/* * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors * http://code.google.com/p/poly2tri/ * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of Poly2Tri nor the names of its contributors may be * used to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "shapes.h" #include #include namespace p2t { Triangle::Triangle(Point& a, Point& b, Point& c) { points_[0] = &a; points_[1] = &b; points_[2] = &c; neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL; constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false; delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; interior_ = false; } // Update neighbor pointers void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t) { if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2])) neighbors_[0] = t; else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0])) neighbors_[1] = t; else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0])) neighbors_[2] = t; else throw std::runtime_error("Polygon contains overlapping hole vertices."); } // Exhaustive search to update neighbor pointers void Triangle::MarkNeighbor(Triangle& t) { if (t.Contains(points_[1], points_[2])) { neighbors_[0] = &t; t.MarkNeighbor(points_[1], points_[2], this); } else if (t.Contains(points_[0], points_[2])) { neighbors_[1] = &t; t.MarkNeighbor(points_[0], points_[2], this); } else if (t.Contains(points_[0], points_[1])) { neighbors_[2] = &t; t.MarkNeighbor(points_[0], points_[1], this); } } /** * Clears all references to all other triangles and points */ void Triangle::Clear() { Triangle *t; for( int i=0; i<3; i++ ) { t = neighbors_[i]; if( t != NULL ) { t->ClearNeighbor( this ); } } ClearNeighbors(); points_[0]=points_[1]=points_[2] = NULL; } void Triangle::ClearNeighbor(Triangle *triangle ) { if( neighbors_[0] == triangle ) { neighbors_[0] = NULL; } else if( neighbors_[1] == triangle ) { neighbors_[1] = NULL; } else { neighbors_[2] = NULL; } } void Triangle::ClearNeighbors() { neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL; } void Triangle::ClearDelunayEdges() { delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; } Point* Triangle::OppositePoint(Triangle& t, Point& p) { Point *cw = t.PointCW(p); double x = cw->x; double y = cw->y; x = p.x; y = p.y; return PointCW(*cw); } // Legalized triangle by rotating clockwise around point(0) void Triangle::Legalize(Point& point) { points_[1] = points_[0]; points_[0] = points_[2]; points_[2] = &point; } // Legalize triagnle by rotating clockwise around oPoint void Triangle::Legalize(Point& opoint, Point& npoint) { if (&opoint == points_[0]) { points_[1] = points_[0]; points_[0] = points_[2]; points_[2] = &npoint; } else if (&opoint == points_[1]) { points_[2] = points_[1]; points_[1] = points_[0]; points_[0] = &npoint; } else if (&opoint == points_[2]) { points_[0] = points_[2]; points_[2] = points_[1]; points_[1] = &npoint; } else { throw std::runtime_error("Polygon contains overlapping hole vertices."); } } int Triangle::Index(const Point* p) { if (p == points_[0]) { return 0; } else if (p == points_[1]) { return 1; } else if (p == points_[2]) { return 2; } throw std::runtime_error("Polygon contains overlapping hole vertices."); return 0; } int Triangle::EdgeIndex(const Point* p1, const Point* p2) { if (points_[0] == p1) { if (points_[1] == p2) { return 2; } else if (points_[2] == p2) { return 1; } } else if (points_[1] == p1) { if (points_[2] == p2) { return 0; } else if (points_[0] == p2) { return 2; } } else if (points_[2] == p1) { if (points_[0] == p2) { return 1; } else if (points_[1] == p2) { return 0; } } return -1; } void Triangle::MarkConstrainedEdge(const int index) { constrained_edge[index] = true; } void Triangle::MarkConstrainedEdge(Edge& edge) { MarkConstrainedEdge(edge.p, edge.q); } // Mark edge as constrained void Triangle::MarkConstrainedEdge(Point* p, Point* q) { if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) { constrained_edge[2] = true; } else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) { constrained_edge[1] = true; } else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) { constrained_edge[0] = true; } } // The point counter-clockwise to given point Point* Triangle::PointCW(Point& point) { if (&point == points_[0]) { return points_[2]; } else if (&point == points_[1]) { return points_[0]; } else if (&point == points_[2]) { return points_[1]; } throw std::runtime_error("Polygon contains overlapping hole vertices."); return NULL; } // The point counter-clockwise to given point Point* Triangle::PointCCW(Point& point) { if (&point == points_[0]) { return points_[1]; } else if (&point == points_[1]) { return points_[2]; } else if (&point == points_[2]) { return points_[0]; } throw std::runtime_error("Polygon contains overlapping hole vertices."); return NULL; } // The neighbor clockwise to given point Triangle* Triangle::NeighborCW(Point& point) { if (&point == points_[0]) { return neighbors_[1]; } else if (&point == points_[1]) { return neighbors_[2]; } return neighbors_[0]; } // The neighbor counter-clockwise to given point Triangle* Triangle::NeighborCCW(Point& point) { if (&point == points_[0]) { return neighbors_[2]; } else if (&point == points_[1]) { return neighbors_[0]; } return neighbors_[1]; } bool Triangle::GetConstrainedEdgeCCW(Point& p) { if (&p == points_[0]) { return constrained_edge[2]; } else if (&p == points_[1]) { return constrained_edge[0]; } return constrained_edge[1]; } bool Triangle::GetConstrainedEdgeCW(Point& p) { if (&p == points_[0]) { return constrained_edge[1]; } else if (&p == points_[1]) { return constrained_edge[2]; } return constrained_edge[0]; } void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce) { if (&p == points_[0]) { constrained_edge[2] = ce; } else if (&p == points_[1]) { constrained_edge[0] = ce; } else { constrained_edge[1] = ce; } } void Triangle::SetConstrainedEdgeCW(Point& p, bool ce) { if (&p == points_[0]) { constrained_edge[1] = ce; } else if (&p == points_[1]) { constrained_edge[2] = ce; } else { constrained_edge[0] = ce; } } bool Triangle::GetDelunayEdgeCCW(Point& p) { if (&p == points_[0]) { return delaunay_edge[2]; } else if (&p == points_[1]) { return delaunay_edge[0]; } return delaunay_edge[1]; } bool Triangle::GetDelunayEdgeCW(Point& p) { if (&p == points_[0]) { return delaunay_edge[1]; } else if (&p == points_[1]) { return delaunay_edge[2]; } return delaunay_edge[0]; } void Triangle::SetDelunayEdgeCCW(Point& p, bool e) { if (&p == points_[0]) { delaunay_edge[2] = e; } else if (&p == points_[1]) { delaunay_edge[0] = e; } else { delaunay_edge[1] = e; } } void Triangle::SetDelunayEdgeCW(Point& p, bool e) { if (&p == points_[0]) { delaunay_edge[1] = e; } else if (&p == points_[1]) { delaunay_edge[2] = e; } else { delaunay_edge[0] = e; } } // The neighbor across to given point Triangle* Triangle::NeighborAcross(Point& opoint) { if (&opoint == points_[0]) { return neighbors_[0]; } else if (&opoint == points_[1]) { return neighbors_[1]; } return neighbors_[2]; } void Triangle::DebugPrint() { using namespace std; cout << points_[0]->x << "," << points_[0]->y << " "; cout << points_[1]->x << "," << points_[1]->y << " "; cout << points_[2]->x << "," << points_[2]->y << endl; } }