/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2024 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef PAD_H #define PAD_H #include #include #include #include #include #include #include #include #include #include class PCB_SHAPE; class SHAPE; class SHAPE_SEGMENT; class LINE_READER; class EDA_3D_CANVAS; class FOOTPRINT; namespace KIGFX { class VIEW; } class PAD : public BOARD_CONNECTED_ITEM { public: PAD( FOOTPRINT* parent ); // Copy constructor & operator= are needed because the list of basic shapes // must be duplicated in copy. PAD( const PAD& aPad ); PAD& operator=( const PAD &aOther ); void Serialize( google::protobuf::Any &aContainer ) const override; bool Deserialize( const google::protobuf::Any &aContainer ) override; /* * Default layers used for pads, according to the pad type. * * This is default values only, they can be changed for a given pad. */ static LSET PTHMask(); ///< layer set for a through hole pad static LSET SMDMask(); ///< layer set for a SMD pad on Front layer static LSET ConnSMDMask(); ///< layer set for a SMD pad on Front layer ///< used for edge board connectors static LSET UnplatedHoleMask(); ///< layer set for a mechanical unplated through hole pad static LSET ApertureMask(); ///< layer set for an aperture pad static inline bool ClassOf( const EDA_ITEM* aItem ) { return aItem && PCB_PAD_T == aItem->Type(); } bool IsType( const std::vector& aScanTypes ) const override { if( BOARD_CONNECTED_ITEM::IsType( aScanTypes ) ) return true; for( KICAD_T scanType : aScanTypes ) { if( HasHole() ) { if( scanType == PCB_LOCATE_HOLE_T ) return true; else if( scanType == PCB_LOCATE_PTH_T && m_attribute != PAD_ATTRIB::NPTH ) return true; else if( scanType == PCB_LOCATE_NPTH_T && m_attribute == PAD_ATTRIB::NPTH ) return true; } } return false; } bool HasHole() const override { return GetDrillSizeX() > 0 && GetDrillSizeY() > 0; } bool HasDrilledHole() const override { return HasHole() && GetDrillSizeX() == GetDrillSizeY(); } bool IsLocked() const override; /** * Import the pad settings from \a aMasterPad. * * The result is "this" has the same settings (sizes, shapes ... ) as \a aMasterPad. * * @param aMasterPad the template pad. */ void ImportSettingsFrom( const PAD& aMasterPad ); /** * @return true if the pad has a footprint parent flipped on the back/bottom layer. */ bool IsFlipped() const; /** * Set the pad number (note that it can be alphanumeric, such as the array reference "AA12"). */ void SetNumber( const wxString& aNumber ) { m_number = aNumber; } const wxString& GetNumber() const { return m_number; } /** * Indicates whether or not the pad can have a number. (NPTH and SMD aperture pads can not.) */ bool CanHaveNumber() const; /** * Set the pad function (pin name in schematic) */ void SetPinFunction( const wxString& aName ) { m_pinFunction = aName; } const wxString& GetPinFunction() const { return m_pinFunction; } /** * Set the pad electrical type */ void SetPinType( const wxString& aType ) { m_pinType = aType; } const wxString& GetPinType() const { return m_pinType; } /** * Before we had custom pad shapes it was common to have multiple overlapping pads to * represent a more complex shape. */ bool SameLogicalPadAs( const PAD* aOther ) const { // hide tricks behind sensible API return GetParentFootprint() == aOther->GetParentFootprint() && !m_number.IsEmpty() && m_number == aOther->m_number; } /** * @return true if this and \param aOther represent a net-tie. */ bool SharesNetTieGroup( const PAD* aOther ) const; /** * @return true if the pad is associated with an "unconnected" pin (or a no-connect symbol) * and has no net. */ bool IsNoConnectPad() const; /** * @return true if the pad is associated with a "free" pin (not-internally-connected) and has * not yet been assigned another net (ie: by being routed to). */ bool IsFreePad() const; /** * Set the new shape of this pad. */ void SetShape( PAD_SHAPE aShape ) { m_padStack.SetShape( aShape ); SetDirty(); } /** * @return the shape of this pad. */ PAD_SHAPE GetShape() const { return m_padStack.Shape(); } void SetPosition( const VECTOR2I& aPos ) override { m_pos = aPos; SetDirty(); } VECTOR2I GetPosition() const override { return m_pos; } /** * @return the shape of the anchor pad shape, for custom shaped pads. */ PAD_SHAPE GetAnchorPadShape() const { return m_padStack.AnchorShape(); } /** * @return the option for the custom pad shape to use as clearance area in copper zones. */ PADSTACK::CUSTOM_SHAPE_ZONE_MODE GetCustomShapeInZoneOpt() const { return m_padStack.CustomShapeInZoneMode(); } /** * Set the option for the custom pad shape to use as clearance area in copper zones. * * @param aOption is the clearance area shape CUST_PAD_SHAPE_IN_ZONE option */ void SetCustomShapeInZoneOpt( PADSTACK::CUSTOM_SHAPE_ZONE_MODE aOption ) { m_padStack.SetCustomShapeInZoneMode( aOption ); } /** * Set the shape of the anchor pad for custom shaped pads. * * @param aShape is the shape of the anchor pad shape( currently, only #PAD_SHAPE::RECTANGLE or * #PAD_SHAPE::CIRCLE. */ void SetAnchorPadShape( PAD_SHAPE aShape ) { m_padStack.SetAnchorShape( aShape == PAD_SHAPE::RECTANGLE ? PAD_SHAPE::RECTANGLE : PAD_SHAPE::CIRCLE ); SetDirty(); } /** * @return true if the pad is on any copper layer, false otherwise. */ bool IsOnCopperLayer() const override; void SetY( int y ) { m_pos.y = y; SetDirty(); } void SetX( int x ) { m_pos.x = x; SetDirty(); } void SetSize( const VECTOR2I& aSize ) { m_padStack.Size() = aSize; SetDirty(); } const VECTOR2I& GetSize() const { return m_padStack.Size(); } void SetSizeX( const int aX ) { if( aX > 0 ) { m_padStack.Size().x = aX; SetDirty(); } } int GetSizeX() const { return m_padStack.Size().x; } void SetSizeY( const int aY ) { if( aY > 0 ) { m_padStack.Size().y = aY; SetDirty(); } } int GetSizeY() const { return m_padStack.Size().y; } void SetDelta( const VECTOR2I& aSize ) { m_padStack.TrapezoidDeltaSize() = aSize; SetDirty(); } const VECTOR2I& GetDelta() const { return m_padStack.TrapezoidDeltaSize(); } void SetDrillSize( const VECTOR2I& aSize ) { m_padStack.Drill().size = aSize; SetDirty(); } const VECTOR2I& GetDrillSize() const { return m_padStack.Drill().size; } void SetDrillSizeX( const int aX ) { m_padStack.Drill().size.x = aX; SetDirty(); } int GetDrillSizeX() const { return m_padStack.Drill().size.x; } void SetDrillSizeY( const int aY ) { m_padStack.Drill().size.y = aY; SetDirty(); } int GetDrillSizeY() const { return m_padStack.Drill().size.y; } void SetOffset( const VECTOR2I& aOffset ) { m_padStack.Offset() = aOffset; SetDirty(); } const VECTOR2I& GetOffset() const { return m_padStack.Offset(); } VECTOR2I GetCenter() const override { return GetPosition(); } const PADSTACK& Padstack() const { return m_padStack; } PADSTACK& Padstack() { return m_padStack; } void SetPadstack( const PADSTACK& aPadstack ) { m_padStack = aPadstack; } /** * Has meaning only for custom shape pads. * add a free shape to the shape list. * the shape can be * - a polygon (outline can have a thickness) * - a thick segment * - a filled circle (thickness == 0) or ring * - a filled rect (thickness == 0) or rectangular outline * - a arc * - a bezier curve */ void AddPrimitivePoly( const SHAPE_POLY_SET& aPoly, int aThickness, bool aFilled ); void AddPrimitivePoly( const std::vector& aPoly, int aThickness, bool aFilled ); /** * Merge all basic shapes to a #SHAPE_POLY_SET. * * @note The results are relative to the pad position, orientation 0. * * @param aMergedPolygon will store the final polygon * @param aErrorLoc is used when a circle (or arc) is approximated by segments * = ERROR_INSIDE to build a polygon inside the arc/circle (usual shape to raw/plot) * = ERROR_OUIDE to build a polygon outside the arc/circle * (for instance when building a clearance area) */ void MergePrimitivesAsPolygon( SHAPE_POLY_SET* aMergedPolygon, ERROR_LOC aErrorLoc = ERROR_INSIDE ) const; /** * Clear the basic shapes list. */ void DeletePrimitivesList(); /** * Accessor to the basic shape list for custom-shaped pads. */ const std::vector>& GetPrimitives() const { return m_padStack.Primitives(); } void Flip( const VECTOR2I& VECTOR2I, bool aFlipLeftRight ) override; /** * Flip (mirror) the primitives left to right or top to bottom, around the anchor position * in custom pads. */ void FlipPrimitives( bool aFlipLeftRight ); /** * Clear the current custom shape primitives list and import a new list. Copies the input, * which is not altered. */ void ReplacePrimitives( const std::vector>& aPrimitivesList ); /** * Import a custom shape primitive list (composed of basic shapes) and add items to the * current list. Copies the input, which is not altered. */ void AppendPrimitives( const std::vector>& aPrimitivesList ); /** * Add item to the custom shape primitives list */ void AddPrimitive( PCB_SHAPE* aPrimitive ); /** * Set the rotation angle of the pad. * * If \a aAngle is outside of 0 - 360, then it will be normalized. */ void SetOrientation( const EDA_ANGLE& aAngle ); void SetFPRelativeOrientation( const EDA_ANGLE& aAngle ); /** * Return the rotation angle of the pad. */ EDA_ANGLE GetOrientation() const { return m_padStack.GetOrientation(); } EDA_ANGLE GetFPRelativeOrientation() const; // For property system void SetOrientationDegrees( double aOrientation ) { SetOrientation( EDA_ANGLE( aOrientation, DEGREES_T ) ); } double GetOrientationDegrees() const { return m_padStack.GetOrientation().AsDegrees(); } void SetDrillShape( PAD_DRILL_SHAPE aShape ) { m_padStack.Drill().shape = aShape; m_shapesDirty = true; } PAD_DRILL_SHAPE GetDrillShape() const { return m_padStack.Drill().shape; } bool IsDirty() const { return m_shapesDirty || m_polyDirty[ERROR_INSIDE] || m_polyDirty[ERROR_OUTSIDE]; } void SetDirty() { m_shapesDirty = true; m_polyDirty[ERROR_INSIDE] = true; m_polyDirty[ERROR_OUTSIDE] = true; } void SetLayerSet( LSET aLayers ) override { m_padStack.SetLayerSet( aLayers ); } LSET GetLayerSet() const override { return m_padStack.LayerSet(); } void SetAttribute( PAD_ATTRIB aAttribute ); PAD_ATTRIB GetAttribute() const { return m_attribute; } void SetProperty( PAD_PROP aProperty ); PAD_PROP GetProperty() const { return m_property; } // We don't currently have an attribute for APERTURE, and adding one will change the file // format, so for now just infer a copper-less pad to be an APERTURE pad. bool IsAperturePad() const { return ( m_padStack.LayerSet() & LSET::AllCuMask() ).none(); } void SetPadToDieLength( int aLength ) { m_lengthPadToDie = aLength; } int GetPadToDieLength() const { return m_lengthPadToDie; } std::optional GetLocalClearance() const override { return m_padStack.Clearance(); } void SetLocalClearance( std::optional aClearance ) { m_padStack.Clearance() = aClearance; } std::optional GetLocalSolderMaskMargin() const { return m_padStack.SolderMaskMargin(); } void SetLocalSolderMaskMargin( std::optional aMargin ) { m_padStack.SolderMaskMargin() = aMargin; } std::optional GetLocalSolderPasteMargin() const { return m_padStack.SolderPasteMargin(); } void SetLocalSolderPasteMargin( std::optional aMargin ) { m_padStack.SolderPasteMargin() = aMargin; } std::optional GetLocalSolderPasteMarginRatio() const { return m_padStack.SolderPasteMarginRatio(); } void SetLocalSolderPasteMarginRatio( std::optional aRatio ) { m_padStack.SolderPasteMarginRatio() = aRatio; } void SetLocalZoneConnection( ZONE_CONNECTION aType ) { m_padStack.ZoneConnection() = aType; } ZONE_CONNECTION GetLocalZoneConnection() const { return m_padStack.ZoneConnection().value_or( ZONE_CONNECTION::INHERITED ); } /** * Return the pad's "own" clearance in internal units. * * @param aLayer the layer in question. * @param aSource [out] optionally reports the source as a user-readable string. * @return the clearance in internal units. */ int GetOwnClearance( PCB_LAYER_ID aLayer, wxString* aSource = nullptr ) const override; /** * Convert the pad shape to a closed polygon. Circles and arcs are approximated by segments. * * @param aBuffer a buffer to store the polygon. * @param aClearance the clearance around the pad. * @param aMaxError maximum error from true when converting arcs. * @param aErrorLoc should the approximation error be placed outside or inside the polygon? * @param ignoreLineWidth used for edge cuts where the line width is only for visualization. */ void TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer, int aClearance, int aMaxError, ERROR_LOC aErrorLoc = ERROR_INSIDE, bool ignoreLineWidth = false ) const override; /** * Build the corner list of the polygonal drill shape in the board coordinate system. * * @param aBuffer a buffer to fill. * @param aClearance the clearance or margin value. * @param aError maximum deviation of an arc from the polygon approximation. * @param aErrorLoc = should the approximation error be placed outside or inside the polygon? * @return false if the pad has no hole, true otherwise. */ bool TransformHoleToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError, ERROR_LOC aErrorLoc = ERROR_INSIDE ) const; /** * Some pad shapes can be complex (rounded/chamfered rectangle), even without considering * custom shapes. This routine returns a COMPOUND shape (set of simple shapes which make * up the pad for use with routing, collision determination, etc). * * @note This list can contain a SHAPE_SIMPLE (a simple single-outline non-intersecting * polygon), but should never contain a SHAPE_POLY_SET (a complex polygon consisting of * multiple outlines and/or holes). * * @param aLayer optional parameter allowing a caller to specify a particular layer (default * is to return the pad's "natural" shape). * @param aFlash optional parameter allowing a caller to force the pad to be flashed (or not * flashed) on the current layer (default is to honour the pad's setting and * the current connections for the given layer). */ virtual std::shared_ptr GetEffectiveShape( PCB_LAYER_ID aLayer = UNDEFINED_LAYER, FLASHING flashPTHPads = FLASHING::DEFAULT ) const override; const std::shared_ptr& GetEffectivePolygon( ERROR_LOC aErrorLoc = ERROR_INSIDE ) const; /** * Return a SHAPE_SEGMENT object representing the pad's hole. */ std::shared_ptr GetEffectiveHoleShape() const override; /** * Return the radius of a minimum sized circle which fully encloses this pad. * * The center is the pad position NOT THE SHAPE POS! */ int GetBoundingRadius() const; /** * Return any local clearance overrides set in the "classic" (ie: pre-rule) system. * * @param aSource [out] optionally reports the source as a user-readable string. * @return the clearance in internal units. */ std::optional GetLocalClearance( wxString* aSource ) const override; /** * Return any clearance overrides set in the "classic" (ie: pre-rule) system. * * @param aSource [out] optionally reports the source as a user-readable string. * @return the clearance in internal units. */ std::optional GetClearanceOverrides( wxString* aSource ) const override; /** * @return the expansion for the solder mask layer * * Usually > 0 (mask shape bigger than pad). For pads **not** on copper layers, the value * is the local value because there is no default shape to build. For pads also on copper * layers, the value (used to build a default shape) is: * 1 the local value * 2 if 0, the parent footprint value * 3 if 0, the global value */ int GetSolderMaskExpansion() const; /** * Usually < 0 (mask shape smaller than pad)because the margin can be dependent on the pad * size, the margin has a x and a y value. For pads **not** on copper layers, the value is * the local value because there is no default shape to build. For pads also on copper * layers, the value (used to build a default shape) is: * 1 the local value * 2 if 0, the parent footprint value * 3 if 0, the global value * * @return the margin for the solder mask layer. */ VECTOR2I GetSolderPasteMargin() const; ZONE_CONNECTION GetZoneConnectionOverrides( wxString* aSource = nullptr ) const; /** * Set the width of the thermal spokes connecting the pad to a zone. If != 0 this will * override similar settings in the parent footprint and zone. */ void SetThermalSpokeWidth( int aWidth ) { m_padStack.ThermalSpokeWidth() = aWidth; } int GetThermalSpokeWidth() const { return m_padStack.ThermalSpokeWidth().value_or( 0 ); } int GetLocalSpokeWidthOverride( wxString* aSource = nullptr ) const; /** * The orientation of the thermal spokes. 45° will produce an X (the default for circular * pads and circular-anchored custom shaped pads), while 90° will produce a + (the default * for all other shapes). */ void SetThermalSpokeAngle( const EDA_ANGLE& aAngle ) { m_padStack.SetThermalSpokeAngle( aAngle ); } EDA_ANGLE GetThermalSpokeAngle() const { return m_padStack.ThermalSpokeAngle(); } // For property system void SetThermalSpokeAngleDegrees( double aAngle ) { m_padStack.SetThermalSpokeAngle( EDA_ANGLE( aAngle, DEGREES_T ) ); } double GetThermalSpokeAngleDegrees() const { return m_padStack.ThermalSpokeAngle().AsDegrees(); } void SetThermalGap( int aGap ) { m_padStack.ThermalGap() = aGap; } int GetThermalGap() const { return m_padStack.ThermalGap().value_or( 0 ); } int GetLocalThermalGapOverride( wxString* aSource = nullptr ) const; /** * Has meaning only for rounded rectangle pads. * * @return The radius of the rounded corners for this pad. */ void SetRoundRectCornerRadius( double aRadius ); int GetRoundRectCornerRadius() const; VECTOR2I ShapePos() const; /** * Has meaning only for rounded rectangle pads. * * Set the ratio between the smaller X or Y size and the rounded corner radius. * Cannot be > 0.5; the normalized IPC-7351C value is 0.25 */ void SetRoundRectRadiusRatio( double aRadiusScale ); double GetRoundRectRadiusRatio() const { return m_padStack.RoundRectRadiusRatio(); } /** * Has meaning only for chamfered rectangular pads. * * Set the ratio between the smaller X or Y size and chamfered corner size. * Cannot be < 0.5. */ void SetChamferRectRatio( double aChamferScale ); double GetChamferRectRatio() const { return m_padStack.ChamferRatio(); } /** * Has meaning only for chamfered rectangular pads. * * Set the position of the chamfers for orientation 0. * * @param aPositions a bit-set of #RECT_CHAMFER_POSITIONS. */ void SetChamferPositions( int aPositions ) { m_padStack.SetChamferPositions( aPositions ); } int GetChamferPositions() const { return m_padStack.ChamferPositions(); } /** * @return the netcode. */ int GetSubRatsnest() const { return m_subRatsnest; } void SetSubRatsnest( int aSubRatsnest ) { m_subRatsnest = aSubRatsnest; } /** * @deprecated - use Padstack().SetUnconnectedLayerMode() * Sets the unconnected removal property. If true, the copper is removed on zone fill * or when specifically requested when the via is not connected on a layer. */ void SetRemoveUnconnected( bool aSet ) { m_padStack.SetUnconnectedLayerMode( aSet ? PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL : PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL ); } bool GetRemoveUnconnected() const { return m_padStack.UnconnectedLayerMode() != PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL; } /** * @deprecated - use Padstack().SetUnconnectedLayerMode() * Sets whether we keep the start and end annular rings even if they are not connected */ void SetKeepTopBottom( bool aSet ) { m_padStack.SetUnconnectedLayerMode( aSet ? PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END : PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL ); } bool GetKeepTopBottom() const { return m_padStack.UnconnectedLayerMode() == PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END; } void SetUnconnectedLayerMode( PADSTACK::UNCONNECTED_LAYER_MODE aMode ) { m_padStack.SetUnconnectedLayerMode( aMode ); } PADSTACK::UNCONNECTED_LAYER_MODE GetUnconnectedLayerMode() const { return m_padStack.UnconnectedLayerMode(); } bool ConditionallyFlashed( PCB_LAYER_ID aLayer ) const { switch( m_padStack.UnconnectedLayerMode() ) { case PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL: return false; case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL: return true; case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END: { if( aLayer == m_padStack.Drill().start || aLayer == m_padStack.Drill().end ) return false; } } return true; } void GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) override; bool IsOnLayer( PCB_LAYER_ID aLayer ) const override { return m_padStack.LayerSet().test( aLayer ); } /** * Check to see whether the pad should be flashed on the specific layer. * * @param aLayer Layer to check for connectivity * @param aOnlyCheckIfPermitted indicates that the routine should just return whether or not * a flashed connection is permitted on this layer (without checking for a connection) * @return true if connected by pad or track (or optionally zone) */ bool FlashLayer( int aLayer, bool aOnlyCheckIfPermitted = false ) const; bool CanFlashLayer( int aLayer ) { return FlashLayer( aLayer, true ); } PCB_LAYER_ID GetLayer() const override; /** * @return the principal copper layer for SMD and CONN pads. */ PCB_LAYER_ID GetPrincipalLayer() const; /** * Check to see if the pad should be flashed to any of the layers in the set. * * @param aLayers set of layers to check the via against * @return true if connected by pad or track (or optionally zone) on any of the associated * layers */ bool FlashLayer( LSET aLayers ) const; bool HitTest( const VECTOR2I& aPosition, int aAccuracy = 0 ) const override; bool HitTest( const BOX2I& aRect, bool aContained, int aAccuracy = 0 ) const override; /** * Recombines the pad with other graphical shapes in the footprint * * @param aIsDryRun if true, the pad will not be recombined but the operation will still be logged * @param aMaxError the maximum error to allow for converting arcs to polygons * @return a list of shapes that were recombined */ std::vector Recombine( bool aIsDryRun, int aMaxError ); wxString GetClass() const override { return wxT( "PAD" ); } /** * The bounding box is cached, so this will be efficient most of the time. */ const BOX2I GetBoundingBox() const override; /** * Compare two pads and return 0 if they are equal. * * @return less than 0 if left less than right, 0 if equal, or greater than 0 if left * greater than right. */ static int Compare( const PAD* aPadRef, const PAD* aPadCmp ); void Move( const VECTOR2I& aMoveVector ) override { m_pos += aMoveVector; SetDirty(); } void Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) override; wxString GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const override; BITMAPS GetMenuImage() const override; /** * @return the GUI-appropriate name of the shape. */ wxString ShowPadShape() const; /** * @return the GUI-appropriate description of the pad type (attribute) : Std, SMD ... */ wxString ShowPadAttr() const; EDA_ITEM* Clone() const override; /** * Same as Clone, but returns a PAD item. * * Useful mainly for python scripts, because Clone returns an EDA_ITEM. */ PAD* ClonePad() const { return (PAD*) Clone(); } /** * Rebuild the effective shape cache (and bounding box and radius) for the pad and clears * the dirty bit. */ void BuildEffectiveShapes( PCB_LAYER_ID aLayer ) const; void BuildEffectivePolygon( ERROR_LOC aErrorLoc = ERROR_INSIDE ) const; virtual void ViewGetLayers( int aLayers[], int& aCount ) const override; double ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const override; virtual const BOX2I ViewBBox() const override; void ClearZoneLayerOverrides() { m_zoneLayerOverrides.fill( ZLO_NONE ); } const ZONE_LAYER_OVERRIDE& GetZoneLayerOverride( PCB_LAYER_ID aLayer ) const { return m_zoneLayerOverrides.at( aLayer ); } void SetZoneLayerOverride( PCB_LAYER_ID aLayer, ZONE_LAYER_OVERRIDE aOverride ) { std::unique_lock cacheLock( m_zoneLayerOverridesMutex ); m_zoneLayerOverrides.at( aLayer ) = aOverride; } void CheckPad( UNITS_PROVIDER* aUnitsProvider, const std::function& aErrorHandler ) const; double Similarity( const BOARD_ITEM& aOther ) const override; bool operator==( const BOARD_ITEM& aOther ) const override; bool operator!=( const BOARD_ITEM& aOther ) const { return !operator==( aOther ); } #if defined(DEBUG) virtual void Show( int nestLevel, std::ostream& os ) const override { ShowDummy( os ); } #endif protected: virtual void swapData( BOARD_ITEM* aImage ) override; private: void addPadPrimitivesToPolygon( SHAPE_POLY_SET* aMergedPolygon, int aError, ERROR_LOC aErrorLoc ) const; private: wxString m_number; // Pad name (pin number in schematic) wxString m_pinFunction; // Pin name in schematic wxString m_pinType; // Pin electrical type in schematic VECTOR2I m_pos; // Pad Position on board PADSTACK m_padStack; // Must be set to true to force rebuild shapes to draw (after geometry change for instance) mutable bool m_shapesDirty; mutable std::mutex m_shapesBuildingLock; mutable BOX2I m_effectiveBoundingBox; mutable std::shared_ptr m_effectiveShape; mutable std::shared_ptr m_effectiveHoleShape; mutable bool m_polyDirty[2]; mutable std::mutex m_polyBuildingLock; mutable std::shared_ptr m_effectivePolygon[2]; mutable int m_effectiveBoundingRadius; int m_subRatsnest; // Variable used to handle subnet (block) number in // ratsnest computations PAD_ATTRIB m_attribute = PAD_ATTRIB::PTH; PAD_PROP m_property; // Property in fab files (BGA, FIDUCIAL, TESTPOINT, etc.) int m_lengthPadToDie; // Length net from pad to die, inside the package std::mutex m_zoneLayerOverridesMutex; std::array m_zoneLayerOverrides; }; #endif // PAD_H