/* filling_zone_algorithm: * Algos used to fill a zone defined by a polygon and a filling starting point */ #include // sort #include "fctsys.h" #include "common.h" #include "pcbnew.h" #include "wxPcbStruct.h" #include "autorout.h" #include "zones.h" #include "cell.h" #include "trigo.h" #include "protos.h" /* Local functions */ /* Local variables */ /***********************************************************/ int ZONE_CONTAINER::BuildFilledPolysListData( BOARD* aPcb ) /***********************************************************/ /** * Function BuildFilledPolysListData * Build m_FilledPolysList data from real outlines (m_Poly) * in order to have drawable (and plottable) filled polygons * drawable filled polygons are polygons without hole * @param aPcb: the current board (can be NULL for non copper zones) * @return number of polygons * This function does not add holes for pads and tracks but calls * AddClearanceAreasPolygonsToPolysList() to do that for copper layers */ { m_FilledPolysList.clear(); /* convert outlines + holes to outlines without holes (adding extra segments if necessary) * m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building this zone */ if( GetNumCorners() <= 2 ) // malformed zone. Kbool does not like it ... return 0; m_Poly->MakeKboolPoly( -1, -1, NULL, true ); int count = 0; while( m_Poly->GetKboolEngine()->StartPolygonGet() ) { CPolyPt corner( 0, 0, false ); while( m_Poly->GetKboolEngine()->PolygonHasMorePoints() ) { corner.x = (int) m_Poly->GetKboolEngine()->GetPolygonXPoint(); corner.y = (int) m_Poly->GetKboolEngine()->GetPolygonYPoint(); corner.end_contour = false; m_FilledPolysList.push_back( corner ); count++; } corner.end_contour = true; m_FilledPolysList.pop_back(); m_FilledPolysList.push_back( corner ); m_Poly->GetKboolEngine()->EndPolygonGet(); } m_Poly->FreeKboolEngine(); /* For copper layers, we now must add holes in the Polygon list. * holes are pads and tracks with their clearance area */ if( IsOnCopperLayer() ) AddClearanceAreasPolygonsToPolysList( aPcb ); if ( m_FillMode ) // if fill mode uses segments, create them: Fill_Zone_Areas_With_Segments( ); return count; } // Sort function to build filled zones static bool SortByXValues( const int& a, const int &b) { return a < b; } /***********************************************************************************/ int ZONE_CONTAINER::Fill_Zone_Areas_With_Segments( ) /***********************************************************************************/ /** * Function Fill_Zone_Areas_With_Segments() * Fill sub areas in a zone with segments with m_ZoneMinThickness width * A scan is made line per line, on the whole filled areas, with a step of m_ZoneMinThickness. * all intersecting points with the horizontal infinite line and polygons to fill are calculated * a list of SEGZONE items is built, line per line * @param aFrame = reference to the main frame * @return number of segments created */ { int ics, ice; int count = 0; std::vector x_coordinates; bool error = false; int istart, iend; // index od the starting and the endif corner of one filled area in m_FilledPolysList int margin = m_ZoneMinThickness * 2 / 10; margin = max (2, margin); int step = m_ZoneMinThickness - margin; step = max(step, 2); // Read all filled areas in m_FilledPolysList m_FillSegmList.clear(); istart = 0; int end_list = m_FilledPolysList.size()-1; for( int ic = 0; ic <= end_list; ic++ ) { CPolyPt* corner = &m_FilledPolysList[ic]; if ( corner->end_contour || (ic == end_list) ) { iend = ic; EDA_Rect rect = CalculateSubAreaBoundaryBox( istart, iend ); // Calculate the y limits of the zone int refy = rect.GetY(); int endy = rect.GetBottom(); for( ; refy < endy; refy += step ) { // find all intersection points of an infinite line with polyline sides x_coordinates.clear(); for( ics = istart, ice = iend; ics <= iend; ice = ics, ics++ ) { if ( m_FilledPolysList[ice].utility ) continue; int seg_startX = m_FilledPolysList[ics].x; int seg_startY = m_FilledPolysList[ics].y; int seg_endX = m_FilledPolysList[ice].x; int seg_endY = m_FilledPolysList[ice].y; /* Trivial cases: skip if ref above or below the segment to test */ if( ( seg_startY > refy ) && (seg_endY > refy ) ) continue; // segment below ref point, or its Y end pos on Y coordinate ref point: skip if( ( seg_startY <= refy ) && (seg_endY <= refy ) ) continue; /* at this point refy is between seg_startY and seg_endY * see if an horizontal line at Y = refy is intersecting this segment */ // calculate the x position of the intersection of this segment and the infinite line // this is more easier if we move the X,Y axis origin to the segment start point: seg_endX -= seg_startX; seg_endY -= seg_startY; double newrefy = (double) (refy - seg_startY); double intersec_x; if ( seg_endY == 0 ) // horizontal segment on the same line: skip continue; // Now calculate the x intersection coordinate of the horizontal line at y = newrefy // and the segment from (0,0) to (seg_endX,seg_endY) // with the horizontal line at the new refy position // the line slope is slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY // and the x pos relative to the new origin is intersec_x = refy/slope = refy * inv_slope // Note: because horizontal segments are already tested and skipped, slope exists (seg_end_y not O) double inv_slope = (double)seg_endX / seg_endY; intersec_x = newrefy * inv_slope; x_coordinates.push_back((int) intersec_x + seg_startX); } // A line scan is finished: build list of segments // Sort intersection points by increasing x value: // So 2 consecutive points are the ends of a segment sort( x_coordinates.begin(), x_coordinates.end(), SortByXValues ); // Create segments if ( !error && ( x_coordinates.size() & 1 ) != 0 ) { // An even number of coordinates is expected, because a segment has 2 ends. // An if this algorithm always works, it must always find an even count. wxString msg = wxT("Fill Zone: odd number of points at y = "); msg << refy; wxMessageBox(msg ); error = true; } if ( error ) break; int iimax = x_coordinates.size()-1; for (int ii = 0; ii < iimax; ii +=2 ) { wxPoint seg_start, seg_end; count++; seg_start.x = x_coordinates[ii]; seg_start.y = refy; seg_end.x = x_coordinates[ii+1]; seg_end.y = refy; SEGMENT segment( seg_start, seg_end ); m_FillSegmList.push_back( segment ); } } //End examine segments in one area if ( error ) break; istart = iend + 1; // istart points the first corner of the next area } // End find one end of outline if ( error ) break; } // End examine all areas return count; } /********************************************/ int Propagation( WinEDA_PcbFrame* frame ) /********************************************/ /** * Function Propagation() * Used now only in autoplace calculations * Uses the routing matrix to fill the cells within the zone * Search and mark cells within the zone, and agree with DRC options. * Requirements: * Start from an initial point, to fill zone * The zone must have no "copper island" * Algorithm: * If the current cell has a neightbour flagged as "cell in the zone", it * become a cell in the zone * The first point in the zone is the starting point * 4 searches within the matrix are made: * 1 - Left to right and top to bottom * 2 - Right to left and top to bottom * 3 - bottom to top and Right to left * 4 - bottom to top and Left to right * Given the current cell, for each search, we consider the 2 neightbour cells * the previous cell on the same line and the previous cell on the same column. * * This funtion can request some iterations * Iterations are made until no cell is added to the zone. * @return: added cells count (i.e. which the attribute CELL_is_ZONE is set) */ { int row, col, nn; long current_cell, old_cell_H; int long* pt_cell_V; int nbpoints = 0; #define NO_CELL_ZONE (HOLE | CELL_is_EDGE | CELL_is_ZONE) wxString msg; Affiche_1_Parametre( frame, 57, wxT( "Detect" ), msg, CYAN ); Affiche_1_Parametre( frame, -1, wxEmptyString, wxT( "1" ), CYAN ); // Alloc memory to handle 1 line or 1 colunmn on the routing matrix nn = MAX( Nrows, Ncols ) * sizeof(*pt_cell_V); pt_cell_V = (long*) MyMalloc( nn ); /* search 1 : from left to right and top to bottom */ memset( pt_cell_V, 0, nn ); for( row = 0; row < Nrows; row++ ) { old_cell_H = 0; for( col = 0; col < Ncols; col++ ) { current_cell = GetCell( row, col, BOTTOM ) & NO_CELL_ZONE; if( current_cell == 0 ) /* a free cell is found */ { if( (old_cell_H & CELL_is_ZONE) || (pt_cell_V[col] & CELL_is_ZONE) ) { OrCell( row, col, BOTTOM, CELL_is_ZONE ); current_cell = CELL_is_ZONE; nbpoints++; } } pt_cell_V[col] = old_cell_H = current_cell; } } /* search 2 : from right to left and top to bottom */ Affiche_1_Parametre( frame, -1, wxEmptyString, wxT( "2" ), CYAN ); memset( pt_cell_V, 0, nn ); for( row = 0; row < Nrows; row++ ) { old_cell_H = 0; for( col = Ncols - 1; col >= 0; col-- ) { current_cell = GetCell( row, col, BOTTOM ) & NO_CELL_ZONE; if( current_cell == 0 ) /* a free cell is found */ { if( (old_cell_H & CELL_is_ZONE) || (pt_cell_V[col] & CELL_is_ZONE) ) { OrCell( row, col, BOTTOM, CELL_is_ZONE ); current_cell = CELL_is_ZONE; nbpoints++; } } pt_cell_V[col] = old_cell_H = current_cell; } } /* search 3 : from bottom to top and right to left balayage */ Affiche_1_Parametre( frame, -1, wxEmptyString, wxT( "3" ), CYAN ); memset( pt_cell_V, 0, nn ); for( col = Ncols - 1; col >= 0; col-- ) { old_cell_H = 0; for( row = Nrows - 1; row >= 0; row-- ) { current_cell = GetCell( row, col, BOTTOM ) & NO_CELL_ZONE; if( current_cell == 0 ) /* a free cell is found */ { if( (old_cell_H & CELL_is_ZONE) || (pt_cell_V[row] & CELL_is_ZONE) ) { OrCell( row, col, BOTTOM, CELL_is_ZONE ); current_cell = CELL_is_ZONE; nbpoints++; } } pt_cell_V[row] = old_cell_H = current_cell; } } /* search 4 : from bottom to top and left to right */ Affiche_1_Parametre( frame, -1, wxEmptyString, wxT( "4" ), CYAN ); memset( pt_cell_V, 0, nn ); for( col = 0; col < Ncols; col++ ) { old_cell_H = 0; for( row = Nrows - 1; row >= 0; row-- ) { current_cell = GetCell( row, col, BOTTOM ) & NO_CELL_ZONE; if( current_cell == 0 ) /* a free cell is found */ { if( (old_cell_H & CELL_is_ZONE) || (pt_cell_V[row] & CELL_is_ZONE) ) { OrCell( row, col, BOTTOM, CELL_is_ZONE ); current_cell = CELL_is_ZONE; nbpoints++; } } pt_cell_V[row] = old_cell_H = current_cell; } } MyFree( pt_cell_V ); return nbpoints; }