/* * This program source code file * is part of KiCad, a free EDA CAD application. * * Copyright (C) 2020 * Copyright (C) 2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include /* If BENCHMARK is defined, any 4R E12 calculations will print its execution time to console * My Hasswell Enthusiast reports 225 mSec what are reproducible within plusminus 2 percent */ //#define BENCHMARK #ifdef BENCHMARK #include #endif #include "eserie.h" extern double DoubleFromString( const wxString& TextValue ); E_SERIE r; // Return a string from aValue (aValue is expected in ohms) // If aValue < 1000 the returned string is aValue with unit = R // If aValue >= 1000 the returned string is aValue/1000 with unit = K // with notation similar to 2K2 // If aValue >= 1e6 the returned string is aValue/1e6 with unit = M // with notation = 1M static std::string strValue( double aValue ) { std::string result; if( aValue < 1000.0 ) { result = std::to_string( static_cast( aValue ) ); result += 'R'; } else { double div = 1e3; int unit = 'K'; if( aValue >= 1e6 ) { div = 1e6; unit = 'M'; } aValue /= div; int integer = static_cast( aValue ); result = std::to_string(integer); result += unit; // Add mantissa: 1 digit, suitable for series up to E24 double mantissa = aValue - integer; if( mantissa > 0 ) result += std::to_string( static_cast( (mantissa*10)+0.5 ) ); } return result; } E_SERIE::E_SERIE() { // Build the list of available resistor values in each En serie double listValuesE1[] = { E1_VALUES }; double listValuesE3[] = { E3_VALUES }; double listValuesE6[] = { E6_VALUES }; double listValuesE12[] = { E12_VALUES }; double listValuesE24[] = { E24_VALUES }; // buildSerieData must be called in the order of En series, because // the list of series is expected indexed by En for the serie En buildSerieData( E1, listValuesE1 ); buildSerieData( E3, listValuesE3 ); buildSerieData( E6, listValuesE6 ); buildSerieData( E12, listValuesE12 ); int count = buildSerieData( E24, listValuesE24 ); // Reserve a buffer for intermediate calculations: // the buffer size is 2*count*count to store all combinaisons of 2 values // there are 2*count*count = 29282 combinations for E24 int bufsize = 2*count*count; m_cmb_lut.reserve( bufsize ); // Store predefined R_DATA items. for( int ii = 0; ii < bufsize; ii++ ) m_cmb_lut.emplace_back( "", 0.0 ); } int E_SERIE::buildSerieData( int aEserie, double aList[] ) { double curr_coeff = FIRST_VALUE; int count = 0; std::vector curr_list; for( ; ; ) { double curr_r = curr_coeff; for( int ii = 0; ; ii++ ) { if( aList[ii] == 0.0 ) // End of list break; double curr_r = curr_coeff * aList[ii]; curr_list.emplace_back( strValue( curr_r ), curr_r ); count++; if( curr_r >= LAST_VALUE ) break; } if( curr_r >= LAST_VALUE ) break; curr_coeff *= 10; } m_luts.push_back( std::move( curr_list ) ); return count; } void E_SERIE::Exclude( double aValue ) { if( aValue ) // if there is a value to exclude other than a wire jumper { for( R_DATA& i : m_luts[m_series] ) // then search it in the selected E-Serie lookup table { if( i.e_value == aValue ) // if the value to exclude is found i.e_use = false; // disable its use } } } void E_SERIE::simple_solution( uint32_t aSize ) { uint32_t i; m_results.at( S2R ).e_value = std::numeric_limits::max(); // assume no 2R solution or max deviation for( i = 0; i < aSize; i++ ) { if( abs( m_cmb_lut.at( i ).e_value - m_required_value ) < abs( m_results.at( S2R ).e_value ) ) { m_results.at( S2R ).e_value = m_cmb_lut.at( i ).e_value - m_required_value; // save signed deviation in Ohms m_results.at( S2R ).e_name = m_cmb_lut.at( i ).e_name; // save combination text m_results.at( S2R ).e_use = true; // this is a possible solution } } } void E_SERIE::combine4( uint32_t aSize ) { uint32_t i,j; double tmp; std::string s; m_results.at( S4R ).e_use = false; // disable 4R solution, until m_results.at( S4R ).e_value = m_results.at( S3R ).e_value; // 4R becomes better than 3R solution #ifdef BENCHMARK PROF_COUNTER timer; // start timer to count execution time #endif for( i = 0; i < aSize; i++ ) // 4R search outer loop { // scan valid intermediate 2R solutions for( j = 0; j < aSize; j++ ) // inner loop combines all with itself { tmp = m_cmb_lut.at( i ).e_value + m_cmb_lut.at( j ).e_value; // calculate 2R+2R serial tmp -= m_required_value; // calculate 4R deviation if( abs( tmp ) < abs( m_results.at(S4R).e_value ) ) // if new 4R is better { m_results.at( S4R ).e_value = tmp; // save amount of benefit std::string s = "( "; s.append( m_cmb_lut.at( i ).e_name ); // mention 1st 2 component s.append( " ) + ( " ); // in series s.append( m_cmb_lut.at( j ).e_name ); // with 2nd 2 components s.append( " )" ); m_results.at( S4R ).e_name = s; // save the result and m_results.at( S4R ).e_use = true; // enable for later use } tmp = ( m_cmb_lut[i].e_value * m_cmb_lut.at( j ).e_value ) / ( m_cmb_lut[i].e_value + m_cmb_lut.at( j ).e_value ); // calculate 2R|2R parallel tmp -= m_required_value; // calculate 4R deviation if( abs( tmp ) < abs( m_results.at( S4R ).e_value ) ) // if new 4R is better { m_results.at( S4R ).e_value = tmp; // save amount of benefit std::string s = "( "; s.append( m_cmb_lut.at( i ).e_name ); // mention 1st 2 component s.append( " ) | ( " ); // in parallel s.append( m_cmb_lut.at( j ).e_name ); // with 2nd 2 components s.append( " )" ); m_results.at( S4R ).e_name = s; // save the result m_results.at( S4R ).e_use = true; // enable later use } } } #ifdef BENCHMARK printf( "Calculation time = %d mS", timer.msecs() ); fflush( 0 ); #endif } void E_SERIE::NewCalc() { for( R_DATA& i : m_cmb_lut ) i.e_use = false; // before any calculation is done, assume that for( R_DATA& i : m_results ) i.e_use = false; // no combinations and no results are available for( R_DATA& i : m_luts[m_series]) i.e_use = true; // all selected E-values available } uint32_t E_SERIE::combine2() { uint32_t combi2R = 0; // target index counts calculated 2R combinations std::string s; for( const R_DATA& i : m_luts[m_series] ) // outer loop to sweep selected source lookup table { if( i.e_use ) { for( const R_DATA& j : m_luts[m_series] ) // inner loop to combine values with itself { if( j.e_use ) { m_cmb_lut.at( combi2R ).e_use = true; m_cmb_lut.at( combi2R ).e_value = i.e_value + j.e_value; // calculate 2R serial s = i.e_name; s.append( " + " ); m_cmb_lut.at( combi2R ).e_name = s.append( j.e_name); combi2R++; // next destination m_cmb_lut.at( combi2R ).e_use = true; // calculate 2R parallel m_cmb_lut.at( combi2R ).e_value = i.e_value * j.e_value / ( i.e_value + j.e_value ); s = i.e_name; s.append( " | " ); m_cmb_lut.at( combi2R ).e_name = s.append( j.e_name ); combi2R++; // next destination } } } } return combi2R; } void E_SERIE::combine3( uint32_t aSize ) { uint32_t j = 0; double tmp = 0; // avoid warning for being uninitialized std::string s; m_results.at( S3R ).e_use = false; // disable 3R solution, until m_results.at( S3R ).e_value = m_results.at( S2R ).e_value; // 3R becomes better than 2R solution for( const R_DATA& i : m_luts[m_series] ) // 3R Outer loop to selected primary E serie LUT { if( i.e_use ) // skip all excluded values { for( j = 0; j < aSize; j++ ) // inner loop combines with all 2R intermediate results { // R+2R serial combi tmp = m_cmb_lut.at( j ).e_value + i.e_value; tmp -= m_required_value; // calculate deviation if( abs( tmp ) < abs( m_results.at( S3R ).e_value ) ) // compare if better { // then take it s = i.e_name; // mention 3rd component s.append( " + ( " ); // in series s.append( m_cmb_lut.at( j ).e_name ); // with 2R combination s.append( " )" ); m_results.at( S3R ).e_name = s; // save S3R result m_results.at( S3R ).e_value = tmp; // save amount of benefit m_results.at( S3R ).e_use = true; // enable later use } tmp = i.e_value * m_cmb_lut.at( j ).e_value / ( i.e_value + m_cmb_lut.at( j ).e_value ); // calculate R + 2R parallel tmp -= m_required_value; // calculate deviation if( abs( tmp ) < abs( m_results.at( S3R ).e_value ) ) // compare if better { // then take it s = i.e_name; // mention 3rd component s.append( " | ( " ); // in parallel s.append( m_cmb_lut.at( j ).e_name ); // with 2R combination s.append( " )" ); m_results.at( S3R ).e_name = s; m_results.at( S3R ).e_value = tmp; // save amount of benefit m_results.at( S3R ).e_use = true; // enable later use } } } } // If there is a 3R result with remaining deviation consider to search a possibly better 4R solution // calculate 4R for small series always if(( m_results.at( S3R ).e_use == true ) && tmp ) combine4( aSize ); } void E_SERIE::Calculate() { uint32_t no_of_2Rcombi = 0; no_of_2Rcombi = combine2(); // combine all 2R combinations for selected E serie simple_solution( no_of_2Rcombi ); // search for simple 2 component solution if( m_results.at( S2R ).e_value ) // if simple 2R result is not exact combine3( no_of_2Rcombi ); // continiue searching for a possibly better solution strip3(); strip4(); } void E_SERIE::strip3() { std::string s; if( m_results.at( S3R ).e_use ) // if there is a 3 term result available { // what is connected either by two "|" or by 3 plus s = m_results.at( S3R ).e_name; if( ( std::count( s.begin(), s.end(), '+' ) == 2 ) || ( std::count( s.begin(), s.end(), '|' ) == 2 ) ) { // then strip one pair of braces s.erase( s.find( "(" ), 1 ); // it is known sure, this is available s.erase( s.find( ")" ), 1 ); // in any unstripped 3R result term m_results.at( S3R ).e_name = s; // use stripped result } } } void E_SERIE::strip4() { std::string s; if( m_results.at( S4R ).e_use ) // if there is a 4 term result available { // what are connected either by 3 "+" or by 3 "|" s = m_results.at( S4R ).e_name; if( ( std::count( s.begin(), s.end(), '+' ) == 3 ) || ( std::count( s.begin(), s.end(), '|' ) == 3 ) ) { // then strip two pair of braces s.erase( s.find( "(" ), 1 ); // it is known sure, they are available s.erase( s.find( ")" ), 1 ); // in any unstripped 4R result term s.erase( s.find( "(" ), 1 ); s.erase( s.find( ")" ), 1 ); m_results.at( S4R ).e_name = s; // use stripped result } } } void PANEL_E_SERIE::OnCalculateESeries( wxCommandEvent& event ) { double reqr; // required resistor stored in local copy double error, err3 = 0; wxString es, fs; // error and formula strings wxBusyCursor dummy; reqr = ( 1000 * DoubleFromString( m_ResRequired->GetValue() ) ); r.SetRequiredValue( reqr ); // keep a local copy of required resistor value r.NewCalc(); // assume all values available /* * Exclude itself. For the case, a value from the available series is found as required value, * the calculator assumes this value needs a replacement for the reason of being not available. * Two further exclude values can be entered to exclude and are skipped as not being available. * All values entered in KiloOhms are converted to Ohm for internal calculation */ r.Exclude( 1000 * DoubleFromString( m_ResRequired->GetValue())); r.Exclude( 1000 * DoubleFromString( m_ResExclude1->GetValue())); r.Exclude( 1000 * DoubleFromString( m_ResExclude2->GetValue())); try { r.Calculate(); } catch (std::out_of_range const& exc) { wxString msg; msg << "Internal error: " << exc.what(); wxMessageBox( msg ); return; } fs = r.GetResults()[S2R].e_name; // show 2R solution formula string m_ESeries_Sol2R->SetValue( fs ); error = reqr + r.GetResults()[S2R].e_value; // absolute value of solution error = ( reqr / error - 1 ) * 100; // error in percent if( error ) { if( std::abs( error ) < 0.01 ) es.Printf( "<%.2f", 0.01 ); else es.Printf( "%+.2f",error); } else { es = _( "Exact" ); } m_ESeriesError2R->SetValue( es ); // anyway show 2R error string if( r.GetResults()[S3R].e_use ) // if 3R solution available { err3 = reqr + r.GetResults()[S3R].e_value; // calculate the 3R err3 = ( reqr / err3 - 1 ) * 100; // error in percent if( err3 ) { if( std::abs( err3 ) < 0.01 ) es.Printf( "<%.2f", 0.01 ); else es.Printf( "%+.2f",err3); } else { es = _( "Exact" ); } m_ESeriesError3R->SetValue( es ); // show 3R error string fs = r.GetResults()[S3R].e_name; m_ESeries_Sol3R->SetValue( fs ); // show 3R formula string } else // nothing better than 2R found { fs = _( "Not worth using" ); m_ESeries_Sol3R->SetValue( fs ); m_ESeriesError3R->SetValue( wxEmptyString ); } fs = wxEmptyString; if( r.GetResults()[S4R].e_use ) // show 4R solution if available { fs = r.GetResults()[S4R].e_name; error = reqr + r.GetResults()[S4R].e_value; // absolute value of solution error = ( reqr / error - 1 ) * 100; // error in percent if( error ) es.Printf( "%+.2f",error ); else es = _( "Exact" ); m_ESeriesError4R->SetValue( es ); } else // no 4R solution { fs = _( "Not worth using" ); es = wxEmptyString; m_ESeriesError4R->SetValue( es ); } m_ESeries_Sol4R->SetValue( fs ); } void PANEL_E_SERIE::OnESeriesSelection( wxCommandEvent& event ) { if( event.GetEventObject() == m_e1 ) r.SetSeries( E1 ); else if( event.GetEventObject() == m_e3 ) r.SetSeries( E3 ); else if( event.GetEventObject() == m_e12 ) r.SetSeries( E12 ); else if( event.GetEventObject() == m_e24 ) r.SetSeries( E24 ); else r.SetSeries( E6 ); }