/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2016 CERN * Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pns_kicad_iface.h" #include "pns_arc.h" #include "pns_sizes_settings.h" #include "pns_item.h" #include "pns_line.h" #include "pns_solid.h" #include "pns_segment.h" #include "pns_node.h" #include "pns_router.h" #include "pns_debug_decorator.h" #include "router_preview_item.h" typedef VECTOR2I::extended_type ecoord; struct CLEARANCE_CACHE_KEY { const PNS::ITEM* A; const PNS::ITEM* B; bool Flag; bool operator==(const CLEARANCE_CACHE_KEY& other) const { return A == other.A && B == other.B && Flag == other.Flag; } }; namespace std { template <> struct hash { std::size_t operator()( const CLEARANCE_CACHE_KEY& k ) const { return hash()( k.A ) ^ hash()( k.B ) ^ hash()( k.Flag ); } }; } class PNS_PCBNEW_RULE_RESOLVER : public PNS::RULE_RESOLVER { public: PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface ); virtual ~PNS_PCBNEW_RULE_RESOLVER(); int Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon = true ) override; PNS::NET_HANDLE DpCoupledNet( PNS::NET_HANDLE aNet ) override; int DpNetPolarity( PNS::NET_HANDLE aNet ) override; bool DpNetPair( const PNS::ITEM* aItem, PNS::NET_HANDLE& aNetP, PNS::NET_HANDLE& aNetN ) override; int NetCode( PNS::NET_HANDLE aNet ) override; wxString NetName( PNS::NET_HANDLE aNet ) override; bool IsInNetTie( const PNS::ITEM* aA ) override; bool IsNetTieExclusion( const PNS::ITEM* aItem, const VECTOR2I& aCollisionPos, const PNS::ITEM* aCollidingItem ) override; bool IsDrilledHole( const PNS::ITEM* aItem ) override; bool IsNonPlatedSlot( const PNS::ITEM* aItem ) override; /** * @return true if \a aObstacle is a keepout. Set \a aEnforce if said keepout's rules * exclude \a aItem. */ bool IsKeepout( const PNS::ITEM* aObstacle, const PNS::ITEM* aItem, bool* aEnforce ) override; bool QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB, int aLayer, PNS::CONSTRAINT* aConstraint ) override; int ClearanceEpsilon() const override { return m_clearanceEpsilon; } void ClearCacheForItems( std::vector& aItems ) override; void ClearCaches() override; void ClearTemporaryCaches() override; private: BOARD_ITEM* getBoardItem( const PNS::ITEM* aItem, int aLayer, int aIdx = 0 ); private: PNS::ROUTER_IFACE* m_routerIface; BOARD* m_board; PCB_TRACK m_dummyTracks[2]; PCB_ARC m_dummyArcs[2]; PCB_VIA m_dummyVias[2]; int m_clearanceEpsilon; std::unordered_map m_clearanceCache; std::unordered_map m_tempClearanceCache; }; PNS_PCBNEW_RULE_RESOLVER::PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface ) : m_routerIface( aRouterIface ), m_board( aBoard ), m_dummyTracks{ { aBoard }, { aBoard } }, m_dummyArcs{ { aBoard }, { aBoard } }, m_dummyVias{ { aBoard }, { aBoard } } { for( PCB_TRACK& track : m_dummyTracks ) track.SetFlags( ROUTER_TRANSIENT ); for( PCB_ARC& arc : m_dummyArcs ) arc.SetFlags( ROUTER_TRANSIENT ); for ( PCB_VIA& via : m_dummyVias ) via.SetFlags( ROUTER_TRANSIENT ); if( aBoard ) m_clearanceEpsilon = aBoard->GetDesignSettings().GetDRCEpsilon(); else m_clearanceEpsilon = 0; } PNS_PCBNEW_RULE_RESOLVER::~PNS_PCBNEW_RULE_RESOLVER() { } bool PNS_PCBNEW_RULE_RESOLVER::IsInNetTie( const PNS::ITEM* aA ) { BOARD_ITEM* item = aA->BoardItem(); return item && item->GetParentFootprint() && item->GetParentFootprint()->IsNetTie(); } bool PNS_PCBNEW_RULE_RESOLVER::IsNetTieExclusion( const PNS::ITEM* aItem, const VECTOR2I& aCollisionPos, const PNS::ITEM* aCollidingItem ) { wxCHECK( aItem && aCollidingItem, false ); std::shared_ptr drcEngine = m_board->GetDesignSettings().m_DRCEngine; BOARD_ITEM* item = aItem->BoardItem(); BOARD_ITEM* collidingItem = aCollidingItem->BoardItem(); FOOTPRINT* collidingFp = collidingItem->GetParentFootprint(); FOOTPRINT* itemFp = item ? item->GetParentFootprint() : nullptr; if( collidingFp && itemFp && ( collidingFp == itemFp ) && itemFp->IsNetTie() ) { // Two items colliding from the same net tie footprint are not checked return true; } if( drcEngine ) { return drcEngine->IsNetTieExclusion( NetCode( aItem->Net() ), ToLAYER_ID( aItem->Layer() ), aCollisionPos, collidingItem ); } return false; } bool PNS_PCBNEW_RULE_RESOLVER::IsKeepout( const PNS::ITEM* aObstacle, const PNS::ITEM* aItem, bool* aEnforce ) { auto checkKeepout = []( const ZONE* aKeepout, const BOARD_ITEM* aOther ) { if( !aOther ) return false; if( aKeepout->GetDoNotAllowTracks() && aOther->IsType( { PCB_ARC_T, PCB_TRACE_T } ) ) return true; if( aKeepout->GetDoNotAllowVias() && aOther->Type() == PCB_VIA_T ) return true; if( aKeepout->GetDoNotAllowPads() && aOther->Type() == PCB_PAD_T ) return true; // Incomplete test, but better than nothing: if( aKeepout->GetDoNotAllowFootprints() && aOther->Type() == PCB_PAD_T ) { return !aKeepout->GetParentFootprint() || aKeepout->GetParentFootprint() != aOther->GetParentFootprint(); } return false; }; if( aObstacle->Parent() && aObstacle->Parent()->Type() == PCB_ZONE_T ) { const ZONE* zone = static_cast( aObstacle->Parent() ); if( zone->GetIsRuleArea() ) { *aEnforce = checkKeepout( zone, getBoardItem( aItem, aObstacle->Layer() ) ); return true; } } return false; } static bool isCopper( const PNS::ITEM* aItem ) { if ( !aItem ) return false; const BOARD_ITEM *parent = aItem->Parent(); return !parent || parent->IsOnCopperLayer(); } static bool isHole( const PNS::ITEM* aItem ) { if ( !aItem ) return false; return aItem->OfKind( PNS::ITEM::HOLE_T ); } static bool isEdge( const PNS::ITEM* aItem ) { if ( !aItem ) return false; const PCB_SHAPE *parent = dynamic_cast( aItem->BoardItem() ); return parent && ( parent->IsOnLayer( Edge_Cuts ) || parent->IsOnLayer( Margin ) ); } bool PNS_PCBNEW_RULE_RESOLVER::IsDrilledHole( const PNS::ITEM* aItem ) { if( !isHole( aItem ) ) return false; if( PAD* pad = dynamic_cast( aItem->Parent() ) ) return pad->GetDrillSizeX() && pad->GetDrillSizeX() == pad->GetDrillSizeY(); // Via holes are (currently) always round return true; } bool PNS_PCBNEW_RULE_RESOLVER::IsNonPlatedSlot( const PNS::ITEM* aItem ) { if( !isHole( aItem ) ) return false; BOARD_ITEM* parent = aItem->Parent(); if( !parent && aItem->ParentPadVia() ) parent = aItem->ParentPadVia()->Parent(); if( parent ) { if( parent->Type() == PCB_PAD_T ) { PAD* pad = static_cast( parent ); return pad->GetAttribute() == PAD_ATTRIB::NPTH && pad->GetDrillSizeX() != pad->GetDrillSizeY(); } // Via holes are (currently) always round, and always plated } return false; } BOARD_ITEM* PNS_PCBNEW_RULE_RESOLVER::getBoardItem( const PNS::ITEM* aItem, int aLayer, int aIdx ) { switch( aItem->Kind() ) { case PNS::ITEM::ARC_T: m_dummyArcs[aIdx].SetLayer( ToLAYER_ID( aLayer ) ); m_dummyArcs[aIdx].SetNet( static_cast( aItem->Net() ) ); m_dummyArcs[aIdx].SetStart( aItem->Anchor( 0 ) ); m_dummyArcs[aIdx].SetEnd( aItem->Anchor( 1 ) ); return &m_dummyArcs[aIdx]; case PNS::ITEM::VIA_T: case PNS::ITEM::HOLE_T: m_dummyVias[aIdx].SetLayer( ToLAYER_ID( aLayer ) ); m_dummyVias[aIdx].SetNet( static_cast( aItem->Net() ) ); m_dummyVias[aIdx].SetStart( aItem->Anchor( 0 ) ); return &m_dummyVias[aIdx]; case PNS::ITEM::SEGMENT_T: case PNS::ITEM::LINE_T: m_dummyTracks[aIdx].SetLayer( ToLAYER_ID( aLayer ) ); m_dummyTracks[aIdx].SetNet( static_cast( aItem->Net() ) ); m_dummyTracks[aIdx].SetStart( aItem->Anchor( 0 ) ); m_dummyTracks[aIdx].SetEnd( aItem->Anchor( 1 ) ); return &m_dummyTracks[aIdx]; default: return nullptr; } } bool PNS_PCBNEW_RULE_RESOLVER::QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB, int aLayer, PNS::CONSTRAINT* aConstraint ) { std::shared_ptr drcEngine = m_board->GetDesignSettings().m_DRCEngine; if( !drcEngine ) return false; DRC_CONSTRAINT_T hostType; switch ( aType ) { case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: hostType = CLEARANCE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_WIDTH: hostType = TRACK_WIDTH_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: hostType = DIFF_PAIR_GAP_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_LENGTH: hostType = LENGTH_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_SKEW: hostType = SKEW_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_MAX_UNCOUPLED: hostType = MAX_UNCOUPLED_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: hostType = VIA_DIAMETER_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: hostType = HOLE_SIZE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE: hostType = HOLE_CLEARANCE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE: hostType = EDGE_CLEARANCE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE: hostType = HOLE_TO_HOLE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_PHYSICAL_CLEARANCE: hostType = PHYSICAL_CLEARANCE_CONSTRAINT; break; default: return false; // should not happen } BOARD_ITEM* parentA = aItemA ? aItemA->BoardItem() : nullptr; BOARD_ITEM* parentB = aItemB ? aItemB->BoardItem() : nullptr; DRC_CONSTRAINT hostConstraint; // A track being routed may not have a BOARD_ITEM associated yet. if( aItemA && !parentA ) parentA = getBoardItem( aItemA, aLayer, 0 ); if( aItemB && !parentB ) parentB = getBoardItem( aItemB, aLayer, 1 ); if( parentA ) hostConstraint = drcEngine->EvalRules( hostType, parentA, parentB, ToLAYER_ID( aLayer ) ); if( hostConstraint.IsNull() ) return false; if( hostConstraint.GetSeverity() == RPT_SEVERITY_IGNORE ) { aConstraint->m_Value.SetMin( -1 ); aConstraint->m_RuleName = hostConstraint.GetName(); aConstraint->m_Type = aType; return true; } switch ( aType ) { case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_WIDTH: case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: case PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE: case PNS::CONSTRAINT_TYPE::CT_LENGTH: case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_SKEW: case PNS::CONSTRAINT_TYPE::CT_MAX_UNCOUPLED: case PNS::CONSTRAINT_TYPE::CT_PHYSICAL_CLEARANCE: aConstraint->m_Value = hostConstraint.GetValue(); aConstraint->m_RuleName = hostConstraint.GetName(); aConstraint->m_Type = aType; return true; default: return false; } } void PNS_PCBNEW_RULE_RESOLVER::ClearCacheForItems( std::vector& aItems ) { int n_pruned = 0; std::set remainingItems( aItems.begin(), aItems.end() ); /* We need to carefully check both A and B item pointers in the cache against dirty/invalidated items in the set, as the clearance relation is commutative ( CL[a,b] == CL[b,a] ). The code below is a bit ugly, but works in O(n*log(m)) and is run once or twice during ROUTER::Move() call - so I hope it still gets better performance than no cache at all */ for( auto it = m_clearanceCache.begin(); it != m_clearanceCache.end(); ) { bool dirty = remainingItems.find( it->first.A ) != remainingItems.end(); dirty |= remainingItems.find( it->first.B) != remainingItems.end(); if( dirty ) { it = m_clearanceCache.erase( it ); n_pruned++; } else it++; } #if 0 printf("ClearCache : n_pruned %d\n", n_pruned ); #endif } void PNS_PCBNEW_RULE_RESOLVER::ClearCaches() { m_clearanceCache.clear(); m_tempClearanceCache.clear(); } void PNS_PCBNEW_RULE_RESOLVER::ClearTemporaryCaches() { m_tempClearanceCache.clear(); } int PNS_PCBNEW_RULE_RESOLVER::Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon ) { CLEARANCE_CACHE_KEY key = { aA, aB, aUseClearanceEpsilon }; // Search cache (used for actual board items) auto it = m_clearanceCache.find( key ); if( it != m_clearanceCache.end() ) return it->second; // Search cache (used for temporary items within an algorithm) it = m_tempClearanceCache.find( key ); if( it != m_tempClearanceCache.end() ) return it->second; PNS::CONSTRAINT constraint; int rv = 0; LAYER_RANGE layers; if( !aB ) layers = aA->Layers(); else if( isEdge( aA ) ) layers = aB->Layers(); else if( isEdge( aB ) ) layers = aA->Layers(); else layers = aA->Layers().Intersection( aB->Layers() ); // Normalize layer range (no -1 magic numbers) layers = layers.Intersection( LAYER_RANGE( PCBNEW_LAYER_ID_START, PCB_LAYER_ID_COUNT - 1 ) ); for( int layer = layers.Start(); layer <= layers.End(); ++layer ) { if( IsDrilledHole( aA ) && IsDrilledHole( aB ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } } else if( isHole( aA ) || isHole( aB ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } } else if( isCopper( aA ) && ( !aB || isCopper( aB ) ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } } // No 'else'; non-plated milled holes get both HOLE_CLEARANCE and EDGE_CLEARANCE if( isEdge( aA ) || IsNonPlatedSlot( aA ) || isEdge( aB ) || IsNonPlatedSlot( aB ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } } if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_PHYSICAL_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } } if( aUseClearanceEpsilon && rv > 0 ) rv = std::max( 0, rv - m_clearanceEpsilon ); /* It makes no sense to put items that have no owning NODE in the cache - they can be allocated on stack and we can't really invalidate them in the cache when they are destroyed. Probably a better idea would be to use a static unique counter in PNS::ITEM constructor to generate the cache keys. */ /* However, algorithms DO greatly benefit from using the cache, so ownerless items need to be cached. In order to easily clear those only, a temporary cache is created. If this doesn't seem nice, an alternative is clearing the full cache once it reaches a certain size. Also not pretty, but VERY effective to keep things interactive. */ if( aA && aB ) { if ( aA->Owner() && aB->Owner() ) m_clearanceCache[ key ] = rv; else m_tempClearanceCache[ key ] = rv; } return rv; } bool PNS_KICAD_IFACE_BASE::inheritTrackWidth( PNS::ITEM* aItem, int* aInheritedWidth ) { VECTOR2I p; assert( aItem->Owner() != nullptr ); auto tryGetTrackWidth = []( PNS::ITEM* aPnsItem ) -> int { switch( aPnsItem->Kind() ) { case PNS::ITEM::SEGMENT_T: return static_cast( aPnsItem )->Width(); case PNS::ITEM::ARC_T: return static_cast( aPnsItem )->Width(); default: return -1; } }; int itemTrackWidth = tryGetTrackWidth( aItem ); if( itemTrackWidth > 0 ) { *aInheritedWidth = itemTrackWidth; return true; } switch( aItem->Kind() ) { case PNS::ITEM::VIA_T: p = static_cast( aItem )->Pos(); break; case PNS::ITEM::SOLID_T: p = static_cast( aItem )->Pos(); break; default: return false; } const PNS::JOINT* jt = static_cast( aItem->Owner() )->FindJoint( p, aItem ); assert( jt != nullptr ); int mval = INT_MAX; PNS::ITEM_SET linkedSegs( jt->CLinks() ); linkedSegs.ExcludeItem( aItem ).FilterKinds( PNS::ITEM::SEGMENT_T | PNS::ITEM::ARC_T ); for( PNS::ITEM* item : linkedSegs.Items() ) { int w = tryGetTrackWidth( item ); if( w > 0 ) mval = std::min( w, mval ); } if( mval == INT_MAX ) return false; *aInheritedWidth = mval; return true; } bool PNS_KICAD_IFACE_BASE::ImportSizes( PNS::SIZES_SETTINGS& aSizes, PNS::ITEM* aStartItem, PNS::NET_HANDLE aNet ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); PNS::CONSTRAINT constraint; if( aStartItem && m_startLayer < 0 ) m_startLayer = aStartItem->Layer(); aSizes.SetClearance( bds.m_MinClearance ); aSizes.SetMinClearance( bds.m_MinClearance ); aSizes.SetClearanceSource( _( "board minimum clearance" ) ); if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aStartItem, nullptr, m_startLayer, &constraint ) ) { if( constraint.m_Value.Min() > bds.m_MinClearance ) { aSizes.SetClearance( constraint.m_Value.Min() ); aSizes.SetClearanceSource( constraint.m_RuleName ); } } int trackWidth = bds.m_TrackMinWidth; bool found = false; aSizes.SetWidthSource( _( "board minimum track width" ) ); if( bds.m_UseConnectedTrackWidth && !bds.m_TempOverrideTrackWidth && aStartItem != nullptr ) { found = inheritTrackWidth( aStartItem, &trackWidth ); if( found ) aSizes.SetWidthSource( _( "existing track" ) ); } if( !found && bds.UseNetClassTrack() && aStartItem ) { if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr, m_startLayer, &constraint ) ) { trackWidth = std::max( trackWidth, constraint.m_Value.Opt() ); found = true; if( trackWidth == constraint.m_Value.Opt() ) aSizes.SetWidthSource( constraint.m_RuleName ); } } if( !found ) { trackWidth = std::max( trackWidth, bds.GetCurrentTrackWidth() ); if( bds.UseNetClassTrack() ) aSizes.SetWidthSource( _( "netclass 'Default'" ) ); else if( trackWidth == bds.GetCurrentTrackWidth() ) aSizes.SetWidthSource( _( "user choice" ) ); } aSizes.SetTrackWidth( trackWidth ); aSizes.SetBoardMinTrackWidth( bds.m_TrackMinWidth ); aSizes.SetTrackWidthIsExplicit( !bds.m_UseConnectedTrackWidth || bds.m_TempOverrideTrackWidth ); int viaDiameter = bds.m_ViasMinSize; int viaDrill = bds.m_MinThroughDrill; PNS::VIA dummyVia, coupledVia; if( aStartItem ) { dummyVia.SetNet( aStartItem->Net() ); coupledVia.SetNet( m_ruleResolver->DpCoupledNet( aStartItem->Net() ) ); } if( bds.UseNetClassVia() && aStartItem ) // netclass value { if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER, &dummyVia, nullptr, m_startLayer, &constraint ) ) { viaDiameter = std::max( viaDiameter, constraint.m_Value.Opt() ); } if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_HOLE, &dummyVia, nullptr, m_startLayer, &constraint ) ) { viaDrill = std::max( viaDrill, constraint.m_Value.Opt() ); } } else { viaDiameter = bds.GetCurrentViaSize(); viaDrill = bds.GetCurrentViaDrill(); } aSizes.SetViaDiameter( viaDiameter ); aSizes.SetViaDrill( viaDrill ); int diffPairWidth = bds.m_TrackMinWidth; int diffPairGap = bds.m_MinClearance; int diffPairViaGap = bds.m_MinClearance; aSizes.SetDiffPairWidthSource( _( "board minimum track width" ) ); aSizes.SetDiffPairGapSource( _( "board minimum clearance" ) ); found = false; // First try to pick up diff pair width from starting track, if enabled if( bds.m_UseConnectedTrackWidth && aStartItem ) found = inheritTrackWidth( aStartItem, &diffPairWidth ); // Next, pick up gap from netclass, and width also if we didn't get a starting width above if( bds.UseNetClassDiffPair() && aStartItem ) { if( !found && m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr, m_startLayer, &constraint ) ) { diffPairWidth = std::max( diffPairWidth, constraint.m_Value.Opt() ); if( diffPairWidth == constraint.m_Value.Opt() ) aSizes.SetDiffPairWidthSource( constraint.m_RuleName ); } if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP, aStartItem, nullptr, m_startLayer, &constraint ) ) { diffPairGap = std::max( diffPairGap, constraint.m_Value.Opt() ); diffPairViaGap = std::max( diffPairViaGap, constraint.m_Value.Opt() ); if( diffPairGap == constraint.m_Value.Opt() ) aSizes.SetDiffPairGapSource( constraint.m_RuleName ); } } else { diffPairWidth = bds.GetCurrentDiffPairWidth(); diffPairGap = bds.GetCurrentDiffPairGap(); diffPairViaGap = bds.GetCurrentDiffPairViaGap(); aSizes.SetDiffPairWidthSource( _( "user choice" ) ); aSizes.SetDiffPairGapSource( _( "user choice" ) ); } aSizes.SetDiffPairWidth( diffPairWidth ); aSizes.SetDiffPairGap( diffPairGap ); aSizes.SetDiffPairViaGap( diffPairViaGap ); aSizes.SetDiffPairViaGapSameAsTraceGap( false ); int holeToHoleMin = bds.m_HoleToHoleMin; if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, &dummyVia, &dummyVia, UNDEFINED_LAYER, &constraint ) ) { holeToHoleMin = constraint.m_Value.Min(); } aSizes.SetHoleToHole( holeToHoleMin ); if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, &dummyVia, &coupledVia, UNDEFINED_LAYER, &constraint ) ) { holeToHoleMin = constraint.m_Value.Min(); } aSizes.SetDiffPairHoleToHole( holeToHoleMin ); return true; } int PNS_KICAD_IFACE_BASE::StackupHeight( int aFirstLayer, int aSecondLayer ) const { if( !m_board || !m_board->GetDesignSettings().m_UseHeightForLengthCalcs ) return 0; BOARD_STACKUP& stackup = m_board->GetDesignSettings().GetStackupDescriptor(); return stackup.GetLayerDistance( ToLAYER_ID( aFirstLayer ), ToLAYER_ID( aSecondLayer ) ); } PNS::NET_HANDLE PNS_PCBNEW_RULE_RESOLVER::DpCoupledNet( PNS::NET_HANDLE aNet ) { return m_board->DpCoupledNet( static_cast( aNet ) ); } int PNS_PCBNEW_RULE_RESOLVER::NetCode( PNS::NET_HANDLE aNet ) { return m_routerIface->GetNetCode( aNet ); } wxString PNS_PCBNEW_RULE_RESOLVER::NetName( PNS::NET_HANDLE aNet ) { return m_routerIface->GetNetName( aNet ); } int PNS_PCBNEW_RULE_RESOLVER::DpNetPolarity( PNS::NET_HANDLE aNet ) { wxString refName; if( NETINFO_ITEM* net = static_cast( aNet ) ) refName = net->GetNetname(); wxString dummy1; return m_board->MatchDpSuffix( refName, dummy1 ); } bool PNS_PCBNEW_RULE_RESOLVER::DpNetPair( const PNS::ITEM* aItem, PNS::NET_HANDLE& aNetP, PNS::NET_HANDLE& aNetN ) { if( !aItem || !aItem->Net() ) return false; wxString netNameP = static_cast( aItem->Net() )->GetNetname(); wxString netNameN, netNameCoupled; int r = m_board->MatchDpSuffix( netNameP, netNameCoupled ); if( r == 0 ) { return false; } else if( r == 1 ) { netNameN = netNameCoupled; } else { netNameN = netNameP; netNameP = netNameCoupled; } PNS::NET_HANDLE netInfoP = m_board->FindNet( netNameP ); PNS::NET_HANDLE netInfoN = m_board->FindNet( netNameN ); if( !netInfoP || !netInfoN ) return false; aNetP = netInfoP; aNetN = netInfoN; return true; } class PNS_PCBNEW_DEBUG_DECORATOR: public PNS::DEBUG_DECORATOR { public: PNS_PCBNEW_DEBUG_DECORATOR( KIGFX::VIEW* aView = nullptr ) : PNS::DEBUG_DECORATOR(), m_view( nullptr ), m_items( nullptr ), m_depth( 0 ) { SetView( aView ); } ~PNS_PCBNEW_DEBUG_DECORATOR() { PNS_PCBNEW_DEBUG_DECORATOR::Clear(); delete m_items; } void SetView( KIGFX::VIEW* aView ) { Clear(); delete m_items; m_items = nullptr; m_view = aView; if( m_view == nullptr ) return; if( m_view->GetGAL() ) m_depth = m_view->GetGAL()->GetMinDepth(); m_items = new KIGFX::VIEW_GROUP( m_view ); m_items->SetLayer( LAYER_SELECT_OVERLAY ) ; m_view->Add( m_items ); } void AddPoint( const VECTOR2I& aP, const KIGFX::COLOR4D& aColor, int aSize, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override { SHAPE_LINE_CHAIN sh; sh.SetWidth( 10000 ); sh.Append( aP.x - aSize, aP.y - aSize ); sh.Append( aP.x + aSize, aP.y + aSize ); sh.Append( aP.x, aP.y ); sh.Append( aP.x - aSize, aP.y + aSize ); sh.Append( aP.x + aSize, aP.y - aSize ); AddShape( &sh, aColor, sh.Width(), aName, aSrcLoc ); } void AddItem( const PNS::ITEM* aItem, const KIGFX::COLOR4D& aColor, int aOverrideWidth = 0, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override { if( !m_view || !aItem ) return; ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view ); pitem->SetColor( aColor.WithAlpha( 0.5 ) ); pitem->SetWidth( aOverrideWidth ); pitem->SetDepth( nextDepth() ); m_items->Add( pitem ); m_view->Update( m_items ); } void AddShape( const BOX2I& aBox, const KIGFX::COLOR4D& aColor, int aOverrideWidth = 0, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override { SHAPE_LINE_CHAIN l; l.SetWidth( aOverrideWidth ); VECTOR2I o = aBox.GetOrigin(); VECTOR2I s = aBox.GetSize(); l.Append( o ); l.Append( o.x + s.x, o.y ); l.Append( o.x + s.x, o.y + s.y ); l.Append( o.x, o.y + s.y ); l.Append( o ); AddShape( &l, aColor, aOverrideWidth, aName, aSrcLoc ); } void AddShape( const SHAPE* aShape, const KIGFX::COLOR4D& aColor, int aOverrideWidth = 0, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override { if( !m_view || !aShape ) return; ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( *aShape, m_view ); pitem->SetColor( aColor.WithAlpha( 0.5 ) ); pitem->SetWidth( aOverrideWidth ); pitem->SetDepth( nextDepth() ); m_items->Add( pitem ); m_view->Update( m_items ); } void Clear() override { if( m_view && m_items ) { m_items->FreeItems(); m_view->Update( m_items ); if( m_view->GetGAL() ) m_depth = m_view->GetGAL()->GetMinDepth(); } } private: double nextDepth() { // Use different depths so that the transculent shapes won't overwrite each other. m_depth++; if( m_depth >= 0 && m_view->GetGAL() ) m_depth = m_view->GetGAL()->GetMinDepth(); return m_depth; } KIGFX::VIEW* m_view; KIGFX::VIEW_GROUP* m_items; double m_depth; }; PNS::DEBUG_DECORATOR* PNS_KICAD_IFACE_BASE::GetDebugDecorator() { return m_debugDecorator; } PNS_KICAD_IFACE_BASE::PNS_KICAD_IFACE_BASE() { m_ruleResolver = nullptr; m_board = nullptr; m_world = nullptr; m_debugDecorator = nullptr; m_startLayer = -1; } PNS_KICAD_IFACE::PNS_KICAD_IFACE() { m_tool = nullptr; m_view = nullptr; m_previewItems = nullptr; m_commitFlags = 0; } PNS_KICAD_IFACE_BASE::~PNS_KICAD_IFACE_BASE() { } PNS_KICAD_IFACE::~PNS_KICAD_IFACE() { delete m_ruleResolver; delete m_debugDecorator; if( m_previewItems ) { m_previewItems->FreeItems(); delete m_previewItems; } } std::unique_ptr PNS_KICAD_IFACE_BASE::syncPad( PAD* aPad ) { LAYER_RANGE layers( 0, MAX_CU_LAYERS - 1 ); // ignore non-copper pads except for those with holes if( ( aPad->GetLayerSet() & LSET::AllCuMask() ).none() && aPad->GetDrillSize().x == 0 ) return nullptr; switch( aPad->GetAttribute() ) { case PAD_ATTRIB::PTH: case PAD_ATTRIB::NPTH: break; case PAD_ATTRIB::CONN: case PAD_ATTRIB::SMD: { LSET lmsk = aPad->GetLayerSet(); bool is_copper = false; for( int i = 0; i < MAX_CU_LAYERS; i++ ) { if( lmsk[i] ) { is_copper = true; if( aPad->GetAttribute() != PAD_ATTRIB::NPTH ) layers = LAYER_RANGE( i ); break; } } if( !is_copper ) return nullptr; break; } default: wxLogTrace( wxT( "PNS" ), wxT( "unsupported pad type 0x%x" ), aPad->GetAttribute() ); return nullptr; } std::unique_ptr solid = std::make_unique(); if( aPad->GetAttribute() == PAD_ATTRIB::NPTH ) solid->SetRoutable( false ); solid->SetLayers( layers ); solid->SetNet( aPad->GetNet() ); solid->SetParent( aPad ); solid->SetPadToDie( aPad->GetPadToDieLength() ); solid->SetOrientation( aPad->GetOrientation() ); if( aPad->IsFreePad() ) solid->SetIsFreePad(); VECTOR2I wx_c = aPad->ShapePos(); VECTOR2I offset = aPad->GetOffset(); VECTOR2I c( wx_c.x, wx_c.y ); RotatePoint( offset, aPad->GetOrientation() ); solid->SetPos( VECTOR2I( c.x - offset.x, c.y - offset.y ) ); solid->SetOffset( VECTOR2I( offset.x, offset.y ) ); if( aPad->GetDrillSize().x > 0 ) solid->SetHole( new PNS::HOLE( aPad->GetEffectiveHoleShape()->Clone() ) ); // We generate a single SOLID for a pad, so we have to treat it as ALWAYS_FLASHED and then // perform layer-specific flashing tests internally. const std::shared_ptr& shape = aPad->GetEffectiveShape( UNDEFINED_LAYER, FLASHING::ALWAYS_FLASHED ); if( shape->HasIndexableSubshapes() && shape->GetIndexableSubshapeCount() == 1 ) { std::vector subshapes; shape->GetIndexableSubshapes( subshapes ); solid->SetShape( subshapes[0]->Clone() ); } // For anything that's not a single shape we use a polygon. Multiple shapes have a tendency // to confuse the hull generator. https://gitlab.com/kicad/code/kicad/-/issues/15553 else { const std::shared_ptr& poly = aPad->GetEffectivePolygon( ERROR_OUTSIDE ); if( poly->OutlineCount() ) solid->SetShape( new SHAPE_SIMPLE( poly->Outline( 0 ) ) ); } return solid; } std::unique_ptr PNS_KICAD_IFACE_BASE::syncTrack( PCB_TRACK* aTrack ) { auto segment = std::make_unique( SEG( aTrack->GetStart(), aTrack->GetEnd() ), aTrack->GetNet() ); segment->SetWidth( aTrack->GetWidth() ); segment->SetLayers( LAYER_RANGE( aTrack->GetLayer() ) ); segment->SetParent( aTrack ); if( aTrack->IsLocked() ) segment->Mark( PNS::MK_LOCKED ); if( PCB_GENERATOR* generator = dynamic_cast( aTrack->GetParentGroup() ) ) { if( !generator->HasFlag( IN_EDIT ) ) segment->Mark( PNS::MK_LOCKED ); } return segment; } std::unique_ptr PNS_KICAD_IFACE_BASE::syncArc( PCB_ARC* aArc ) { auto arc = std::make_unique( SHAPE_ARC( aArc->GetStart(), aArc->GetMid(), aArc->GetEnd(), aArc->GetWidth() ), aArc->GetNet() ); arc->SetLayers( LAYER_RANGE( aArc->GetLayer() ) ); arc->SetParent( aArc ); if( aArc->IsLocked() ) arc->Mark( PNS::MK_LOCKED ); if( PCB_GENERATOR* generator = dynamic_cast( aArc->GetParentGroup() ) ) { if( !generator->HasFlag( IN_EDIT ) ) arc->Mark( PNS::MK_LOCKED ); } return arc; } std::unique_ptr PNS_KICAD_IFACE_BASE::syncVia( PCB_VIA* aVia ) { PCB_LAYER_ID top, bottom; aVia->LayerPair( &top, &bottom ); auto via = std::make_unique( aVia->GetPosition(), LAYER_RANGE( aVia->TopLayer(), aVia->BottomLayer() ), aVia->GetWidth(), aVia->GetDrillValue(), aVia->GetNet(), aVia->GetViaType() ); via->SetParent( aVia ); if( aVia->IsLocked() ) via->Mark( PNS::MK_LOCKED ); if( PCB_GENERATOR* generator = dynamic_cast( aVia->GetParentGroup() ) ) { if( !generator->HasFlag( IN_EDIT ) ) via->Mark( PNS::MK_LOCKED ); } via->SetIsFree( aVia->GetIsFree() ); via->SetHole( PNS::HOLE::MakeCircularHole( aVia->GetPosition(), aVia->GetDrillValue() / 2 ) ); return via; } bool PNS_KICAD_IFACE_BASE::syncZone( PNS::NODE* aWorld, ZONE* aZone, SHAPE_POLY_SET* aBoardOutline ) { static wxString msg; SHAPE_POLY_SET* poly; if( !aZone->GetIsRuleArea() ) return false; LSET layers = aZone->GetLayerSet(); poly = aZone->Outline(); poly->CacheTriangulation( false ); if( !poly->IsTriangulationUpToDate() ) { UNITS_PROVIDER unitsProvider( pcbIUScale, GetUnits() ); msg.Printf( _( "%s is malformed." ), aZone->GetItemDescription( &unitsProvider ) ); KIDIALOG dlg( nullptr, msg, KIDIALOG::KD_WARNING ); dlg.ShowDetailedText( _( "This zone cannot be handled by the router.\n" "Please verify it is not a self-intersecting polygon." ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ ); dlg.ShowModal(); return false; } for( int layer = F_Cu; layer <= B_Cu; layer++ ) { if( !layers[ layer ] ) continue; for( int outline = 0; outline < poly->OutlineCount(); outline++ ) { const SHAPE_POLY_SET::TRIANGULATED_POLYGON* tri = poly->TriangulatedPolygon( outline ); for( size_t i = 0; i < tri->GetTriangleCount(); i++) { VECTOR2I a, b, c; tri->GetTriangle( i, a, b, c ); SHAPE_SIMPLE* triShape = new SHAPE_SIMPLE; triShape->Append( a ); triShape->Append( b ); triShape->Append( c ); std::unique_ptr solid = std::make_unique(); solid->SetLayer( layer ); solid->SetNet( nullptr ); solid->SetParent( aZone ); solid->SetShape( triShape ); solid->SetIsCompoundShapePrimitive(); solid->SetRoutable( false ); aWorld->Add( std::move( solid ) ); } } } return true; } bool PNS_KICAD_IFACE_BASE::syncTextItem( PNS::NODE* aWorld, PCB_TEXT* aText, PCB_LAYER_ID aLayer ) { if( !IsCopperLayer( aLayer ) ) return false; std::unique_ptr solid = std::make_unique(); SHAPE_SIMPLE* shape = new SHAPE_SIMPLE; solid->SetLayer( aLayer ); solid->SetNet( nullptr ); solid->SetParent( aText ); solid->SetShape( shape ); // takes ownership solid->SetRoutable( false ); SHAPE_POLY_SET cornerBuffer; aText->TransformShapeToPolygon( cornerBuffer, aText->GetLayer(), 0, m_board->GetDesignSettings().m_MaxError, ERROR_OUTSIDE ); if( !cornerBuffer.OutlineCount() ) return false; for( const VECTOR2I& pt : cornerBuffer.Outline( 0 ).CPoints() ) shape->Append( pt ); aWorld->Add( std::move( solid ) ); return true; } bool PNS_KICAD_IFACE_BASE::syncGraphicalItem( PNS::NODE* aWorld, PCB_SHAPE* aItem ) { if( aItem->GetLayer() == Edge_Cuts || aItem->GetLayer() == Margin || IsCopperLayer( aItem->GetLayer() ) ) { std::vector shapes = aItem->MakeEffectiveShapes(); for( SHAPE* shape : shapes ) { std::unique_ptr solid = std::make_unique(); if( aItem->GetLayer() == Edge_Cuts || aItem->GetLayer() == Margin ) solid->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) ); else solid->SetLayer( aItem->GetLayer() ); if( aItem->GetLayer() == Edge_Cuts ) { switch( shape->Type() ) { case SH_SEGMENT: static_cast( shape )->SetWidth( 0 ); break; case SH_ARC: static_cast( shape )->SetWidth( 0 ); break; case SH_LINE_CHAIN: static_cast( shape )->SetWidth( 0 ); break; default: /* remaining shapes don't have width */ break; } } solid->SetAnchorPoints( aItem->GetConnectionPoints() ); solid->SetNet( aItem->GetNet() ); solid->SetParent( aItem ); solid->SetShape( shape ); // takes ownership if( shapes.size() > 1 ) solid->SetIsCompoundShapePrimitive(); aWorld->Add( std::move( solid ) ); } return true; } return false; } void PNS_KICAD_IFACE_BASE::SetBoard( BOARD* aBoard ) { m_board = aBoard; wxLogTrace( wxT( "PNS" ), wxT( "m_board = %p" ), m_board ); } bool PNS_KICAD_IFACE::IsAnyLayerVisible( const LAYER_RANGE& aLayer ) const { if( !m_view ) return false; for( int i = aLayer.Start(); i <= aLayer.End(); i++ ) { if( m_view->IsLayerVisible( i ) ) return true; } return false; } bool PNS_KICAD_IFACE_BASE::IsFlashedOnLayer( const PNS::ITEM* aItem, int aLayer ) const { /// Default is all layers if( aLayer < 0 ) return true; if( aItem->Parent() ) { switch( aItem->Parent()->Type() ) { case PCB_VIA_T: { const PCB_VIA* via = static_cast( aItem->Parent() ); return via->FlashLayer( ToLAYER_ID( aLayer ) ); } case PCB_PAD_T: { const PAD* pad = static_cast( aItem->Parent() ); return pad->FlashLayer( ToLAYER_ID( aLayer ) ); } default: break; } } return aItem->Layers().Overlaps( aLayer ); } bool PNS_KICAD_IFACE_BASE::IsFlashedOnLayer( const PNS::ITEM* aItem, const LAYER_RANGE& aLayer ) const { LAYER_RANGE test = aItem->Layers().Intersection( aLayer ); if( aItem->Parent() ) { switch( aItem->Parent()->Type() ) { case PCB_VIA_T: { const PCB_VIA* via = static_cast( aItem->Parent() ); for( int layer = test.Start(); layer <= test.End(); ++layer ) { if( via->FlashLayer( ToLAYER_ID( layer ) ) ) return true; } return false; } case PCB_PAD_T: { const PAD* pad = static_cast( aItem->Parent() ); for( int layer = test.Start(); layer <= test.End(); ++layer ) { if( pad->FlashLayer( ToLAYER_ID( layer ) ) ) return true; } return false; } default: break; } } return test.Start() <= test.End(); } bool PNS_KICAD_IFACE::IsItemVisible( const PNS::ITEM* aItem ) const { // by default, all items are visible (new ones created by the router have parent == NULL // as they have not been committed yet to the BOARD) if( !m_view || !aItem->Parent() ) return true; BOARD_ITEM* item = aItem->Parent(); bool isOnVisibleLayer = true; RENDER_SETTINGS* settings = m_view->GetPainter()->GetSettings(); if( settings->GetHighContrast() ) isOnVisibleLayer = item->IsOnLayer( settings->GetPrimaryHighContrastLayer() ); if( m_view->IsVisible( item ) && isOnVisibleLayer ) { for( PCB_LAYER_ID layer : item->GetLayerSet().Seq() ) { if( item->ViewGetLOD( layer, m_view ) < m_view->GetScale() ) return true; } } // Items hidden in the router are not hidden on the board if( m_hiddenItems.find( item ) != m_hiddenItems.end() ) return true; return false; } void PNS_KICAD_IFACE_BASE::SyncWorld( PNS::NODE *aWorld ) { if( !m_board ) { wxLogTrace( wxT( "PNS" ), wxT( "No board attached, aborting sync." ) ); return; } int worstClearance = m_board->GetMaxClearanceValue(); m_world = aWorld; for( BOARD_ITEM* gitem : m_board->Drawings() ) { if ( gitem->Type() == PCB_SHAPE_T || gitem->Type() == PCB_TEXTBOX_T ) { syncGraphicalItem( aWorld, static_cast( gitem ) ); } else if( gitem->Type() == PCB_TEXT_T ) { syncTextItem( aWorld, static_cast( gitem ), gitem->GetLayer() ); } } SHAPE_POLY_SET buffer; SHAPE_POLY_SET* boardOutline = nullptr; if( m_board->GetBoardPolygonOutlines( buffer ) ) boardOutline = &buffer; for( ZONE* zone : m_board->Zones() ) { syncZone( aWorld, zone, boardOutline ); } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( std::unique_ptr solid = syncPad( pad ) ) aWorld->Add( std::move( solid ) ); worstClearance = std::max( worstClearance, pad->GetLocalClearance() ); if( pad->GetProperty() == PAD_PROP::CASTELLATED ) { std::unique_ptr hole; hole.reset( pad->GetEffectiveHoleShape()->Clone() ); aWorld->AddEdgeExclusion( std::move( hole ) ); } } syncTextItem( aWorld, &footprint->Reference(), footprint->Reference().GetLayer() ); syncTextItem( aWorld, &footprint->Value(), footprint->Value().GetLayer() ); for( ZONE* zone : footprint->Zones() ) syncZone( aWorld, zone, boardOutline ); for( PCB_FIELD* field : footprint->Fields() ) syncTextItem( aWorld, static_cast( field ), field->GetLayer() ); for( BOARD_ITEM* item : footprint->GraphicalItems() ) { if( item->Type() == PCB_SHAPE_T || item->Type() == PCB_TEXTBOX_T ) { syncGraphicalItem( aWorld, static_cast( item ) ); } else if( item->Type() == PCB_TEXT_T ) { syncTextItem( aWorld, static_cast( item ), item->GetLayer() ); } } } for( PCB_TRACK* t : m_board->Tracks() ) { KICAD_T type = t->Type(); if( type == PCB_TRACE_T ) { if( std::unique_ptr segment = syncTrack( t ) ) aWorld->Add( std::move( segment ) ); } else if( type == PCB_ARC_T ) { if( std::unique_ptr arc = syncArc( static_cast( t ) ) ) aWorld->Add( std::move( arc ) ); } else if( type == PCB_VIA_T ) { if( std::unique_ptr via = syncVia( static_cast( t ) ) ) aWorld->Add( std::move( via ) ); } } // NB: if this were ever to become a long-lived object we would need to dirty its // clearance cache here.... delete m_ruleResolver; m_ruleResolver = new PNS_PCBNEW_RULE_RESOLVER( m_board, this ); aWorld->SetRuleResolver( m_ruleResolver ); aWorld->SetMaxClearance( worstClearance + m_ruleResolver->ClearanceEpsilon() ); } void PNS_KICAD_IFACE::EraseView() { for( BOARD_ITEM* item : m_hiddenItems ) m_view->SetVisible( item, true ); m_hiddenItems.clear(); if( m_previewItems ) { m_previewItems->FreeItems(); m_view->Update( m_previewItems ); } if( m_debugDecorator ) m_debugDecorator->Clear(); } void PNS_KICAD_IFACE_BASE::SetDebugDecorator( PNS::DEBUG_DECORATOR *aDec ) { m_debugDecorator = aDec; } void PNS_KICAD_IFACE::DisplayItem( const PNS::ITEM* aItem, int aClearance, bool aEdit, int aFlags ) { if( aItem->IsVirtual() ) return; if( ZONE* zone = dynamic_cast( aItem->Parent() ) ) { if( zone->GetIsRuleArea() ) aFlags |= PNS_SEMI_SOLID; } ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view, aFlags ); // Note: SEGMENT_T is used for placed tracks; LINE_T is used for the routing head static int tracks = PNS::ITEM::SEGMENT_T | PNS::ITEM::ARC_T | PNS::ITEM::LINE_T; static int tracksOrVias = tracks | PNS::ITEM::VIA_T; if( aClearance >= 0 ) { pitem->SetClearance( aClearance ); auto* settings = static_cast( m_tool->GetManager()->GetSettings() ); switch( settings->m_Display.m_TrackClearance ) { case SHOW_WITH_VIA_ALWAYS: case SHOW_WITH_VIA_WHILE_ROUTING_OR_DRAGGING: pitem->ShowClearance( aItem->OfKind( tracksOrVias ) ); break; case SHOW_WITH_VIA_WHILE_ROUTING: pitem->ShowClearance( aItem->OfKind( tracksOrVias ) && !aEdit ); break; case SHOW_WHILE_ROUTING: pitem->ShowClearance( aItem->OfKind( tracks ) && !aEdit ); break; default: pitem->ShowClearance( false ); break; } } m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); } void PNS_KICAD_IFACE::DisplayPathLine( const SHAPE_LINE_CHAIN& aLine, int aImportance ) { ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aLine, m_view ); pitem->SetDepth( pitem->GetOriginDepth() - ROUTER_PREVIEW_ITEM::PathOverlayDepth ); COLOR4D color; if( aImportance >= 1 ) color = COLOR4D( 1.0, 1.0, 0.0, 0.6 ); else if( aImportance == 0 ) color = COLOR4D( 0.7, 0.7, 0.7, 0.6 ); pitem->SetColor( color ); m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); } void PNS_KICAD_IFACE::DisplayRatline( const SHAPE_LINE_CHAIN& aRatline, PNS::NET_HANDLE aNet ) { ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aRatline, m_view ); KIGFX::RENDER_SETTINGS* renderSettings = m_view->GetPainter()->GetSettings(); KIGFX::PCB_RENDER_SETTINGS* rs = static_cast( renderSettings ); bool colorByNet = rs->GetNetColorMode() != NET_COLOR_MODE::OFF; COLOR4D defaultColor = rs->GetColor( nullptr, LAYER_RATSNEST ); COLOR4D color = defaultColor; std::shared_ptr connectivity = m_board->GetConnectivity(); std::set highlightedNets = rs->GetHighlightNetCodes(); std::map& netColors = rs->GetNetColorMap(); std::map& ncColors = rs->GetNetclassColorMap(); const std::map& ncMap = connectivity->GetNetclassMap(); int netCode = -1; if( NETINFO_ITEM* net = static_cast( aNet ) ) netCode = net->GetNetCode(); if( colorByNet && netColors.count( netCode ) ) color = netColors.at( netCode ); else if( colorByNet && ncMap.count( netCode ) && ncColors.count( ncMap.at( netCode ) ) ) color = ncColors.at( ncMap.at( netCode ) ); else color = defaultColor; if( color == COLOR4D::UNSPECIFIED ) color = defaultColor; pitem->SetColor( color.Brightened( 0.5 ).WithAlpha( std::min( 1.0, color.a + 0.4 ) ) ); m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); } void PNS_KICAD_IFACE::HideItem( PNS::ITEM* aItem ) { BOARD_ITEM* parent = aItem->Parent(); if( parent ) { if( m_view->IsVisible( parent ) ) m_hiddenItems.insert( parent ); m_view->SetVisible( parent, false ); m_view->Update( parent, KIGFX::APPEARANCE ); for( ZONE* td : m_board->Zones() ) { if( td->IsTeardropArea() && td->GetBoundingBox().Intersects( aItem->Parent()->GetBoundingBox() ) && td->Outline()->Collide( aItem->Shape() ) ) { m_view->SetVisible( td, false ); m_view->Update( td, KIGFX::APPEARANCE ); } } } } void PNS_KICAD_IFACE_BASE::RemoveItem( PNS::ITEM* aItem ) { } void PNS_KICAD_IFACE::RemoveItem( PNS::ITEM* aItem ) { BOARD_ITEM* parent = aItem->Parent(); if( aItem->OfKind( PNS::ITEM::SOLID_T ) ) { PAD* pad = static_cast( parent ); VECTOR2I pos = static_cast( aItem )->Pos(); m_fpOffsets[ pad ].p_old = pos; return; } if( parent ) { m_commit->Remove( parent ); } } void PNS_KICAD_IFACE_BASE::UpdateItem( PNS::ITEM* aItem ) { } void PNS_KICAD_IFACE::modifyBoardItem( PNS::ITEM* aItem ) { BOARD_ITEM* board_item = aItem->Parent(); switch( aItem->Kind() ) { case PNS::ITEM::ARC_T: { PNS::ARC* arc = static_cast( aItem ); PCB_ARC* arc_board = static_cast( board_item ); const SHAPE_ARC* arc_shape = static_cast( arc->Shape() ); arc_board->SetStart( VECTOR2I( arc_shape->GetP0() ) ); arc_board->SetEnd( VECTOR2I( arc_shape->GetP1() ) ); arc_board->SetMid( VECTOR2I( arc_shape->GetArcMid() ) ); arc_board->SetWidth( arc->Width() ); break; } case PNS::ITEM::SEGMENT_T: { PNS::SEGMENT* seg = static_cast( aItem ); PCB_TRACK* track = static_cast( board_item ); const SEG& s = seg->Seg(); track->SetStart( VECTOR2I( s.A.x, s.A.y ) ); track->SetEnd( VECTOR2I( s.B.x, s.B.y ) ); track->SetWidth( seg->Width() ); break; } case PNS::ITEM::VIA_T: { PCB_VIA* via_board = static_cast( board_item ); PNS::VIA* via = static_cast( aItem ); via_board->SetPosition( VECTOR2I( via->Pos().x, via->Pos().y ) ); via_board->SetWidth( via->Diameter() ); via_board->SetDrill( via->Drill() ); via_board->SetNet( static_cast( via->Net() ) ); via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair() via_board->SetIsFree( via->IsFree() ); via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ), ToLAYER_ID( via->Layers().End() ) ); break; } case PNS::ITEM::SOLID_T: { PAD* pad = static_cast( aItem->Parent() ); VECTOR2I pos = static_cast( aItem )->Pos(); m_fpOffsets[pad].p_old = pad->GetPosition(); m_fpOffsets[pad].p_new = pos; break; } default: break; } } void PNS_KICAD_IFACE::UpdateItem( PNS::ITEM* aItem ) { BOARD_ITEM* board_item = aItem->Parent(); m_commit->Modify( board_item ); modifyBoardItem( aItem ); } void PNS_KICAD_IFACE_BASE::AddItem( PNS::ITEM* aItem ) { } BOARD_CONNECTED_ITEM* PNS_KICAD_IFACE::createBoardItem( PNS::ITEM* aItem ) { BOARD_CONNECTED_ITEM* newBI = nullptr; auto net = static_cast( aItem->Net() ); switch( aItem->Kind() ) { case PNS::ITEM::ARC_T: { PNS::ARC* arc = static_cast( aItem ); PCB_ARC* new_arc = new PCB_ARC( m_board, static_cast( arc->Shape() ) ); new_arc->SetWidth( arc->Width() ); new_arc->SetLayer( ToLAYER_ID( arc->Layers().Start() ) ); new_arc->SetNet( net ); newBI = new_arc; break; } case PNS::ITEM::SEGMENT_T: { PNS::SEGMENT* seg = static_cast( aItem ); PCB_TRACK* track = new PCB_TRACK( m_board ); const SEG& s = seg->Seg(); track->SetStart( VECTOR2I( s.A.x, s.A.y ) ); track->SetEnd( VECTOR2I( s.B.x, s.B.y ) ); track->SetWidth( seg->Width() ); track->SetLayer( ToLAYER_ID( seg->Layers().Start() ) ); track->SetNet( net ); newBI = track; break; } case PNS::ITEM::VIA_T: { PCB_VIA* via_board = new PCB_VIA( m_board ); PNS::VIA* via = static_cast( aItem ); via_board->SetPosition( VECTOR2I( via->Pos().x, via->Pos().y ) ); via_board->SetWidth( via->Diameter() ); via_board->SetDrill( via->Drill() ); via_board->SetNet( net ); via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair() via_board->SetIsFree( via->IsFree() ); via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ), ToLAYER_ID( via->Layers().End() ) ); newBI = via_board; break; } case PNS::ITEM::SOLID_T: { PAD* pad = static_cast( aItem->Parent() ); VECTOR2I pos = static_cast( aItem )->Pos(); m_fpOffsets[pad].p_new = pos; return nullptr; } default: return nullptr; } if( net->GetNetCode() <= 0 ) { NETINFO_ITEM* newNetInfo = newBI->GetNet(); newNetInfo->SetParent( m_board ); newNetInfo->SetNetClass( m_board->GetDesignSettings().m_NetSettings->m_DefaultNetClass ); } return newBI; } void PNS_KICAD_IFACE::AddItem( PNS::ITEM* aItem ) { BOARD_CONNECTED_ITEM* boardItem = createBoardItem( aItem ); if( boardItem ) { aItem->SetParent( boardItem ); boardItem->ClearFlags(); m_commit->Add( boardItem ); } } void PNS_KICAD_IFACE::Commit() { std::set processedFootprints; EraseView(); for( const auto& [ pad, fpOffset ] : m_fpOffsets ) { VECTOR2I offset = fpOffset.p_new - fpOffset.p_old; FOOTPRINT* footprint = pad->GetParentFootprint(); VECTOR2I p_orig = footprint->GetPosition(); VECTOR2I p_new = p_orig + offset; if( processedFootprints.find( footprint ) != processedFootprints.end() ) continue; processedFootprints.insert( footprint ); m_commit->Modify( footprint ); footprint->SetPosition( p_new ); } m_fpOffsets.clear(); m_commit->Push( _( "Routing" ), m_commitFlags ); m_commit = std::make_unique( m_tool ); } EDA_UNITS PNS_KICAD_IFACE::GetUnits() const { return static_cast( m_tool->GetManager()->GetSettings()->m_System.units ); } void PNS_KICAD_IFACE::SetView( KIGFX::VIEW* aView ) { wxLogTrace( wxT( "PNS" ), wxT( "SetView %p" ), aView ); if( m_previewItems ) { m_previewItems->FreeItems(); delete m_previewItems; } m_view = aView; m_previewItems = new KIGFX::VIEW_GROUP( m_view ); m_previewItems->SetLayer( LAYER_SELECT_OVERLAY ) ; if(m_view) m_view->Add( m_previewItems ); delete m_debugDecorator; auto dec = new PNS_PCBNEW_DEBUG_DECORATOR(); m_debugDecorator = dec; dec->SetDebugEnabled( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics ); if( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics ) dec->SetView( m_view ); } int PNS_KICAD_IFACE::GetNetCode( PNS::NET_HANDLE aNet ) const { if( aNet ) return static_cast( aNet )->GetNetCode(); else return -1; } wxString PNS_KICAD_IFACE::GetNetName( PNS::NET_HANDLE aNet ) const { if( aNet ) return static_cast( aNet )->GetNetname(); else return wxEmptyString; } void PNS_KICAD_IFACE::UpdateNet( PNS::NET_HANDLE aNet ) { wxLogTrace( wxT( "PNS" ), wxT( "Update-net %s" ), GetNetName( aNet ) ); } PNS::NET_HANDLE PNS_KICAD_IFACE_BASE::GetOrphanedNetHandle() { return NETINFO_LIST::OrphanedItem(); } PNS::RULE_RESOLVER* PNS_KICAD_IFACE_BASE::GetRuleResolver() { return m_ruleResolver; } void PNS_KICAD_IFACE::SetHostTool( PCB_TOOL_BASE* aTool ) { m_tool = aTool; m_commit = std::make_unique( m_tool ); }