/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 2015-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file track_ball.cpp * @brief Implementation of a track ball camera. A track ball is placed in the * center of the screen and rotates the camera. */ #include "track_ball.h" #include "trackball.h" #include "../3d_math.h" #include #include // stdlib #include TRACK_BALL::TRACK_BALL( float aInitialDistance ) : CAMERA( aInitialDistance ) { wxLogTrace( m_logTrace, wxT( "TRACK_BALL::TRACK_BALL" ) ); memset( m_quat_t0, 0, sizeof( m_quat_t0 ) ); memset( m_quat_t1, 0, sizeof( m_quat_t1 ) ); trackball( m_quat_t0, 0.0, 0.0, 0.0, 0.0 ); trackball( m_quat_t1, 0.0, 0.0, 0.0, 0.0 ); } void TRACK_BALL::Drag( const wxPoint& aNewMousePosition ) { m_parametersChanged = true; double spin_quat[4]; // "Pass the x and y coordinates of the last and current positions of // the mouse, scaled so they are from (-1.0 ... 1.0)." const float zoom = 1.0f; trackball( spin_quat, zoom * ( 2.0 * m_lastPosition.x - m_windowSize.x ) / m_windowSize.x, zoom * ( m_windowSize.y - 2.0 * m_lastPosition.y ) / m_windowSize.y, zoom * ( 2.0 * aNewMousePosition.x - m_windowSize.x ) / m_windowSize.x, zoom * ( m_windowSize.y - 2.0 * aNewMousePosition.y ) / m_windowSize.y ); float spin_matrix[4][4]; build_rotmatrix( spin_matrix, spin_quat ); m_rotationMatrix = glm::make_mat4( &spin_matrix[0][0] ) * m_rotationMatrix; updateViewMatrix(); updateFrustum(); } void TRACK_BALL::Pan( const wxPoint& aNewMousePosition ) { m_parametersChanged = true; if( m_projectionType == PROJECTION_TYPE::ORTHO ) { m_camera_pos.x -= m_frustum.nw * ( m_lastPosition.x - aNewMousePosition.x ) / m_windowSize.x; m_camera_pos.y -= m_frustum.nh * ( aNewMousePosition.y - m_lastPosition.y ) / m_windowSize.y; } else // PROJECTION_TYPE::PERSPECTIVE { // Unproject the coordinates using the precomputed frustum tangent (zoom level dependent) const float panFactor = -m_camera_pos.z * m_frustum.tang * 2; m_camera_pos.x -= panFactor * m_frustum.ratio * ( m_lastPosition.x - aNewMousePosition.x ) / m_windowSize.x; m_camera_pos.y -= panFactor * ( aNewMousePosition.y - m_lastPosition.y ) / m_windowSize.y; } updateViewMatrix(); updateFrustum(); } void TRACK_BALL::Pan( const SFVEC3F& aDeltaOffsetInc ) { m_parametersChanged = true; m_camera_pos += aDeltaOffsetInc; updateViewMatrix(); updateFrustum(); } void TRACK_BALL::Pan_T1( const SFVEC3F& aDeltaOffsetInc ) { m_camera_pos_t1 = m_camera_pos + aDeltaOffsetInc; } void TRACK_BALL::Reset_T1() { CAMERA::Reset_T1(); memset( m_quat_t1, 0, sizeof( m_quat_t1 ) ); trackball( m_quat_t1, 0.0, 0.0, 0.0, 0.0 ); } void TRACK_BALL::SetT0_and_T1_current_T() { CAMERA::SetT0_and_T1_current_T(); double quat[4]; // Charge the quaternions with the current rotation matrix to allow dual input. std::copy_n( glm::value_ptr( glm::conjugate( glm::quat_cast( m_rotationMatrix ) ) ), sizeof( quat ) / sizeof( quat[0] ), quat ); memcpy( m_quat_t0, quat, sizeof( quat ) ); memcpy( m_quat_t1, quat, sizeof( quat ) ); } void TRACK_BALL::Interpolate( float t ) { wxASSERT( t >= 0.0f ); // Limit t o 1.0 t = ( t > 1.0f ) ? 1.0f : t; switch( m_interpolation_mode ) { case CAMERA_INTERPOLATION::BEZIER: t = BezierBlend( t ); break; case CAMERA_INTERPOLATION::EASING_IN_OUT: t = QuadricEasingInOut( t ); break; case CAMERA_INTERPOLATION::LINEAR: default: break; } const float t0 = 1.0f - t; double quat[4]; quat[0] = m_quat_t0[0] * t0 + m_quat_t1[0] * t; quat[1] = m_quat_t0[1] * t0 + m_quat_t1[1] * t; quat[2] = m_quat_t0[2] * t0 + m_quat_t1[2] * t; quat[3] = m_quat_t0[3] * t0 + m_quat_t1[3] * t; float rotationMatrix[4][4]; build_rotmatrix( rotationMatrix, quat ); m_rotationMatrix = glm::make_mat4( &rotationMatrix[0][0] ); CAMERA::Interpolate( t ); }