/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2017 CERN * Copyright (C) 2018-2023 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifdef PROFILE #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include CONNECTIVITY_DATA::CONNECTIVITY_DATA() : m_skipRatsnestUpdate( false ) { m_connAlgo.reset( new CN_CONNECTIVITY_ALGO( this ) ); m_progressReporter = nullptr; m_fromToCache.reset( new FROM_TO_CACHE ); } CONNECTIVITY_DATA::CONNECTIVITY_DATA( std::shared_ptr aGlobalConnectivity, const std::vector& aLocalItems, bool aSkipRatsnestUpdate ) : m_skipRatsnestUpdate( aSkipRatsnestUpdate ) { Build( aGlobalConnectivity, aLocalItems ); m_progressReporter = nullptr; m_fromToCache.reset( new FROM_TO_CACHE ); } CONNECTIVITY_DATA::~CONNECTIVITY_DATA() { for( RN_NET* net : m_nets ) delete net; m_nets.clear(); } bool CONNECTIVITY_DATA::Add( BOARD_ITEM* aItem ) { m_connAlgo->Add( aItem ); return true; } bool CONNECTIVITY_DATA::Remove( BOARD_ITEM* aItem ) { m_connAlgo->Remove( aItem ); return true; } bool CONNECTIVITY_DATA::Update( BOARD_ITEM* aItem ) { m_connAlgo->Remove( aItem ); m_connAlgo->Add( aItem ); return true; } bool CONNECTIVITY_DATA::Build( BOARD* aBoard, PROGRESS_REPORTER* aReporter ) { aBoard->CacheTriangulation( aReporter ); std::unique_lock lock( m_lock, std::try_to_lock ); if( !lock ) return false; if( aReporter ) { aReporter->Report( _( "Updating nets..." ) ); aReporter->KeepRefreshing( false ); } std::shared_ptr& netSettings = aBoard->GetDesignSettings().m_NetSettings; m_connAlgo.reset( new CN_CONNECTIVITY_ALGO( this ) ); m_connAlgo->Build( aBoard, aReporter ); m_netclassMap.clear(); for( NETINFO_ITEM* net : aBoard->GetNetInfo() ) { net->SetNetClass( netSettings->GetEffectiveNetClass( net->GetNetname() ) ); if( net->GetNetClass()->GetName() != NETCLASS::Default ) m_netclassMap[ net->GetNetCode() ] = net->GetNetClass()->GetName(); } if( aReporter ) { aReporter->SetCurrentProgress( 0.75 ); aReporter->KeepRefreshing( false ); } internalRecalculateRatsnest(); if( aReporter ) { aReporter->SetCurrentProgress( 1.0 ); aReporter->KeepRefreshing( false ); } return true; } void CONNECTIVITY_DATA::Build( std::shared_ptr& aGlobalConnectivity, const std::vector& aLocalItems ) { std::unique_lock lock( m_lock, std::try_to_lock ); if( !lock ) return; m_connAlgo.reset( new CN_CONNECTIVITY_ALGO( this ) ); m_connAlgo->LocalBuild( aGlobalConnectivity, aLocalItems ); internalRecalculateRatsnest(); } void CONNECTIVITY_DATA::Move( const VECTOR2I& aDelta ) { m_connAlgo->ForEachAnchor( [&aDelta]( CN_ANCHOR& anchor ) { anchor.Move( aDelta ); } ); } void CONNECTIVITY_DATA::updateRatsnest() { #ifdef PROFILE PROF_TIMER rnUpdate( "update-ratsnest" ); #endif std::vector dirty_nets; // Start with net 1 as net 0 is reserved for not-connected // Nets without nodes are also ignored std::copy_if( m_nets.begin() + 1, m_nets.end(), std::back_inserter( dirty_nets ), [] ( RN_NET* aNet ) { return aNet->IsDirty() && aNet->GetNodeCount() > 0; } ); thread_pool& tp = GetKiCadThreadPool(); tp.push_loop( dirty_nets.size(), [&]( const int a, const int b ) { for( int ii = a; ii < b; ++ii ) dirty_nets[ii]->UpdateNet(); } ); tp.wait_for_tasks(); tp.push_loop( dirty_nets.size(), [&]( const int a, const int b ) { for( int ii = a; ii < b; ++ii ) dirty_nets[ii]->OptimizeRNEdges(); } ); tp.wait_for_tasks(); #ifdef PROFILE rnUpdate.Show(); #endif } void CONNECTIVITY_DATA::addRatsnestCluster( const std::shared_ptr& aCluster ) { RN_NET* rnNet = m_nets[ aCluster->OriginNet() ]; rnNet->AddCluster( aCluster ); } void CONNECTIVITY_DATA::RecalculateRatsnest( BOARD_COMMIT* aCommit ) { // We can take over the lock here if called in the same thread // This is to prevent redraw during a RecalculateRatsnets process std::unique_lock lock( m_lock ); internalRecalculateRatsnest( aCommit ); } void CONNECTIVITY_DATA::internalRecalculateRatsnest( BOARD_COMMIT* aCommit ) { m_connAlgo->PropagateNets( aCommit ); int lastNet = m_connAlgo->NetCount(); if( lastNet >= (int) m_nets.size() ) { unsigned int prevSize = m_nets.size(); m_nets.resize( lastNet + 1 ); for( unsigned int i = prevSize; i < m_nets.size(); i++ ) m_nets[i] = new RN_NET; } else { for( size_t ii = lastNet; ii < m_nets.size(); ++ii ) m_nets[ii]->Clear(); } const std::vector>& clusters = m_connAlgo->GetClusters(); int dirtyNets = 0; for( int net = 0; net < lastNet; net++ ) { if( m_connAlgo->IsNetDirty( net ) ) { m_nets[net]->Clear(); dirtyNets++; } } for( const std::shared_ptr& c : clusters ) { int net = c->OriginNet(); // Don't add intentionally-kept zone islands to the ratsnest if( c->IsOrphaned() && c->Size() == 1 ) { if( dynamic_cast( *c->begin() ) ) continue; } if( m_connAlgo->IsNetDirty( net ) ) addRatsnestCluster( c ); } m_connAlgo->ClearDirtyFlags(); if( !m_skipRatsnestUpdate ) updateRatsnest(); } void CONNECTIVITY_DATA::BlockRatsnestItems( const std::vector& aItems ) { std::vector citems; for( BOARD_ITEM* item : aItems ) { if( item->Type() == PCB_FOOTPRINT_T ) { for( PAD* pad : static_cast(item)->Pads() ) citems.push_back( pad ); } else { if( BOARD_CONNECTED_ITEM* citem = dynamic_cast( item ) ) citems.push_back( citem ); } } for( const BOARD_CONNECTED_ITEM* item : citems ) { if ( m_connAlgo->ItemExists( item ) ) { CN_CONNECTIVITY_ALGO::ITEM_MAP_ENTRY& entry = m_connAlgo->ItemEntry( item ); for( CN_ITEM* cnItem : entry.GetItems() ) { for( const std::shared_ptr& anchor : cnItem->Anchors() ) anchor->SetNoLine( true ); } } } } int CONNECTIVITY_DATA::GetNetCount() const { return m_connAlgo->NetCount(); } void CONNECTIVITY_DATA::FillIsolatedIslandsMap( std::map>& aMap, bool aConnectivityAlreadyRebuilt ) { m_connAlgo->FillIsolatedIslandsMap( aMap, aConnectivityAlreadyRebuilt ); } void CONNECTIVITY_DATA::ComputeLocalRatsnest( const std::vector& aItems, const CONNECTIVITY_DATA* aDynamicData, VECTOR2I aInternalOffset ) { if( !aDynamicData ) return; m_dynamicRatsnest.clear(); std::mutex dynamic_ratsnest_mutex; // This gets connections between the stationary board and the // moving selection auto update_lambda = [&]( int nc ) { RN_NET* dynamicNet = aDynamicData->m_nets[nc]; RN_NET* staticNet = m_nets[nc]; /// We don't need to compute the dynamic ratsnest in two cases: /// 1) We are not moving any net elements /// 2) We are moving all net elements if( dynamicNet->GetNodeCount() != 0 && dynamicNet->GetNodeCount() != staticNet->GetNodeCount() ) { VECTOR2I pos1, pos2; if( staticNet->NearestBicoloredPair( dynamicNet, pos1, pos2 ) ) { RN_DYNAMIC_LINE l; l.a = pos1; l.b = pos2; l.netCode = nc; std::lock_guard lock( dynamic_ratsnest_mutex ); m_dynamicRatsnest.push_back( l ); } } }; thread_pool& tp = GetKiCadThreadPool(); size_t num_nets = std::min( m_nets.size(), aDynamicData->m_nets.size() ); tp.push_loop( 1, num_nets, [&]( const int a, const int b) { for( int ii = a; ii < b; ++ii ) update_lambda( ii ); }); tp.wait_for_tasks(); // This gets the ratsnest for internal connections in the moving set const std::vector& edges = GetRatsnestForItems( aItems ); for( const CN_EDGE& edge : edges ) { const std::shared_ptr& nodeA = edge.GetSourceNode(); const std::shared_ptr& nodeB = edge.GetTargetNode(); if( !nodeA || nodeA->Dirty() || !nodeB || nodeB->Dirty() ) continue; RN_DYNAMIC_LINE l; // Use the parents' positions l.a = nodeA->Parent()->GetPosition() + aInternalOffset; l.b = nodeB->Parent()->GetPosition() + aInternalOffset; l.netCode = 0; m_dynamicRatsnest.push_back( l ); } } void CONNECTIVITY_DATA::ClearLocalRatsnest() { m_connAlgo->ForEachAnchor( []( CN_ANCHOR& anchor ) { anchor.SetNoLine( false ); } ); HideLocalRatsnest(); } void CONNECTIVITY_DATA::HideLocalRatsnest() { m_dynamicRatsnest.clear(); } void CONNECTIVITY_DATA::PropagateNets( BOARD_COMMIT* aCommit ) { m_connAlgo->PropagateNets( aCommit ); } bool CONNECTIVITY_DATA::IsConnectedOnLayer( const BOARD_CONNECTED_ITEM *aItem, int aLayer, const std::initializer_list& aTypes ) const { CN_CONNECTIVITY_ALGO::ITEM_MAP_ENTRY &entry = m_connAlgo->ItemEntry( aItem ); auto matchType = [&]( KICAD_T aItemType ) { if( aTypes.size() == 0 ) return true; return alg::contains( aTypes, aItemType); }; for( CN_ITEM* citem : entry.GetItems() ) { for( CN_ITEM* connected : citem->ConnectedItems() ) { CN_ZONE_LAYER* zoneLayer = dynamic_cast( connected ); if( connected->Valid() && connected->Layers().Overlaps( aLayer ) && matchType( connected->Parent()->Type() ) && connected->Net() == aItem->GetNetCode() ) { if( aItem->Type() == PCB_PAD_T && zoneLayer ) { const PAD* pad = static_cast( aItem ); ZONE* zone = static_cast( zoneLayer->Parent() ); int islandIdx = zoneLayer->SubpolyIndex(); if( zone->IsFilled() ) { const SHAPE_POLY_SET* zoneFill = zone->GetFill( ToLAYER_ID( aLayer ) ); const SHAPE_LINE_CHAIN& padHull = pad->GetEffectivePolygon( ERROR_INSIDE )->Outline( 0 ); for( const VECTOR2I& pt : zoneFill->COutline( islandIdx ).CPoints() ) { // If the entire island is inside the pad's flashing then the pad // won't actually connect to anything else, so only return true if // part of the island is *outside* the pad's flashing. if( !padHull.PointInside( pt ) ) return true; } } continue; } else if( aItem->Type() == PCB_VIA_T && zoneLayer ) { const PCB_VIA* via = static_cast( aItem ); ZONE* zone = static_cast( zoneLayer->Parent() ); int islandIdx = zoneLayer->SubpolyIndex(); if( zone->IsFilled() ) { const SHAPE_POLY_SET* zoneFill = zone->GetFill( ToLAYER_ID( aLayer ) ); SHAPE_CIRCLE viaHull( via->GetCenter(), via->GetWidth() / 2 ); for( const VECTOR2I& pt : zoneFill->COutline( islandIdx ).CPoints() ) { // If the entire island is inside the via's flashing then the via // won't actually connect to anything else, so only return true if // part of the island is *outside* the via's flashing. if( !viaHull.SHAPE::Collide( pt ) ) return true; } } continue; } return true; } } } return false; } unsigned int CONNECTIVITY_DATA::GetUnconnectedCount( bool aVisibleOnly ) const { unsigned int unconnected = 0; for( RN_NET* net : m_nets ) { if( !net ) continue; for( const CN_EDGE& edge : net->GetEdges() ) { if( edge.IsVisible() || !aVisibleOnly ) ++unconnected; } } return unconnected; } void CONNECTIVITY_DATA::ClearRatsnest() { for( RN_NET* net : m_nets ) net->Clear(); } const std::vector CONNECTIVITY_DATA::GetConnectedItems( const BOARD_CONNECTED_ITEM *aItem, const std::initializer_list& aTypes, bool aIgnoreNetcodes ) const { std::vector rv; CN_CONNECTIVITY_ALGO::CLUSTER_SEARCH_MODE searchMode; if( aIgnoreNetcodes ) searchMode = CN_CONNECTIVITY_ALGO::CSM_PROPAGATE; else searchMode = CN_CONNECTIVITY_ALGO::CSM_CONNECTIVITY_CHECK; const auto clusters = m_connAlgo->SearchClusters( searchMode, aTypes, aIgnoreNetcodes ? -1 : aItem->GetNetCode() ); for( const std::shared_ptr& cl : clusters ) { if( cl->Contains( aItem ) ) { for( const CN_ITEM* item : *cl ) { if( item->Valid() ) rv.push_back( item->Parent() ); } } } return rv; } // We don't use std::initializer_list& to allow the use from Python const std::vector CONNECTIVITY_DATA::GetNetItems( int aNetCode, const std::vector& aTypes ) const { std::vector items; items.reserve( 32 ); std::bitset type_bits; for( KICAD_T scanType : aTypes ) { wxASSERT( scanType < MAX_STRUCT_TYPE_ID ); type_bits.set( scanType ); } m_connAlgo->ForEachItem( [&]( CN_ITEM& aItem ) { if( aItem.Valid() && ( aItem.Net() == aNetCode ) && type_bits[aItem.Parent()->Type()] ) items.push_back( aItem.Parent() ); } ); std::sort( items.begin(), items.end() ); items.erase( std::unique( items.begin(), items.end() ), items.end() ); return items; } const std::vector CONNECTIVITY_DATA::GetConnectedTracks( const BOARD_CONNECTED_ITEM* aItem ) const { CN_CONNECTIVITY_ALGO::ITEM_MAP_ENTRY& entry = m_connAlgo->ItemEntry( aItem ); std::set tracks; std::vector rv; for( CN_ITEM* citem : entry.GetItems() ) { for( CN_ITEM* connected : citem->ConnectedItems() ) { if( connected->Valid() && ( connected->Parent()->Type() == PCB_TRACE_T || connected->Parent()->Type() == PCB_VIA_T || connected->Parent()->Type() == PCB_ARC_T ) ) { tracks.insert( static_cast ( connected->Parent() ) ); } } } std::copy( tracks.begin(), tracks.end(), std::back_inserter( rv ) ); return rv; } void CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem, std::set* pads ) const { for( CN_ITEM* citem : m_connAlgo->ItemEntry( aItem ).GetItems() ) { for( CN_ITEM* connected : citem->ConnectedItems() ) { if( connected->Valid() && connected->Parent()->Type() == PCB_PAD_T ) pads->insert( static_cast ( connected->Parent() ) ); } } } const std::vector CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem ) const { std::set pads; std::vector rv; GetConnectedPads( aItem, &pads ); std::copy( pads.begin(), pads.end(), std::back_inserter( rv ) ); return rv; } unsigned int CONNECTIVITY_DATA::GetNodeCount( int aNet ) const { int sum = 0; if( aNet < 0 ) // Node count for all nets { for( const RN_NET* net : m_nets ) sum += net->GetNodeCount(); } else if( aNet < (int) m_nets.size() ) { sum = m_nets[aNet]->GetNodeCount(); } return sum; } unsigned int CONNECTIVITY_DATA::GetPadCount( int aNet ) const { int n = 0; for( CN_ITEM* pad : m_connAlgo->ItemList() ) { if( !pad->Valid() || pad->Parent()->Type() != PCB_PAD_T) continue; PAD* dpad = static_cast( pad->Parent() ); if( aNet < 0 || aNet == dpad->GetNetCode() ) n++; } return n; } void CONNECTIVITY_DATA::RunOnUnconnectedEdges( std::function aFunc ) { for( RN_NET* rnNet : m_nets ) { if( rnNet ) { for( CN_EDGE& edge : rnNet->GetEdges() ) { if( !aFunc( edge ) ) return; } } } } static int getMinDist( BOARD_CONNECTED_ITEM* aItem, const VECTOR2I& aPoint ) { switch( aItem->Type() ) { case PCB_TRACE_T: case PCB_ARC_T: { PCB_TRACK* track = static_cast( aItem ); return std::min( GetLineLength( track->GetStart(), aPoint ), GetLineLength( track->GetEnd(), aPoint ) ); } default: return GetLineLength( aItem->GetPosition(), aPoint ); } } bool CONNECTIVITY_DATA::TestTrackEndpointDangling( PCB_TRACK* aTrack, bool aIgnoreTracksInPads, VECTOR2I* aPos ) const { const std::list& items = GetConnectivityAlgo()->ItemEntry( aTrack ).GetItems(); // Not in the connectivity system. This is a bug! if( items.empty() ) { wxFAIL_MSG( wxT( "track not in connectivity system" ) ); return false; } CN_ITEM* citem = items.front(); if( !citem->Valid() ) return false; if( aTrack->Type() == PCB_TRACE_T || aTrack->Type() == PCB_ARC_T ) { // Test if a segment is connected on each end. // // NB: be wary of short segments which can be connected to the *same* other item on // each end. If that's their only connection then they're still dangling. PCB_LAYER_ID layer = aTrack->GetLayer(); int accuracy = KiROUND( aTrack->GetWidth() / 2 ); int start_count = 0; int end_count = 0; for( CN_ITEM* connected : citem->ConnectedItems() ) { BOARD_CONNECTED_ITEM* item = connected->Parent(); ZONE* zone = dynamic_cast( item ); DRC_RTREE* rtree = nullptr; bool hitStart = false; bool hitEnd = false; if( item->GetFlags() & IS_DELETED ) continue; if( zone ) rtree = zone->GetBoard()->m_CopperZoneRTreeCache[ zone ].get(); if( rtree ) { SHAPE_CIRCLE start( aTrack->GetStart(), accuracy ); SHAPE_CIRCLE end( aTrack->GetEnd(), accuracy ); hitStart = rtree->QueryColliding( start.BBox(), &start, layer ); hitEnd = rtree->QueryColliding( end.BBox(), &end, layer ); } else { std::shared_ptr shape = item->GetEffectiveShape( layer ); hitStart = shape->Collide( aTrack->GetStart(), accuracy ); hitEnd = shape->Collide( aTrack->GetEnd(), accuracy ); } if( hitStart && hitEnd ) { if( zone ) { // Both start and end in a zone: track may be redundant, but it's not dangling return false; } else if( item->Type() == PCB_PAD_T || item->Type() == PCB_VIA_T ) { // Both start and end are under a pad: see what the caller wants us to do if( aIgnoreTracksInPads ) return false; } if( getMinDist( item, aTrack->GetStart() ) < getMinDist( item, aTrack->GetEnd() ) ) start_count++; else end_count++; } else if( hitStart ) { start_count++; } else if( hitEnd ) { end_count++; } if( start_count > 0 && end_count > 0 ) return false; } if( aPos ) *aPos = (start_count == 0 ) ? aTrack->GetStart() : aTrack->GetEnd(); return true; } else if( aTrack->Type() == PCB_VIA_T ) { // Test if a via is only connected on one layer const std::vector& connected = citem->ConnectedItems(); if( connected.empty() ) { if( aPos ) *aPos = aTrack->GetPosition(); return true; } // Here, we check if the via is connected only to items on a single layer int first_layer = UNDEFINED_LAYER; for( CN_ITEM* item : connected ) { if( item->Parent()->GetFlags() & IS_DELETED ) continue; if( first_layer == UNDEFINED_LAYER ) first_layer = item->Layer(); else if( item->Layer() != first_layer ) return false; } if( aPos ) *aPos = aTrack->GetPosition(); return true; } else { wxFAIL_MSG( wxT( "CONNECTIVITY_DATA::TestTrackEndpointDangling: unknown track type" ) ); } return false; } const std::vector CONNECTIVITY_DATA::GetConnectedItemsAtAnchor( const BOARD_CONNECTED_ITEM* aItem, const VECTOR2I& aAnchor, const std::initializer_list& aTypes, const int& aMaxError ) const { CN_CONNECTIVITY_ALGO::ITEM_MAP_ENTRY& entry = m_connAlgo->ItemEntry( aItem ); std::vector rv; SEG::ecoord maxError_sq = (SEG::ecoord) aMaxError * aMaxError; for( CN_ITEM* cnItem : entry.GetItems() ) { for( CN_ITEM* connected : cnItem->ConnectedItems() ) { for( const std::shared_ptr& anchor : connected->Anchors() ) { if( ( anchor->Pos() - aAnchor ).SquaredEuclideanNorm() <= maxError_sq ) { for( KICAD_T type : aTypes ) { if( connected->Valid() && connected->Parent()->Type() == type ) { rv.push_back( connected->Parent() ); break; } } break; } } } } return rv; } RN_NET* CONNECTIVITY_DATA::GetRatsnestForNet( int aNet ) { if ( aNet < 0 || aNet >= (int) m_nets.size() ) { return nullptr; } return m_nets[ aNet ]; } void CONNECTIVITY_DATA::MarkItemNetAsDirty( BOARD_ITEM *aItem ) { if ( aItem->Type() == PCB_FOOTPRINT_T) { for( PAD* pad : static_cast( aItem )->Pads() ) m_connAlgo->MarkNetAsDirty( pad->GetNetCode() ); } if (aItem->IsConnected() ) { m_connAlgo->MarkNetAsDirty( static_cast( aItem )->GetNetCode() ); } } void CONNECTIVITY_DATA::RemoveInvalidRefs() { m_connAlgo->RemoveInvalidRefs(); for( RN_NET* rnNet : m_nets ) rnNet->RemoveInvalidRefs(); } void CONNECTIVITY_DATA::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; m_connAlgo->SetProgressReporter( m_progressReporter ); } const std::vector CONNECTIVITY_DATA::GetRatsnestForItems( std::vector aItems ) { std::set nets; std::vector edges; std::set item_set; for( BOARD_ITEM* item : aItems ) { if( item->Type() == PCB_FOOTPRINT_T ) { FOOTPRINT* footprint = static_cast( item ); for( PAD* pad : footprint->Pads() ) { nets.insert( pad->GetNetCode() ); item_set.insert( pad ); } } else if( auto conn_item = dyn_cast( item ) ) { item_set.insert( conn_item ); nets.insert( conn_item->GetNetCode() ); } } for( int netcode : nets ) { RN_NET* net = GetRatsnestForNet( netcode ); for( const CN_EDGE& edge : net->GetEdges() ) { std::shared_ptr srcNode = edge.GetSourceNode(); std::shared_ptr dstNode = edge.GetTargetNode(); if( !srcNode || srcNode->Dirty() || !dstNode || dstNode->Dirty() ) continue; BOARD_CONNECTED_ITEM* srcParent = srcNode->Parent(); BOARD_CONNECTED_ITEM* dstParent = dstNode->Parent(); bool srcFound = ( item_set.find( srcParent ) != item_set.end() ); bool dstFound = ( item_set.find( dstParent ) != item_set.end() ); if ( srcFound && dstFound ) edges.push_back( edge ); } } return edges; } const std::vector CONNECTIVITY_DATA::GetRatsnestForPad( const PAD* aPad ) { std::vector edges; RN_NET* net = GetRatsnestForNet( aPad->GetNetCode() ); for( const CN_EDGE& edge : net->GetEdges() ) { if( !edge.GetSourceNode() || edge.GetSourceNode()->Dirty() ) continue; if( !edge.GetTargetNode() || edge.GetTargetNode()->Dirty() ) continue; if( edge.GetSourceNode()->Parent() == aPad || edge.GetTargetNode()->Parent() == aPad ) edges.push_back( edge ); } return edges; } const std::vector CONNECTIVITY_DATA::GetRatsnestForComponent( FOOTPRINT* aComponent, bool aSkipInternalConnections ) { std::set nets; std::set pads; std::vector edges; for( PAD* pad : aComponent->Pads() ) { nets.insert( pad->GetNetCode() ); pads.insert( pad ); } for( const auto& netcode : nets ) { RN_NET* net = GetRatsnestForNet( netcode ); for( const CN_EDGE& edge : net->GetEdges() ) { auto srcNode = edge.GetSourceNode(); auto dstNode = edge.GetTargetNode(); if( !srcNode || srcNode->Dirty() || !dstNode || dstNode->Dirty() ) continue; const PAD* srcParent = static_cast( srcNode->Parent() ); const PAD* dstParent = static_cast( dstNode->Parent() ); bool srcFound = ( pads.find(srcParent) != pads.end() ); bool dstFound = ( pads.find(dstParent) != pads.end() ); if ( srcFound && dstFound && !aSkipInternalConnections ) { edges.push_back( edge ); } else if ( srcFound || dstFound ) { edges.push_back( edge ); } } } return edges; }