII_lock( m_shapesBuildingLock ); // If we had to wait for the lock then we were probably waiting for someone else to // finish rebuilding the shapes. So check to see if they're clean now. if( !m_shapesDirty ) return; const BOARD* board = GetBoard(); int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF; m_effectiveShape = std::make_shared(); m_effectiveHoleShape = nullptr; auto add = [this]( SHAPE* aShape ) { m_effectiveShape->AddShape( aShape ); }; VECTOR2I shapePos = ShapePos(); // Fetch only once; rotation involves trig PAD_SHAPE effectiveShape = GetShape(); const VECTOR2I& size = m_padStack.Size( aLayer ); if( GetShape() == PAD_SHAPE::CUSTOM ) effectiveShape = GetAnchorPadShape(); switch( effectiveShape ) { case PAD_SHAPE::CIRCLE: add( new SHAPE_CIRCLE( shapePos, size.x / 2 ) ); break; case PAD_SHAPE::OVAL: if( size.x == size.y ) // the oval pad is in fact a circle { add( new SHAPE_CIRCLE( shapePos, size.x / 2 ) ); } else { VECTOR2I half_size = size / 2; int half_width = std::min( half_size.x, half_size.y ); VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width ); RotatePoint( half_len, GetOrientation() ); add( new SHAPE_SEGMENT( shapePos - half_len, shapePos + half_len, half_width * 2 ) ); } break; case PAD_SHAPE::RECTANGLE: case PAD_SHAPE::TRAPEZOID: case PAD_SHAPE::ROUNDRECT: { int r = ( effectiveShape == PAD_SHAPE::ROUNDRECT ) ? GetRoundRectCornerRadius() : 0; VECTOR2I half_size( size.x / 2, size.y / 2 ); VECTOR2I trap_delta( 0, 0 ); if( r ) { half_size -= VECTOR2I( r, r ); // Avoid degenerated shapes (0 length segments) that always create issues // For roundrect pad very near a circle, use only a circle const int min_len = pcbIUScale.mmToIU( 0.0001); if( half_size.x < min_len && half_size.y < min_len ) { add( new SHAPE_CIRCLE( shapePos, r ) ); break; } } else if( effectiveShape == PAD_SHAPE::TRAPEZOID ) { trap_delta = m_padStack.TrapezoidDeltaSize( aLayer ) / 2; } SHAPE_LINE_CHAIN corners; corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x ); corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x ); corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x ); corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x ); corners.Rotate( GetOrientation() ); corners.Move( shapePos ); // GAL renders rectangles faster than 4-point polygons so it's worth checking if our // body shape is a rectangle. if( corners.PointCount() == 4 && ( ( corners.CPoint( 0 ).y == corners.CPoint( 1 ).y && corners.CPoint( 1 ).x == corners.CPoint( 2 ).x && corners.CPoint( 2 ).y == corners.CPoint( 3 ).y && corners.CPoint( 3 ).x == corners.CPoint( 0 ).x ) || ( corners.CPoint( 0 ).x == corners.CPoint( 1 ).x && corners.CPoint( 1 ).y == corners.CPoint( 2 ).y && corners.CPoint( 2 ).x == corners.CPoint( 3 ).x && corners.CPoint( 3 ).y == corners.CPoint( 0 ).y ) ) ) { int width = std::abs( corners.CPoint( 2 ).x - corners.CPoint( 0 ).x ); int height = std::abs( corners.CPoint( 2 ).y - corners.CPoint( 0 ).y ); VECTOR2I pos( std::min( corners.CPoint( 2 ).x, corners.CPoint( 0 ).x ), std::min( corners.CPoint( 2 ).y, corners.CPoint( 0 ).y ) ); add( new SHAPE_RECT( pos, width, height ) ); } else { add( new SHAPE_SIMPLE( corners ) ); } if( r ) { add( new SHAPE_SEGMENT( corners.CPoint( 0 ), corners.CPoint( 1 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 1 ), corners.CPoint( 2 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 2 ), corners.CPoint( 3 ), r * 2 ) ); add( new SHAPE_SEGMENT( corners.CPoint( 3 ), corners.CPoint( 0 ), r * 2 ) ); } } break; case PAD_SHAPE::CHAMFERED_RECT: { SHAPE_POLY_SET outline; TransformRoundChamferedRectToPolygon( outline, shapePos, GetSize(), GetOrientation(), GetRoundRectCornerRadius(), GetChamferRectRatio(), GetChamferPositions(), 0, maxError, ERROR_INSIDE ); add( new SHAPE_SIMPLE( outline.COutline( 0 ) ) ); } break; default: wxFAIL_MSG( wxT( "PAD::buildEffectiveShapes: Unsupported pad shape: PAD_SHAPE::" ) + wxString( std::string( magic_enum::enum_name( effectiveShape ) ) ) ); break; } if( GetShape() == PAD_SHAPE::CUSTOM ) { for( const std::shared_ptr& primitive : m_padStack.Primitives() ) { if( !primitive->IsProxyItem() ) { for( SHAPE* shape : primitive->MakeEffectiveShapes() ) { shape->Rotate( GetOrientation() ); shape->Move( shapePos ); add( shape ); } } } } m_effectiveBoundingBox = m_effectiveShape->BBox(); // Hole shape VECTOR2I half_size = m_padStack.Drill().size / 2; int half_width = std::min( half_size.x, half_size.y ); VECTOR2I half_len( half_size.x - half_width, half_size.y - half_width ); RotatePoint( half_len, GetOrientation() ); m_effectiveHoleShape = std::make_shared( m_pos - half_len, m_pos + half_len, half_width * 2 ); m_effectiveBoundingBox.Merge( m_effectiveHoleShape->BBox() ); // All done m_shapesDirty = false; } void PAD::BuildEffectivePolygon( ERROR_LOC aErrorLoc ) const { std::lock_guard RAII_lock( m_polyBuildingLock ); // If we had to wait for the lock then we were probably waiting for someone else to // finish rebuilding the shapes. So check to see if they're clean now. if( !m_polyDirty[ aErrorLoc ] ) return; const BOARD* board = GetBoard(); int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF; // Polygon std::shared_ptr& effectivePolygon = m_effectivePolygon[ aErrorLoc ]; effectivePolygon = std::make_shared(); TransformShapeToPolygon( *effectivePolygon, UNDEFINED_LAYER, 0, maxError, aErrorLoc ); // Bounding radius // // PADSTACKS TODO: these will both need to cycle through all layers to get the largest // values.... if( aErrorLoc == ERROR_OUTSIDE ) { m_effectiveBoundingRadius = 0; for( int cnt = 0; cnt < effectivePolygon->OutlineCount(); ++cnt ) { const SHAPE_LINE_CHAIN& poly = effectivePolygon->COutline( cnt ); for( int ii = 0; ii < poly.PointCount(); ++ii ) { int dist = KiROUND( ( poly.CPoint( ii ) - m_pos ).EuclideanNorm() ); m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, dist ); } } } // All done m_polyDirty[ aErrorLoc ] = false; } const BOX2I PAD::GetBoundingBox() const { if( m_shapesDirty ) BuildEffectiveShapes( UNDEFINED_LAYER ); return m_effectiveBoundingBox; } void PAD::SetAttribute( PAD_ATTRIB aAttribute ) { if( m_attribute != aAttribute ) { m_attribute = aAttribute; LSET& layerMask = m_padStack.LayerSet(); switch( aAttribute ) { case PAD_ATTRIB::PTH: // Plump up to all copper layers layerMask |= LSET::AllCuMask(); break; case PAD_ATTRIB::SMD: case PAD_ATTRIB::CONN: { // Trim down to no more than one copper layer LSET copperLayers = layerMask & LSET::AllCuMask(); if( copperLayers.count() > 1 ) { layerMask &= ~LSET::AllCuMask(); if( copperLayers.test( B_Cu ) ) layerMask.set( B_Cu ); else layerMask.set( copperLayers.Seq().front() ); } // No hole m_padStack.Drill().size = VECTOR2I( 0, 0 ); break; } case PAD_ATTRIB::NPTH: // No number; no net m_number = wxEmptyString; SetNetCode( NETINFO_LIST::UNCONNECTED ); break; } } SetDirty(); } void PAD::SetProperty( PAD_PROP aProperty ) { m_property = aProperty; SetDirty(); } void PAD::SetOrientation( const EDA_ANGLE& aAngle ) { m_padStack.SetOrientation( aAngle ); SetDirty(); } void PAD::SetFPRelativeOrientation( const EDA_ANGLE& aAngle ) { if( FOOTPRINT* parentFP = GetParentFootprint() ) SetOrientation( aAngle + parentFP->GetOrientation() ); else SetOrientation( aAngle ); } EDA_ANGLE PAD::GetFPRelativeOrientation() const { if( FOOTPRINT* parentFP = GetParentFootprint() ) return GetOrientation() - parentFP->GetOrientation(); else return GetOrientation(); } void PAD::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight ) { if( aFlipLeftRight ) { MIRROR( m_pos.x, aCentre.x ); MIRROR( m_padStack.Offset().x, 0 ); MIRROR( m_padStack.TrapezoidDeltaSize().x, 0 ); } else { MIRROR( m_pos.y, aCentre.y ); MIRROR( m_padStack.Offset().y, 0 ); MIRROR( m_padStack.TrapezoidDeltaSize().y, 0 ); } SetFPRelativeOrientation( -GetFPRelativeOrientation() ); auto mirrorBitFlags = []( int& aBitfield, int a, int b ) { bool temp = aBitfield & a; if( aBitfield & b ) aBitfield |= a; else aBitfield &= ~a; if( temp ) aBitfield |= b; else aBitfield &= ~b; }; if( aFlipLeftRight ) { mirrorBitFlags( m_padStack.ChamferPositions(), RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT ); mirrorBitFlags( m_padStack.ChamferPositions(), RECT_CHAMFER_BOTTOM_LEFT, RECT_CHAMFER_BOTTOM_RIGHT ); } else { mirrorBitFlags( m_padStack.ChamferPositions(), RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_BOTTOM_LEFT ); mirrorBitFlags( m_padStack.ChamferPositions(), RECT_CHAMFER_TOP_RIGHT, RECT_CHAMFER_BOTTOM_RIGHT ); } // flip pads layers // PADS items are currently on all copper layers, or // currently, only on Front or Back layers. // So the copper layers count is not taken in account SetLayerSet( FlipLayerMask( m_padStack.LayerSet() ) ); // Flip the basic shapes, in custom pads FlipPrimitives( aFlipLeftRight ); SetDirty(); } void PAD::FlipPrimitives( bool aFlipLeftRight ) { for( std::shared_ptr& primitive : m_padStack.Primitives() ) primitive->Flip( VECTOR2I( 0, 0 ), aFlipLeftRight ); SetDirty(); } VECTOR2I PAD::ShapePos() const { if( m_padStack.Offset().x == 0 && m_padStack.Offset().y == 0 ) return m_pos; VECTOR2I loc_offset = m_padStack.Offset(); RotatePoint( loc_offset, GetOrientation() ); VECTOR2I shape_pos = m_pos + loc_offset; return shape_pos; } bool PAD::IsOnCopperLayer() const { if( GetAttribute() == PAD_ATTRIB::NPTH ) { // NPTH pads have no plated hole cylinder. If their annular ring size is 0 or // negative, then they have no annular ring either. switch( GetShape() ) { case PAD_SHAPE::CIRCLE: if( m_padStack.Offset() == VECTOR2I( 0, 0 ) && m_padStack.Size().x <= m_padStack.Drill().size.x ) { return false; } break; case PAD_SHAPE::OVAL: if( m_padStack.Offset() == VECTOR2I( 0, 0 ) && m_padStack.Size().x <= m_padStack.Drill().size.x && m_padStack.Size().y <= m_padStack.Drill().size.y ) { return false; } break; default: // We could subtract the hole polygon from the shape polygon for these, but it // would be expensive and we're probably well out of the common use cases.... break; } } return ( GetLayerSet() & LSET::AllCuMask() ).any(); } std::optional PAD::GetLocalClearance( wxString* aSource ) const { if( m_padStack.Clearance().has_value() && aSource ) *aSource = _( "pad" ); return m_padStack.Clearance(); } std::optional PAD::GetClearanceOverrides( wxString* aSource ) const { if( m_padStack.Clearance().has_value() ) return GetLocalClearance( aSource ); if( FOOTPRINT* parentFootprint = GetParentFootprint() ) return parentFootprint->GetClearanceOverrides( aSource ); return std::optional(); } int PAD::GetOwnClearance( PCB_LAYER_ID aLayer, wxString* aSource ) const { DRC_CONSTRAINT c; if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine ) { BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings(); if( GetAttribute() == PAD_ATTRIB::NPTH ) c = bds.m_DRCEngine->EvalRules( HOLE_CLEARANCE_CONSTRAINT, this, nullptr, aLayer ); else c = bds.m_DRCEngine->EvalRules( CLEARANCE_CONSTRAINT, this, nullptr, aLayer ); } if( c.Value().HasMin() ) { if( aSource ) *aSource = c.GetName(); return c.Value().Min(); } return 0; } int PAD::GetSolderMaskExpansion() const { // Pads defined only on mask layers (and perhaps on other tech layers) use the shape // defined by the pad settings only. ALL other pads, even those that don't actually have // any copper (such as NPTH pads with holes the same size as the pad) get mask expansion. if( ( m_padStack.LayerSet() & LSET::AllCuMask() ).none() ) return 0; std::optional margin = m_padStack.SolderMaskMargin(); if( !margin.has_value() ) { if( FOOTPRINT* parentFootprint = GetParentFootprint() ) margin = parentFootprint->GetLocalSolderMaskMargin(); } if( !margin.has_value() ) { if( const BOARD* brd = GetBoard() ) margin = brd->GetDesignSettings().m_SolderMaskExpansion; } int marginValue = margin.value_or( 0 ); // ensure mask have a size always >= 0 if( marginValue < 0 ) { int minsize = -std::min( m_padStack.Size().x, m_padStack.Size().y ) / 2; if( marginValue < minsize ) marginValue = minsize; } return marginValue; } VECTOR2I PAD::GetSolderPasteMargin() const { // Pads defined only on mask layers (and perhaps on other tech layers) use the shape // defined by the pad settings only. ALL other pads, even those that don't actually have // any copper (such as NPTH pads with holes the same size as the pad) get paste expansion. if( ( m_padStack.LayerSet() & LSET::AllCuMask() ).none() ) return VECTOR2I( 0, 0 ); std::optional margin = m_padStack.SolderPasteMargin(); std::optional mratio = m_padStack.SolderPasteMarginRatio(); if( !margin.has_value() ) { if( FOOTPRINT* parentFootprint = GetParentFootprint() ) margin = parentFootprint->GetLocalSolderPasteMargin(); } if( !margin.has_value() ) { if( const BOARD* board = GetBoard() ) margin = board->GetDesignSettings().m_SolderPasteMargin; } if( !mratio.has_value() ) { if( FOOTPRINT* parentFootprint = GetParentFootprint() ) mratio = parentFootprint->GetLocalSolderPasteMarginRatio(); } if( !mratio.has_value() ) { if( const BOARD* board = GetBoard() ) mratio = board->GetDesignSettings().m_SolderPasteMarginRatio; } VECTOR2I pad_margin; pad_margin.x = margin.value_or( 0 ) + KiROUND( m_padStack.Size().x * mratio.value_or( 0 ) ); pad_margin.y = margin.value_or( 0 ) + KiROUND( m_padStack.Size().y * mratio.value_or( 0 ) ); // ensure mask have a size always >= 0 if( m_padStack.Shape() != PAD_SHAPE::CUSTOM ) { if( pad_margin.x < -m_padStack.Size().x / 2 ) pad_margin.x = -m_padStack.Size().x / 2; if( pad_margin.y < -m_padStack.Size().y / 2 ) pad_margin.y = -m_padStack.Size().y / 2; } return pad_margin; } ZONE_CONNECTION PAD::GetZoneConnectionOverrides( wxString* aSource ) const { ZONE_CONNECTION connection = m_padStack.ZoneConnection().value_or( ZONE_CONNECTION::INHERITED ); if( connection != ZONE_CONNECTION::INHERITED ) { if( aSource ) *aSource = _( "pad" ); } if( connection == ZONE_CONNECTION::INHERITED ) { if( FOOTPRINT* parentFootprint = GetParentFootprint() ) connection = parentFootprint->GetZoneConnectionOverrides( aSource ); } return connection; } int PAD::GetLocalSpokeWidthOverride( wxString* aSource ) const { if( m_padStack.ThermalSpokeWidth().has_value() && aSource ) *aSource = _( "pad" ); return m_padStack.ThermalSpokeWidth().value_or( 0 ); } int PAD::GetLocalThermalGapOverride( wxString* aSource ) const { if( m_padStack.ThermalGap().has_value() && aSource ) *aSource = _( "pad" ); return m_padStack.ThermalGap().value_or( 0 ); } void PAD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { wxString msg; FOOTPRINT* parentFootprint = static_cast( m_parent ); if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { if( parentFootprint ) aList.emplace_back( _( "Footprint" ), parentFootprint->GetReference() ); } aList.emplace_back( _( "Pad" ), m_number ); if( !GetPinFunction().IsEmpty() ) aList.emplace_back( _( "Pin Name" ), GetPinFunction() ); if( !GetPinType().IsEmpty() ) aList.emplace_back( _( "Pin Type" ), GetPinType() ); if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) ); aList.emplace_back( _( "Resolved Netclass" ), UnescapeString( GetEffectiveNetClass()->GetName() ) ); if( IsLocked() ) aList.emplace_back( _( "Status" ), _( "Locked" ) ); } if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) aList.emplace_back( _( "Layer" ), layerMaskDescribe() ); if( aFrame->GetName() == FOOTPRINT_EDIT_FRAME_NAME ) { if( GetAttribute() == PAD_ATTRIB::SMD ) { const std::shared_ptr& poly = PAD::GetEffectivePolygon(); double area = poly->Area(); aList.emplace_back( _( "Area" ), aFrame->MessageTextFromValue( area, true, EDA_DATA_TYPE::AREA ) ); } } // Show the pad shape, attribute and property wxString props = ShowPadAttr(); if( GetProperty() != PAD_PROP::NONE ) props += ','; switch( GetProperty() ) { case PAD_PROP::NONE: break; case PAD_PROP::BGA: props += _( "BGA" ); break; case PAD_PROP::FIDUCIAL_GLBL: props += _( "Fiducial global" ); break; case PAD_PROP::FIDUCIAL_LOCAL: props += _( "Fiducial local" ); break; case PAD_PROP::TESTPOINT: props += _( "Test point" ); break; case PAD_PROP::HEATSINK: props += _( "Heat sink" ); break; case PAD_PROP::CASTELLATED: props += _( "Castellated" ); break; case PAD_PROP::MECHANICAL: props += _( "Mechanical" ); break; } aList.emplace_back( ShowPadShape(), props ); if( ( GetShape() == PAD_SHAPE::CIRCLE || GetShape() == PAD_SHAPE::OVAL ) && m_padStack.Size().x == m_padStack.Size().y ) { aList.emplace_back( _( "Diameter" ), aFrame->MessageTextFromValue( m_padStack.Size().x ) ); } else { aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( m_padStack.Size().x ) ); aList.emplace_back( _( "Height" ), aFrame->MessageTextFromValue( m_padStack.Size().y ) ); } EDA_ANGLE fp_orient = parentFootprint ? parentFootprint->GetOrientation() : ANGLE_0; EDA_ANGLE pad_orient = GetOrientation() - fp_orient; pad_orient.Normalize180(); if( !fp_orient.IsZero() ) msg.Printf( wxT( "%g(+ %g)" ), pad_orient.AsDegrees(), fp_orient.AsDegrees() ); else msg.Printf( wxT( "%g" ), GetOrientation().AsDegrees() ); aList.emplace_back( _( "Rotation" ), msg ); if( GetPadToDieLength() ) { aList.emplace_back( _( "Length in Package" ), aFrame->MessageTextFromValue( GetPadToDieLength() ) ); } const VECTOR2I& drill = m_padStack.Drill().size; if( drill.x > 0 || drill.y > 0 ) { if( GetDrillShape() == PAD_DRILL_SHAPE::CIRCLE ) { aList.emplace_back( _( "Hole" ), wxString::Format( wxT( "%s" ), aFrame->MessageTextFromValue( drill.x ) ) ); } else { aList.emplace_back( _( "Hole X / Y" ), wxString::Format( wxT( "%s / %s" ), aFrame->MessageTextFromValue( drill.x ), aFrame->MessageTextFromValue( drill.y ) ) ); } } wxString source; int clearance = GetOwnClearance( UNDEFINED_LAYER, &source ); if( !source.IsEmpty() ) { aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ), aFrame->MessageTextFromValue( clearance ) ), wxString::Format( _( "(from %s)" ), source ) ); } #if 0 // useful for debug only aList.emplace_back( wxT( "UUID" ), m_Uuid.AsString() ); #endif } bool PAD::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { VECTOR2I delta = aPosition - GetPosition(); int boundingRadius = GetBoundingRadius() + aAccuracy; if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) ) return false; return GetEffectivePolygon( ERROR_INSIDE )->Contains( aPosition, -1, aAccuracy ); } bool PAD::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { BOX2I arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); BOX2I bbox = GetBoundingBox(); if( aContained ) { return arect.Contains( bbox ); } else { // Fast test: if aRect is outside the polygon bounding box, // rectangles cannot intersect if( !arect.Intersects( bbox ) ) return false; const std::shared_ptr& poly = GetEffectivePolygon( ERROR_INSIDE ); int count = poly->TotalVertices(); for( int ii = 0; ii < count; ii++ ) { VECTOR2I vertex = poly->CVertex( ii ); VECTOR2I vertexNext = poly->CVertex( ( ii + 1 ) % count ); // Test if the point is within aRect if( arect.Contains( vertex ) ) return true; // Test if this edge intersects aRect if( arect.Intersects( vertex, vertexNext ) ) return true; } return false; } } int PAD::Compare( const PAD* aPadRef, const PAD* aPadCmp ) { int diff; // TODO(JE) move padstack comparision into PADSTACK if( ( diff = static_cast( aPadRef->GetShape() ) - static_cast( aPadCmp->GetShape() ) ) != 0 ) return diff; if( ( diff = static_cast( aPadRef->m_attribute ) - static_cast( aPadCmp->m_attribute ) ) != 0 ) return diff; if( ( diff = static_cast( aPadRef->GetDrillShape() ) - static_cast( aPadCmp->GetDrillShape() ) ) != 0 ) return diff; if( ( diff = aPadRef->Padstack().Drill().size.x - aPadCmp->Padstack().Drill().size.x ) != 0 ) return diff; if( ( diff = aPadRef->Padstack().Drill().size.y - aPadCmp->Padstack().Drill().size.y ) != 0 ) return diff; if( ( diff = aPadRef->m_padStack.Size().x - aPadCmp->m_padStack.Size().x ) != 0 ) return diff; if( ( diff = aPadRef->m_padStack.Size().y - aPadCmp->m_padStack.Size().y ) != 0 ) return diff; if( ( diff = aPadRef->m_padStack.Offset().x - aPadCmp->m_padStack.Offset().x ) != 0 ) return diff; if( ( diff = aPadRef->m_padStack.Offset().y - aPadCmp->m_padStack.Offset().y ) != 0 ) return diff; if( ( diff = aPadRef->m_padStack.TrapezoidDeltaSize().x - aPadCmp->m_padStack.TrapezoidDeltaSize().x ) != 0 ) { return diff; } if( ( diff = aPadRef->m_padStack.TrapezoidDeltaSize().y - aPadCmp->m_padStack.TrapezoidDeltaSize().y ) != 0 ) { return diff; } if( ( diff = aPadRef->m_padStack.RoundRectRadiusRatio() - aPadCmp->m_padStack.RoundRectRadiusRatio() ) != 0 ) { return diff; } if( ( diff = aPadRef->m_padStack.ChamferPositions() - aPadCmp->m_padStack.ChamferPositions() ) != 0 ) return diff; if( ( diff = aPadRef->m_padStack.ChamferRatio() - aPadCmp->m_padStack.ChamferRatio() ) != 0 ) return diff; if( ( diff = static_cast( aPadRef->m_padStack.Primitives().size() ) - static_cast( aPadCmp->m_padStack.Primitives().size() ) ) != 0 ) return diff; // @todo: Compare custom pad primitives for pads that have the same number of primitives // here. Currently there is no compare function for PCB_SHAPE objects. // Dick: specctra_export needs this // Lorenzo: gencad also needs it to implement padstacks! #if __cplusplus >= 201103L long long d = aPadRef->GetLayerSet().to_ullong() - aPadCmp->GetLayerSet().to_ullong(); if( d < 0 ) return -1; else if( d > 0 ) return 1; return 0; #else // these strings are not typically constructed, since we don't get here often. std::string s1 = aPadRef->GetLayerSet().to_string(); std::string s2 = aPadCmp->GetLayerSet().to_string(); return s1.compare( s2 ); #endif } void PAD::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) { RotatePoint( m_pos, aRotCentre, aAngle ); m_padStack.SetOrientation( m_padStack.GetOrientation() + aAngle ); SetDirty(); } wxString PAD::ShowPadShape() const { switch( GetShape() ) { case PAD_SHAPE::CIRCLE: return _( "Circle" ); case PAD_SHAPE::OVAL: return _( "Oval" ); case PAD_SHAPE::RECTANGLE: return _( "Rect" ); case PAD_SHAPE::TRAPEZOID: return _( "Trap" ); case PAD_SHAPE::ROUNDRECT: return _( "Roundrect" ); case PAD_SHAPE::CHAMFERED_RECT: return _( "Chamferedrect" ); case PAD_SHAPE::CUSTOM: return _( "CustomShape" ); default: return wxT( "???" ); } } wxString PAD::ShowPadAttr() const { switch( GetAttribute() ) { case PAD_ATTRIB::PTH: return _( "PTH" ); case PAD_ATTRIB::SMD: return _( "SMD" ); case PAD_ATTRIB::CONN: return _( "Conn" ); case PAD_ATTRIB::NPTH: return _( "NPTH" ); default: return wxT( "???" ); } } wxString PAD::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const { if( GetNumber().IsEmpty() ) { if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) { return wxString::Format( _( "Pad %s of %s on %s" ), GetNetnameMsg(), GetParentFootprint()->GetReference(), layerMaskDescribe() ); } else if( GetAttribute() == PAD_ATTRIB::NPTH ) { return wxString::Format( _( "NPTH pad of %s" ), GetParentFootprint()->GetReference() ); } else { return wxString::Format( _( "PTH pad %s of %s" ), GetNetnameMsg(), GetParentFootprint()->GetReference() ); } } else { if( GetAttribute() == PAD_ATTRIB::SMD || GetAttribute() == PAD_ATTRIB::CONN ) { return wxString::Format( _( "Pad %s %s of %s on %s" ), GetNumber(), GetNetnameMsg(), GetParentFootprint()->GetReference(), layerMaskDescribe() ); } else if( GetAttribute() == PAD_ATTRIB::NPTH ) { return wxString::Format( _( "NPTH of %s" ), GetParentFootprint()->GetReference() ); } else { return wxString::Format( _( "PTH pad %s %s of %s" ), GetNumber(), GetNetnameMsg(), GetParentFootprint()->GetReference() ); } } } BITMAPS PAD::GetMenuImage() const { return BITMAPS::pad; } EDA_ITEM* PAD::Clone() const { return new PAD( *this ); } void PAD::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 0; // These 2 types of pads contain a hole if( m_attribute == PAD_ATTRIB::PTH ) { aLayers[aCount++] = LAYER_PAD_PLATEDHOLES; aLayers[aCount++] = LAYER_PAD_HOLEWALLS; } if( m_attribute == PAD_ATTRIB::NPTH ) aLayers[aCount++] = LAYER_NON_PLATEDHOLES; if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) ) { // Multi layer pad aLayers[aCount++] = LAYER_PADS_TH; aLayers[aCount++] = LAYER_PAD_NETNAMES; } else if( IsOnLayer( F_Cu ) ) { aLayers[aCount++] = LAYER_PADS_SMD_FR; // Is this a PTH pad that has only front copper? If so, we need to also display the // net name on the PTH netname layer so that it isn't blocked by the drill hole. if( m_attribute == PAD_ATTRIB::PTH ) aLayers[aCount++] = LAYER_PAD_NETNAMES; else aLayers[aCount++] = LAYER_PAD_FR_NETNAMES; } else if( IsOnLayer( B_Cu ) ) { aLayers[aCount++] = LAYER_PADS_SMD_BK; // Is this a PTH pad that has only back copper? If so, we need to also display the // net name on the PTH netname layer so that it isn't blocked by the drill hole. if( m_attribute == PAD_ATTRIB::PTH ) aLayers[aCount++] = LAYER_PAD_NETNAMES; else aLayers[aCount++] = LAYER_PAD_BK_NETNAMES; } else { // Internal layers only. (Not yet supported in GUI, but is being used by Python // footprint generators and will be needed anyway once pad stacks are supported.) for ( int internal = In1_Cu; internal < In30_Cu; ++internal ) { if( IsOnLayer( (PCB_LAYER_ID) internal ) ) aLayers[aCount++] = internal; } } // Check non-copper layers. This list should include all the layers that the // footprint editor allows a pad to be placed on. static const PCB_LAYER_ID layers_mech[] = { F_Mask, B_Mask, F_Paste, B_Paste, F_Adhes, B_Adhes, F_SilkS, B_SilkS, Dwgs_User, Eco1_User, Eco2_User }; for( PCB_LAYER_ID each_layer : layers_mech ) { if( IsOnLayer( each_layer ) ) aLayers[aCount++] = each_layer; } } double PAD::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { constexpr double HIDE = std::numeric_limits::max(); PCB_PAINTER* painter = static_cast( aView->GetPainter() ); PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings(); const BOARD* board = GetBoard(); // Meta control for hiding all pads if( !aView->IsLayerVisible( LAYER_PADS ) ) return HIDE; // Handle Render tab switches if( ( GetAttribute() == PAD_ATTRIB::PTH || GetAttribute() == PAD_ATTRIB::NPTH ) && !aView->IsLayerVisible( LAYER_PADS_TH ) ) { return HIDE; } if( !IsFlipped() && !aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) ) return HIDE; if( IsFlipped() && !aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) ) return HIDE; if( IsFrontLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PADS_SMD_FR ) ) return HIDE; if( IsBackLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PADS_SMD_BK ) ) return HIDE; LSET visible = board->GetVisibleLayers() & board->GetEnabledLayers(); if( IsHoleLayer( aLayer ) ) { if( !( visible & LSET::PhysicalLayersMask() ).any() ) return HIDE; } else if( IsNetnameLayer( aLayer ) ) { if( renderSettings->GetHighContrast() ) { // Hide netnames unless pad is flashed to a high-contrast layer if( !FlashLayer( renderSettings->GetPrimaryHighContrastLayer() ) ) return HIDE; } else { // Hide netnames unless pad is flashed to a visible layer if( !FlashLayer( visible ) ) return HIDE; } // Netnames will be shown only if zoom is appropriate int divisor = std::min( GetBoundingBox().GetWidth(), GetBoundingBox().GetHeight() ); // Pad sizes can be zero briefly when someone is typing a number like "0.5" in the pad // properties dialog if( divisor == 0 ) return HIDE; return ( double ) pcbIUScale.mmToIU( 5 ) / divisor; } // Passed all tests; show. return 0.0; } const BOX2I PAD::ViewBBox() const { // Bounding box includes soldermask too. Remember mask and/or paste margins can be < 0 int solderMaskMargin = std::max( GetSolderMaskExpansion(), 0 ); VECTOR2I solderPasteMargin = VECTOR2D( GetSolderPasteMargin() ); BOX2I bbox = GetBoundingBox(); int clearance = 0; // If we're drawing clearance lines then get the biggest possible clearance if( PCBNEW_SETTINGS* cfg = dynamic_cast( Kiface().KifaceSettings() ) ) { if( cfg && cfg->m_Display.m_PadClearance && GetBoard() ) clearance = GetBoard()->GetMaxClearanceValue(); } // Look for the biggest possible bounding box int xMargin = std::max( solderMaskMargin, solderPasteMargin.x ) + clearance; int yMargin = std::max( solderMaskMargin, solderPasteMargin.y ) + clearance; return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ), VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) ); } void PAD::ImportSettingsFrom( const PAD& aMasterPad ) { SetPadstack( aMasterPad.Padstack() ); SetShape( aMasterPad.GetShape() ); // Layer Set should be updated before calling SetAttribute() SetLayerSet( aMasterPad.GetLayerSet() ); SetAttribute( aMasterPad.GetAttribute() ); // Unfortunately, SetAttribute() can change m_layerMask. // Be sure we keep the original mask by calling SetLayerSet() after SetAttribute() SetLayerSet( aMasterPad.GetLayerSet() ); SetProperty( aMasterPad.GetProperty() ); // Must be after setting attribute and layerSet if( !CanHaveNumber() ) SetNumber( wxEmptyString ); // I am not sure the m_LengthPadToDie should be imported, because this is a parameter // really specific to a given pad (JPC). #if 0 SetPadToDieLength( aMasterPad.GetPadToDieLength() ); #endif // The pad orientation, for historical reasons is the pad rotation + parent rotation. EDA_ANGLE pad_rot = aMasterPad.GetOrientation(); if( aMasterPad.GetParentFootprint() ) pad_rot -= aMasterPad.GetParentFootprint()->GetOrientation(); if( GetParentFootprint() ) pad_rot += GetParentFootprint()->GetOrientation(); SetOrientation( pad_rot ); SetSize( aMasterPad.GetSize() ); SetDelta( VECTOR2I( 0, 0 ) ); SetOffset( aMasterPad.GetOffset() ); SetDrillSize( aMasterPad.GetDrillSize() ); SetDrillShape( aMasterPad.GetDrillShape() ); SetRoundRectRadiusRatio( aMasterPad.GetRoundRectRadiusRatio() ); SetChamferRectRatio( aMasterPad.GetChamferRectRatio() ); SetChamferPositions( aMasterPad.GetChamferPositions() ); switch( aMasterPad.GetShape() ) { case PAD_SHAPE::TRAPEZOID: SetDelta( aMasterPad.GetDelta() ); break; case PAD_SHAPE::CIRCLE: // ensure size.y == size.x SetSize( VECTOR2I( GetSize().x, GetSize().x ) ); break; default: ; } switch( aMasterPad.GetAttribute() ) { case PAD_ATTRIB::SMD: case PAD_ATTRIB::CONN: // These pads do not have a hole (they are expected to be on one external copper layer) SetDrillSize( VECTOR2I( 0, 0 ) ); break; default: ; } // copy also local settings: SetLocalClearance( aMasterPad.GetLocalClearance() ); SetLocalSolderMaskMargin( aMasterPad.GetLocalSolderMaskMargin() ); SetLocalSolderPasteMargin( aMasterPad.GetLocalSolderPasteMargin() ); SetLocalSolderPasteMarginRatio( aMasterPad.GetLocalSolderPasteMarginRatio() ); SetLocalZoneConnection( aMasterPad.GetLocalZoneConnection() ); SetThermalSpokeWidth( aMasterPad.GetThermalSpokeWidth() ); SetThermalSpokeAngle( aMasterPad.GetThermalSpokeAngle() ); SetThermalGap( aMasterPad.GetThermalGap() ); SetCustomShapeInZoneOpt( aMasterPad.GetCustomShapeInZoneOpt() ); m_teardropParams = aMasterPad.m_teardropParams; // Add or remove custom pad shapes: ReplacePrimitives( aMasterPad.GetPrimitives() ); SetAnchorPadShape( aMasterPad.GetAnchorPadShape() ); SetDirty(); } void PAD::swapData( BOARD_ITEM* aImage ) { assert( aImage->Type() == PCB_PAD_T ); std::swap( *this, *static_cast( aImage ) ); } bool PAD::TransformHoleToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError, ERROR_LOC aErrorLoc ) const { VECTOR2I drillsize = GetDrillSize(); if( !drillsize.x || !drillsize.y ) return false; std::shared_ptr slot = GetEffectiveHoleShape(); TransformOvalToPolygon( aBuffer, slot->GetSeg().A, slot->GetSeg().B, slot->GetWidth() + aClearance * 2, aError, aErrorLoc ); return true; } void PAD::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aMaxError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const { wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for pads." ) ); // minimal segment count to approximate a circle to create the polygonal pad shape // This minimal value is mainly for very small pads, like SM0402. // Most of time pads are using the segment count given by aError value. const int pad_min_seg_per_circle_count = 16; int dx = m_padStack.Size().x / 2; int dy = m_padStack.Size().y / 2; VECTOR2I padShapePos = ShapePos(); // Note: for pad having a shape offset, the pad // position is NOT the shape position switch( GetShape() ) { case PAD_SHAPE::CIRCLE: case PAD_SHAPE::OVAL: // Note: dx == dy is not guaranteed for circle pads in legacy boards if( dx == dy || ( GetShape() == PAD_SHAPE::CIRCLE ) ) { TransformCircleToPolygon( aBuffer, padShapePos, dx + aClearance, aMaxError, aErrorLoc, pad_min_seg_per_circle_count ); } else { int half_width = std::min( dx, dy ); VECTOR2I delta( dx - half_width, dy - half_width ); RotatePoint( delta, GetOrientation() ); TransformOvalToPolygon( aBuffer, padShapePos - delta, padShapePos + delta, ( half_width + aClearance ) * 2, aMaxError, aErrorLoc, pad_min_seg_per_circle_count ); } break; case PAD_SHAPE::TRAPEZOID: case PAD_SHAPE::RECTANGLE: { int ddx = GetShape() == PAD_SHAPE::TRAPEZOID ? m_padStack.TrapezoidDeltaSize().x / 2 : 0; int ddy = GetShape() == PAD_SHAPE::TRAPEZOID ? m_padStack.TrapezoidDeltaSize().y / 2 : 0; SHAPE_POLY_SET outline; TransformTrapezoidToPolygon( outline, padShapePos, m_padStack.Size(), GetOrientation(), ddx, ddy, aClearance, aMaxError, aErrorLoc ); aBuffer.Append( outline ); break; } case PAD_SHAPE::CHAMFERED_RECT: case PAD_SHAPE::ROUNDRECT: { bool doChamfer = GetShape() == PAD_SHAPE::CHAMFERED_RECT; SHAPE_POLY_SET outline; TransformRoundChamferedRectToPolygon( outline, padShapePos, m_padStack.Size(), GetOrientation(), GetRoundRectCornerRadius(), doChamfer ? GetChamferRectRatio() : 0, doChamfer ? GetChamferPositions() : 0, aClearance, aMaxError, aErrorLoc ); aBuffer.Append( outline ); break; } case PAD_SHAPE::CUSTOM: { SHAPE_POLY_SET outline; MergePrimitivesAsPolygon( &outline, aErrorLoc ); outline.Rotate( GetOrientation() ); outline.Move( VECTOR2I( padShapePos ) ); if( aClearance > 0 || aErrorLoc == ERROR_OUTSIDE ) { if( aErrorLoc == ERROR_OUTSIDE ) aClearance += aMaxError; outline.Inflate( aClearance, CORNER_STRATEGY::ROUND_ALL_CORNERS, aMaxError ); outline.Fracture( SHAPE_POLY_SET::PM_FAST ); } else if( aClearance < 0 ) { // Negative clearances are primarily for drawing solder paste layer, so we don't // worry ourselves overly about which side the error is on. // aClearance is negative so this is actually a deflate outline.Inflate( aClearance, CORNER_STRATEGY::ALLOW_ACUTE_CORNERS, aMaxError ); outline.Fracture( SHAPE_POLY_SET::PM_FAST ); } aBuffer.Append( outline ); break; } default: wxFAIL_MSG( wxT( "PAD::TransformShapeToPolygon no implementation for " ) + wxString( std::string( magic_enum::enum_name( GetShape() ) ) ) ); break; } } void PAD::CheckPad( UNITS_PROVIDER* aUnitsProvider, const std::function& aErrorHandler ) const { VECTOR2I pad_size = GetSize(); VECTOR2I drill_size = GetDrillSize(); wxString msg; if( GetShape() == PAD_SHAPE::CUSTOM ) pad_size = GetBoundingBox().GetSize(); else if( pad_size.x <= 0 || ( pad_size.y <= 0 && GetShape() != PAD_SHAPE::CIRCLE ) ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(Pad must have a positive size)" ) ); // Test hole against pad shape if( IsOnCopperLayer() && GetDrillSize().x > 0 ) { // Ensure the drill size can be handled in next calculations. // Use min size = 4 IU to be able to build a polygon from a hole shape const int min_drill_size = 4; if( GetDrillSizeX() <= min_drill_size || GetDrillSizeY() <= min_drill_size ) { msg.Printf( _( "(PTH pad hole size must be larger than %s)" ), aUnitsProvider->StringFromValue( min_drill_size, true ) ); aErrorHandler( DRCE_PADSTACK_INVALID, msg ); } int maxError = GetBoard()->GetDesignSettings().m_MaxError; SHAPE_POLY_SET padOutline; TransformShapeToPolygon( padOutline, UNDEFINED_LAYER, 0, maxError, ERROR_INSIDE ); if( !padOutline.Collide( GetPosition() ) ) { aErrorHandler( DRCE_PADSTACK, _( "Pad hole not inside pad shape" ) ); } else if( GetAttribute() == PAD_ATTRIB::PTH ) { std::shared_ptr slot = GetEffectiveHoleShape(); SHAPE_POLY_SET slotOutline; TransformOvalToPolygon( slotOutline, slot->GetSeg().A, slot->GetSeg().B, slot->GetWidth(), maxError, ERROR_OUTSIDE ); padOutline.BooleanSubtract( slotOutline, SHAPE_POLY_SET::PM_FAST ); if( padOutline.IsEmpty() ) aErrorHandler( DRCE_PADSTACK, _( "Pad hole will leave no copper" ) ); } } if( GetLocalClearance().value_or( 0 ) < 0 ) aErrorHandler( DRCE_PADSTACK, _( "Negative local clearance values have no effect" ) ); // Some pads need a negative solder mask clearance (mainly for BGA with small pads) // However the negative solder mask clearance must not create negative mask size // Therefore test for minimal acceptable negative value std::optional solderMaskMargin = GetLocalSolderMaskMargin(); if( solderMaskMargin.has_value() && solderMaskMargin.value() < 0 ) { int absMargin = abs( solderMaskMargin.value() ); if( GetShape() == PAD_SHAPE::CUSTOM ) { for( const std::shared_ptr& shape : GetPrimitives() ) { BOX2I shapeBBox = shape->GetBoundingBox(); if( absMargin > shapeBBox.GetWidth() || absMargin > shapeBBox.GetHeight() ) { aErrorHandler( DRCE_PADSTACK, _( "Negative solder mask clearance is larger " "than some shape primitives; results may be " "surprising" ) ); break; } } } else if( absMargin > pad_size.x || absMargin > pad_size.y ) { aErrorHandler( DRCE_PADSTACK, _( "Negative solder mask clearance is larger than pad; " "no solder mask will be generated" ) ); } } // Some pads need a positive solder paste clearance (mainly for BGA with small pads) // However, a positive value can create issues if the resulting shape is too big. // (like a solder paste creating a solder paste area on a neighbor pad or on the solder mask) // So we could ask for user to confirm the choice // For now we just check for disappearing paste wxSize paste_size; int paste_margin = GetLocalSolderPasteMargin().value_or( 0 ); double paste_ratio = GetLocalSolderPasteMarginRatio().value_or( 0 ); paste_size.x = pad_size.x + paste_margin + KiROUND( pad_size.x * paste_ratio ); paste_size.y = pad_size.y + paste_margin + KiROUND( pad_size.y * paste_ratio ); if( paste_size.x <= 0 || paste_size.y <= 0 ) { aErrorHandler( DRCE_PADSTACK, _( "Negative solder paste margin is larger than pad; " "no solder paste mask will be generated" ) ); } LSET padlayers_mask = GetLayerSet(); if( padlayers_mask == 0 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(Pad has no layer)" ) ); if( GetAttribute() == PAD_ATTRIB::PTH && !IsOnCopperLayer() ) aErrorHandler( DRCE_PADSTACK, _( "PTH pad has no copper layers" ) ); if( !padlayers_mask[F_Cu] && !padlayers_mask[B_Cu] ) { if( ( drill_size.x || drill_size.y ) && GetAttribute() != PAD_ATTRIB::NPTH ) { aErrorHandler( DRCE_PADSTACK, _( "Plated through holes normally have a copper pad on " "at least one layer" ) ); } } switch( GetAttribute() ) { case PAD_ATTRIB::NPTH: // Not plated, but through hole, a hole is expected case PAD_ATTRIB::PTH: // Pad through hole, a hole is also expected if( drill_size.x <= 0 || ( drill_size.y <= 0 && GetDrillShape() == PAD_DRILL_SHAPE::OBLONG ) ) { aErrorHandler( DRCE_PAD_TH_WITH_NO_HOLE, wxEmptyString ); } break; case PAD_ATTRIB::CONN: // Connector pads are smd pads, just they do not have solder paste. if( padlayers_mask[B_Paste] || padlayers_mask[F_Paste] ) { aErrorHandler( DRCE_PADSTACK, _( "Connector pads normally have no solder paste; use a " "SMD pad instead" ) ); } KI_FALLTHROUGH; case PAD_ATTRIB::SMD: // SMD and Connector pads (One external copper layer only) { if( drill_size.x > 0 || drill_size.y > 0 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(SMD pad has a hole)" ) ); LSET innerlayers_mask = padlayers_mask & LSET::InternalCuMask(); if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) ) { aErrorHandler( DRCE_PADSTACK, _( "SMD pad has copper on both sides of the board" ) ); } else if( IsOnLayer( F_Cu ) ) { if( IsOnLayer( B_Mask ) ) { aErrorHandler( DRCE_PADSTACK, _( "SMD pad has copper and mask layers on different " "sides of the board" ) ); } else if( IsOnLayer( B_Paste ) ) { aErrorHandler( DRCE_PADSTACK, _( "SMD pad has copper and paste layers on different " "sides of the board" ) ); } } else if( IsOnLayer( B_Cu ) ) { if( IsOnLayer( F_Mask ) ) { aErrorHandler( DRCE_PADSTACK, _( "SMD pad has copper and mask layers on different " "sides of the board" ) ); } else if( IsOnLayer( F_Paste ) ) { aErrorHandler( DRCE_PADSTACK, _( "SMD pad has copper and paste layers on different " "sides of the board" ) ); } } else if( innerlayers_mask.count() != 0 ) { aErrorHandler( DRCE_PADSTACK, _( "SMD pad has no outer layers" ) ); } break; } } if( ( GetProperty() == PAD_PROP::FIDUCIAL_GLBL || GetProperty() == PAD_PROP::FIDUCIAL_LOCAL ) && GetAttribute() == PAD_ATTRIB::NPTH ) { aErrorHandler( DRCE_PADSTACK, _( "Fiducial property makes no sense on NPTH pads" ) ); } if( GetProperty() == PAD_PROP::TESTPOINT && GetAttribute() == PAD_ATTRIB::NPTH ) aErrorHandler( DRCE_PADSTACK, _( "Testpoint property makes no sense on NPTH pads" ) ); if( GetProperty() == PAD_PROP::HEATSINK && GetAttribute() == PAD_ATTRIB::NPTH ) aErrorHandler( DRCE_PADSTACK, _( "Heatsink property makes no sense of NPTH pads" ) ); if( GetProperty() == PAD_PROP::CASTELLATED && GetAttribute() != PAD_ATTRIB::PTH ) aErrorHandler( DRCE_PADSTACK, _( "Castellated property is for PTH pads" ) ); if( GetProperty() == PAD_PROP::BGA && GetAttribute() != PAD_ATTRIB::SMD ) aErrorHandler( DRCE_PADSTACK, _( "BGA property is for SMD pads" ) ); if( GetProperty() == PAD_PROP::MECHANICAL && GetAttribute() != PAD_ATTRIB::PTH ) aErrorHandler( DRCE_PADSTACK, _( "Mechanical property is for PTH pads" ) ); if( GetShape() == PAD_SHAPE::ROUNDRECT ) { if( GetRoundRectRadiusRatio() < 0.0 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(Negative corner radius is not allowed)" ) ); else if( GetRoundRectRadiusRatio() > 50.0 ) aErrorHandler( DRCE_PADSTACK, _( "Corner size will make pad circular" ) ); } else if( GetShape() == PAD_SHAPE::CHAMFERED_RECT ) { if( GetChamferRectRatio() < 0.0 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(Negative corner chamfer is not allowed)" ) ); else if( GetChamferRectRatio() > 50.0 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(Corner chamfer is too large)" ) ); } else if( GetShape() == PAD_SHAPE::TRAPEZOID ) { if( ( GetDelta().x < 0 && GetDelta().x < -GetSize().y ) || ( GetDelta().x > 0 && GetDelta().x > GetSize().y ) || ( GetDelta().y < 0 && GetDelta().y < -GetSize().x ) || ( GetDelta().y > 0 && GetDelta().y > GetSize().x ) ) { aErrorHandler( DRCE_PADSTACK_INVALID, _( "(Trapazoid delta is too large)" ) ); } } // PADSTACKS TODO: this will need to check each layer in the pad... if( GetShape() == PAD_SHAPE::CUSTOM ) { SHAPE_POLY_SET mergedPolygon; MergePrimitivesAsPolygon( &mergedPolygon ); if( mergedPolygon.OutlineCount() > 1 ) aErrorHandler( DRCE_PADSTACK_INVALID, _( "(Custom pad shape must resolve to a single polygon)" ) ); } } bool PAD::operator==( const BOARD_ITEM& aOther ) const { if( Type() != aOther.Type() ) return false; if( m_parent && aOther.GetParent() && m_parent->m_Uuid != aOther.GetParent()->m_Uuid ) return false; const PAD& other = static_cast( aOther ); if( GetShape() != other.GetShape() ) return false; if( GetPosition() != other.GetPosition() ) return false; if( GetAttribute() != other.GetAttribute() ) return false; if( GetSize() != other.GetSize() ) return false; if( GetOffset() != other.GetOffset() ) return false; if( GetDrillSize() != other.GetDrillSize() ) return false; if( GetDrillShape() != other.GetDrillShape() ) return false; if( GetRoundRectRadiusRatio() != other.GetRoundRectRadiusRatio() ) return false; if( GetChamferRectRatio() != other.GetChamferRectRatio() ) return false; if( GetChamferPositions() != other.GetChamferPositions() ) return false; if( GetOrientation() != other.GetOrientation() ) return false; if( GetLocalZoneConnection() != other.GetLocalZoneConnection() ) return false; if( GetThermalSpokeWidth() != other.GetThermalSpokeWidth() ) return false; if( GetThermalSpokeAngle() != other.GetThermalSpokeAngle() ) return false; if( GetThermalGap() != other.GetThermalGap() ) return false; if( GetCustomShapeInZoneOpt() != other.GetCustomShapeInZoneOpt() ) return false; if( GetPrimitives().size() != other.GetPrimitives().size() ) return false; for( size_t ii = 0; ii < GetPrimitives().size(); ii++ ) { if( *GetPrimitives()[ii] != *other.GetPrimitives()[ii] ) return false; } if( GetAnchorPadShape() != other.GetAnchorPadShape() ) return false; if( GetLocalClearance() != other.GetLocalClearance() ) return false; if( GetLocalSolderMaskMargin() != other.GetLocalSolderMaskMargin() ) return false; if( GetLocalSolderPasteMargin() != other.GetLocalSolderPasteMargin() ) return false; if( GetLocalSolderPasteMarginRatio() != other.GetLocalSolderPasteMarginRatio() ) return false; if( GetLocalSpokeWidthOverride() != other.GetLocalSpokeWidthOverride() ) return false; if( GetLayerSet() != other.GetLayerSet() ) return false; return true; } double PAD::Similarity( const BOARD_ITEM& aOther ) const { if( aOther.Type() != Type() ) return 0.0; if( m_parent->m_Uuid != aOther.GetParent()->m_Uuid ) return 0.0; const PAD& other = static_cast( aOther ); double similarity = 1.0; if( GetShape() != other.GetShape() ) similarity *= 0.9; if( GetPosition() != other.GetPosition() ) similarity *= 0.9; if( GetAttribute() != other.GetAttribute() ) similarity *= 0.9; if( GetSize() != other.GetSize() ) similarity *= 0.9; if( GetOffset() != other.GetOffset() ) similarity *= 0.9; if( GetDrillSize() != other.GetDrillSize() ) similarity *= 0.9; if( GetDrillShape() != other.GetDrillShape() ) similarity *= 0.9; if( GetRoundRectRadiusRatio() != other.GetRoundRectRadiusRatio() ) similarity *= 0.9; if( GetChamferRectRatio() != other.GetChamferRectRatio() ) similarity *= 0.9; if( GetChamferPositions() != other.GetChamferPositions() ) similarity *= 0.9; if( GetOrientation() != other.GetOrientation() ) similarity *= 0.9; if( GetLocalZoneConnection() != other.GetLocalZoneConnection() ) similarity *= 0.9; if( GetThermalSpokeWidth() != other.GetThermalSpokeWidth() ) similarity *= 0.9; if( GetThermalSpokeAngle() != other.GetThermalSpokeAngle() ) similarity *= 0.9; if( GetThermalGap() != other.GetThermalGap() ) similarity *= 0.9; if( GetCustomShapeInZoneOpt() != other.GetCustomShapeInZoneOpt() ) similarity *= 0.9; if( GetPrimitives().size() != other.GetPrimitives().size() ) similarity *= 0.9; if( GetAnchorPadShape() != other.GetAnchorPadShape() ) similarity *= 0.9; if( GetLocalClearance() != other.GetLocalClearance() ) similarity *= 0.9; if( GetLocalSolderMaskMargin() != other.GetLocalSolderMaskMargin() ) similarity *= 0.9; if( GetLocalSolderPasteMargin() != other.GetLocalSolderPasteMargin() ) similarity *= 0.9; if( GetLocalSolderPasteMarginRatio() != other.GetLocalSolderPasteMarginRatio() ) similarity *= 0.9; if( GetLocalSpokeWidthOverride() != other.GetLocalSpokeWidthOverride() ) similarity *= 0.9; if( GetLayerSet() != other.GetLayerSet() ) similarity *= 0.9; return similarity; } static struct PAD_DESC { PAD_DESC() { ENUM_MAP::Instance() .Map( PAD_ATTRIB::PTH, _HKI( "Through-hole" ) ) .Map( PAD_ATTRIB::SMD, _HKI( "SMD" ) ) .Map( PAD_ATTRIB::CONN, _HKI( "Edge connector" ) ) .Map( PAD_ATTRIB::NPTH, _HKI( "NPTH, mechanical" ) ); ENUM_MAP::Instance() .Map( PAD_SHAPE::CIRCLE, _HKI( "Circle" ) ) .Map( PAD_SHAPE::RECTANGLE, _HKI( "Rectangle" ) ) .Map( PAD_SHAPE::OVAL, _HKI( "Oval" ) ) .Map( PAD_SHAPE::TRAPEZOID, _HKI( "Trapezoid" ) ) .Map( PAD_SHAPE::ROUNDRECT, _HKI( "Rounded rectangle" ) ) .Map( PAD_SHAPE::CHAMFERED_RECT, _HKI( "Chamfered rectangle" ) ) .Map( PAD_SHAPE::CUSTOM, _HKI( "Custom" ) ); ENUM_MAP::Instance() .Map( PAD_PROP::NONE, _HKI( "None" ) ) .Map( PAD_PROP::BGA, _HKI( "BGA pad" ) ) .Map( PAD_PROP::FIDUCIAL_GLBL, _HKI( "Fiducial, global to board" ) ) .Map( PAD_PROP::FIDUCIAL_LOCAL, _HKI( "Fiducial, local to footprint" ) ) .Map( PAD_PROP::TESTPOINT, _HKI( "Test point pad" ) ) .Map( PAD_PROP::HEATSINK, _HKI( "Heatsink pad" ) ) .Map( PAD_PROP::CASTELLATED, _HKI( "Castellated pad" ) ) .Map( PAD_PROP::MECHANICAL, _HKI( "Mechanical pad" ) ); ENUM_MAP& zcMap = ENUM_MAP::Instance(); if( zcMap.Choices().GetCount() == 0 ) { zcMap.Undefined( ZONE_CONNECTION::INHERITED ); zcMap.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) ) .Map( ZONE_CONNECTION::NONE, _HKI( "None" ) ) .Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) ) .Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) ) .Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) ); } ENUM_MAP::Instance() .Map( PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL, _HKI( "All copper layers" ) ) .Map( PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL, _HKI( "Connected layers only" ) ) .Map( PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END, _HKI( "Front, back and connected layers" ) ); PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( PAD ); propMgr.InheritsAfter( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ) ); propMgr.Mask( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Orientation" ), &PAD::SetOrientationDegrees, &PAD::GetOrientationDegrees, PROPERTY_DISPLAY::PT_DEGREE ) ); auto isCopperPad = []( INSPECTABLE* aItem ) -> bool { if( PAD* pad = dynamic_cast( aItem ) ) return pad->GetAttribute() != PAD_ATTRIB::NPTH; return false; }; auto padCanHaveHole = []( INSPECTABLE* aItem ) -> bool { if( PAD* pad = dynamic_cast( aItem ) ) { return pad->GetAttribute() == PAD_ATTRIB::PTH || pad->GetAttribute() == PAD_ATTRIB::NPTH; } return false; }; propMgr.OverrideAvailability( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Net" ), isCopperPad ); propMgr.OverrideAvailability( TYPE_HASH( PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Net Class" ), isCopperPad ); const wxString groupPad = _HKI( "Pad Properties" ); auto padType = new PROPERTY_ENUM( _HKI( "Pad Type" ), &PAD::SetAttribute, &PAD::GetAttribute ); propMgr.AddProperty( padType, groupPad ); auto shape = new PROPERTY_ENUM( _HKI( "Pad Shape" ), &PAD::SetShape, &PAD::GetShape ); propMgr.AddProperty( shape, groupPad ); auto padNumber = new PROPERTY( _HKI( "Pad Number" ), &PAD::SetNumber, &PAD::GetNumber ); padNumber->SetAvailableFunc( isCopperPad ); propMgr.AddProperty( padNumber, groupPad ); propMgr.AddProperty( new PROPERTY( _HKI( "Pin Name" ), NO_SETTER( PAD, wxString ), &PAD::GetPinFunction ), groupPad ) .SetIsHiddenFromLibraryEditors(); propMgr.AddProperty( new PROPERTY( _HKI( "Pin Type" ), NO_SETTER( PAD, wxString ), &PAD::GetPinType ), groupPad ) .SetIsHiddenFromLibraryEditors(); propMgr.AddProperty( new PROPERTY( _HKI( "Size X" ), &PAD::SetSizeX, &PAD::GetSizeX, PROPERTY_DISPLAY::PT_SIZE ), groupPad ); propMgr.AddProperty( new PROPERTY( _HKI( "Size Y" ), &PAD::SetSizeY, &PAD::GetSizeY, PROPERTY_DISPLAY::PT_SIZE ), groupPad ) .SetAvailableFunc( [=]( INSPECTABLE* aItem ) -> bool { // Circle pads have no usable y-size if( PAD* pad = dynamic_cast( aItem ) ) return pad->GetShape() != PAD_SHAPE::CIRCLE; return true; } ); auto roundRadiusRatio = new PROPERTY( _HKI( "Corner Radius Ratio" ), &PAD::SetRoundRectRadiusRatio, &PAD::GetRoundRectRadiusRatio ); roundRadiusRatio->SetAvailableFunc( [=]( INSPECTABLE* aItem ) -> bool { if( PAD* pad = dynamic_cast( aItem ) ) return pad->GetShape() == PAD_SHAPE::ROUNDRECT; return false; } ); propMgr.AddProperty( roundRadiusRatio, groupPad ); propMgr.AddProperty( new PROPERTY( _HKI( "Hole Size X" ), &PAD::SetDrillSizeX, &PAD::GetDrillSizeX, PROPERTY_DISPLAY::PT_SIZE ), groupPad ) .SetWriteableFunc( padCanHaveHole ) .SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator ); propMgr.AddProperty( new PROPERTY( _HKI( "Hole Size Y" ), &PAD::SetDrillSizeY, &PAD::GetDrillSizeY, PROPERTY_DISPLAY::PT_SIZE ), groupPad ) .SetWriteableFunc( padCanHaveHole ) .SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Fabrication Property" ), &PAD::SetProperty, &PAD::GetProperty ), groupPad ); auto layerMode = new PROPERTY_ENUM( _HKI( "Copper Layers" ), &PAD::SetUnconnectedLayerMode, &PAD::GetUnconnectedLayerMode ); propMgr.AddProperty( layerMode, groupPad ); auto padToDie = new PROPERTY( _HKI( "Pad To Die Length" ), &PAD::SetPadToDieLength, &PAD::GetPadToDieLength, PROPERTY_DISPLAY::PT_SIZE ); padToDie->SetAvailableFunc( isCopperPad ); propMgr.AddProperty( padToDie, groupPad ); const wxString groupOverrides = _HKI( "Overrides" ); propMgr.AddProperty( new PROPERTY>( _HKI( "Clearance Override" ), &PAD::SetLocalClearance, &PAD::GetLocalClearance, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY>( _HKI( "Soldermask Margin Override" ), &PAD::SetLocalSolderMaskMargin, &PAD::GetLocalSolderMaskMargin, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY>( _HKI( "Solderpaste Margin Override" ), &PAD::SetLocalSolderPasteMargin, &PAD::GetLocalSolderPasteMargin, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ); propMgr.AddProperty( new PROPERTY>( _HKI( "Solderpaste Margin Ratio Override" ), &PAD::SetLocalSolderPasteMarginRatio, &PAD::GetLocalSolderPasteMarginRatio, PROPERTY_DISPLAY::PT_RATIO ), groupOverrides ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Zone Connection Style" ), &PAD::SetLocalZoneConnection, &PAD::GetLocalZoneConnection ), groupOverrides ); constexpr int minZoneWidth = pcbIUScale.mmToIU( ZONE_THICKNESS_MIN_VALUE_MM ); propMgr.AddProperty( new PROPERTY( _HKI( "Thermal Relief Spoke Width" ), &PAD::SetThermalSpokeWidth, &PAD::GetThermalSpokeWidth, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ) .SetValidator( PROPERTY_VALIDATORS::RangeIntValidator ); propMgr.AddProperty( new PROPERTY( _HKI( "Thermal Relief Spoke Angle" ), &PAD::SetThermalSpokeAngleDegrees, &PAD::GetThermalSpokeAngleDegrees, PROPERTY_DISPLAY::PT_DEGREE ), groupOverrides ); propMgr.AddProperty( new PROPERTY( _HKI( "Thermal Relief Gap" ), &PAD::SetThermalGap, &PAD::GetThermalGap, PROPERTY_DISPLAY::PT_SIZE ), groupOverrides ) .SetValidator( PROPERTY_VALIDATORS::PositiveIntValidator ); // TODO delta, drill shape offset, layer set } } _PAD_DESC; ENUM_TO_WXANY( PAD_ATTRIB ); ENUM_TO_WXANY( PAD_SHAPE ); ENUM_TO_WXANY( PAD_PROP );