/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include // for min #include // for bitset, operator&, __bi... #include // for abs #include // for SEG #include #include // for SHAPE_LINE_CHAIN #include // for SHAPE_POLY_SET, SHAPE_P... #include #include #include #include // for KiROUND, Clamp #include // for VECTOR2I #include #include #include // for dyn_cast, PCB_DIMENSION_T #include #include // for GBR_NETLIST_METADATA #include // for LSET, IsCopperLayer #include #include // for PCB_PLOT_PARAMS, PCB_PL... #include #include #include #include #include #include #include #include #include #include #include #include #include // for wxASSERT_MSG COLOR4D BRDITEMS_PLOTTER::getColor( int aLayer ) const { COLOR4D color = ColorSettings()->GetColor( aLayer ); // A hack to avoid plotting a white item in white color on white paper if( color == COLOR4D::WHITE ) color = COLOR4D( LIGHTGRAY ); return color; } void BRDITEMS_PLOTTER::PlotPad( const PAD* aPad, const COLOR4D& aColor, OUTLINE_MODE aPlotMode ) { VECTOR2I shape_pos = aPad->ShapePos(); GBR_METADATA metadata; bool plotOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any(); bool plotOnExternalCopperLayer = ( m_layerMask & LSET::ExternalCuMask() ).any(); // Pad not on the solder mask layer cannot be soldered. // therefore it can have a specific aperture attribute. // Not yet in use. // bool isPadOnBoardTechLayers = ( aPad->GetLayerSet() & LSET::AllBoardTechMask() ).any(); metadata.SetCmpReference( aPad->GetParentFootprint()->GetReference() ); if( plotOnCopperLayer ) { metadata.SetNetAttribType( GBR_NETINFO_ALL ); metadata.SetCopper( true ); // Gives a default attribute, for instance for pads used as tracks in net ties: // Connector pads and SMD pads are on external layers // if on internal layers, they are certainly used as net tie // and are similar to tracks: just conductor items metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONDUCTOR ); const bool useUTF8 = false; const bool useQuoting = false; metadata.SetPadName( aPad->GetNumber(), useUTF8, useQuoting ); if( !aPad->GetNumber().IsEmpty() ) metadata.SetPadPinFunction( aPad->GetPinFunction(), useUTF8, useQuoting ); metadata.SetNetName( aPad->GetNetname() ); // Some pads are mechanical pads ( through hole or smd ) // when this is the case, they have no pad name and/or are not plated. // In this case gerber files have slightly different attributes. if( aPad->GetAttribute() == PAD_ATTRIB::NPTH || aPad->GetNumber().IsEmpty() ) metadata.m_NetlistMetadata.m_NotInNet = true; if( !plotOnExternalCopperLayer ) { // the .P object attribute (GBR_NETLIST_METADATA::GBR_NETINFO_PAD) // is used on outer layers, unless the component is embedded // or a "etched" component (fp only drawn, not a physical component) // Currently, Pcbnew does not handle embedded component, so we disable the .P // attribute on internal layers // Note the Gerber doc is not really clear about through holes pads about the .P metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_NET | GBR_NETLIST_METADATA::GBR_NETINFO_CMP ); } // Some attributes are reserved to the external copper layers: // GBR_APERTURE_ATTRIB_CONNECTORPAD and GBR_APERTURE_ATTRIB_SMDPAD_CUDEF // for instance. // Pad with type PAD_ATTRIB::CONN or PAD_ATTRIB::SMD that is not on outer layer // has its aperture attribute set to GBR_APERTURE_ATTRIB_CONDUCTOR switch( aPad->GetAttribute() ) { case PAD_ATTRIB::NPTH: // Mechanical pad through hole metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_WASHERPAD ); break; case PAD_ATTRIB::PTH : // Pad through hole, a hole is also expected metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_COMPONENTPAD ); break; case PAD_ATTRIB::CONN: // Connector pads, no solder paste but with solder mask. if( plotOnExternalCopperLayer ) metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONNECTORPAD ); break; case PAD_ATTRIB::SMD: // SMD pads (on external copper layer only) // with solder paste and mask if( plotOnExternalCopperLayer ) metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_SMDPAD_CUDEF ); break; } // Fabrication properties can have specific GBR_APERTURE_METADATA options // that replace previous aperture attribute: switch( aPad->GetProperty() ) { case PAD_PROP::BGA: // Only applicable to outer layers if( plotOnExternalCopperLayer ) metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_BGAPAD_CUDEF ); break; case PAD_PROP::FIDUCIAL_GLBL: metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_FIDUCIAL_GLBL ); break; case PAD_PROP::FIDUCIAL_LOCAL: metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_FIDUCIAL_LOCAL ); break; case PAD_PROP::TESTPOINT: // Only applicable to outer layers if( plotOnExternalCopperLayer ) metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_TESTPOINT ); break; case PAD_PROP::HEATSINK: metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_HEATSINKPAD ); break; case PAD_PROP::CASTELLATED: metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CASTELLATEDPAD ); break; case PAD_PROP::NONE: break; } // Ensure NPTH pads have *always* the GBR_APERTURE_ATTRIB_WASHERPAD attribute if( aPad->GetAttribute() == PAD_ATTRIB::NPTH ) metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_WASHERPAD ); } else { metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_CMP ); } // Set plot color (change WHITE to LIGHTGRAY because // the white items are not seen on a white paper or screen m_plotter->SetColor( aColor != WHITE ? aColor : LIGHTGRAY); if( aPlotMode == SKETCH ) m_plotter->SetCurrentLineWidth( GetSketchPadLineWidth(), &metadata ); switch( aPad->GetShape() ) { case PAD_SHAPE::CIRCLE: m_plotter->FlashPadCircle( shape_pos, aPad->GetSize().x, aPlotMode, &metadata ); break; case PAD_SHAPE::OVAL: m_plotter->FlashPadOval( shape_pos, aPad->GetSize(), aPad->GetOrientation(), aPlotMode, &metadata ); break; case PAD_SHAPE::RECTANGLE: m_plotter->FlashPadRect( shape_pos, aPad->GetSize(), aPad->GetOrientation(), aPlotMode, &metadata ); break; case PAD_SHAPE::ROUNDRECT: m_plotter->FlashPadRoundRect( shape_pos, aPad->GetSize(), aPad->GetRoundRectCornerRadius(), aPad->GetOrientation(), aPlotMode, &metadata ); break; case PAD_SHAPE::TRAPEZOID: { // Build the pad polygon in coordinates relative to the pad // (i.e. for a pad at pos 0,0, rot 0.0). Needed to use aperture macros, // to be able to create a pattern common to all trapezoid pads having the same shape VECTOR2I coord[4]; // Order is lower left, lower right, upper right, upper left. VECTOR2I half_size = aPad->GetSize() / 2; VECTOR2I trap_delta = aPad->GetDelta() / 2; coord[0] = VECTOR2I( -half_size.x - trap_delta.y, half_size.y + trap_delta.x ); coord[1] = VECTOR2I( half_size.x + trap_delta.y, half_size.y - trap_delta.x ); coord[2] = VECTOR2I( half_size.x - trap_delta.y, -half_size.y + trap_delta.x ); coord[3] = VECTOR2I( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x ); m_plotter->FlashPadTrapez( shape_pos, coord, aPad->GetOrientation(), aPlotMode, &metadata ); } break; case PAD_SHAPE::CHAMFERED_RECT: if( m_plotter->GetPlotterType() == PLOT_FORMAT::GERBER ) { GERBER_PLOTTER* gerberPlotter = static_cast( m_plotter ); gerberPlotter->FlashPadChamferRoundRect( shape_pos, aPad->GetSize(), aPad->GetRoundRectCornerRadius(), aPad->GetChamferRectRatio(), aPad->GetChamferPositions(), aPad->GetOrientation(), aPlotMode, &metadata ); break; } KI_FALLTHROUGH; default: case PAD_SHAPE::CUSTOM: { const std::shared_ptr& polygons = aPad->GetEffectivePolygon( ERROR_INSIDE ); if( polygons->OutlineCount() ) { m_plotter->FlashPadCustom( shape_pos, aPad->GetSize(), aPad->GetOrientation(), polygons.get(), aPlotMode, &metadata ); } } break; } } void BRDITEMS_PLOTTER::PlotFootprintTextItems( const FOOTPRINT* aFootprint ) { if( !GetPlotFPText() ) return; const PCB_TEXT* textItem = &aFootprint->Reference(); PCB_LAYER_ID textLayer = textItem->GetLayer(); // Reference and value have special controls for forcing their plotting if( GetPlotReference() && m_layerMask[textLayer] && ( textItem->IsVisible() || GetPlotInvisibleText() ) ) { PlotText( textItem, textLayer, textItem->IsKnockout(), textItem->GetFontMetrics() ); } textItem = &aFootprint->Value(); textLayer = textItem->GetLayer(); if( GetPlotValue() && m_layerMask[textLayer] && ( textItem->IsVisible() || GetPlotInvisibleText() ) ) { PlotText( textItem, textLayer, textItem->IsKnockout(), textItem->GetFontMetrics() ); } std::vector texts; // Skip the reference and value texts that are handled specially for( PCB_FIELD* field : aFootprint->Fields() ) { if( field->IsReference() || field->IsValue() ) continue; texts.push_back( field ); } for( BOARD_ITEM* item : aFootprint->GraphicalItems() ) { textItem = dynamic_cast( item ); if( textItem ) texts.push_back( static_cast( item ) ); } for( const PCB_TEXT* text : texts ) { if( !text->IsVisible() ) continue; textLayer = text->GetLayer(); if( textLayer == Edge_Cuts || textLayer >= PCB_LAYER_ID_COUNT ) continue; if( !m_layerMask[textLayer] || aFootprint->GetPrivateLayers().test( textLayer ) ) continue; if( text->GetText() == wxT( "${REFERENCE}" ) && !GetPlotReference() ) continue; if( text->GetText() == wxT( "${VALUE}" ) && !GetPlotValue() ) continue; PlotText( text, textLayer, text->IsKnockout(), text->GetFontMetrics() ); } } void BRDITEMS_PLOTTER::PlotBoardGraphicItem( const BOARD_ITEM* item ) { switch( item->Type() ) { case PCB_SHAPE_T: PlotShape( static_cast( item ) ); break; case PCB_TEXT_T: { const PCB_TEXT* text = static_cast( item ); PlotText( text, text->GetLayer(), text->IsKnockout(), text->GetFontMetrics() ); break; } case PCB_TEXTBOX_T: { m_plotter->SetTextMode( PLOT_TEXT_MODE::STROKE ); const PCB_TEXTBOX* textbox = static_cast( item ); PlotText( textbox, textbox->GetLayer(), textbox->IsKnockout(), textbox->GetFontMetrics() ); if( textbox->IsBorderEnabled() ) PlotShape( textbox ); m_plotter->SetTextMode( GetTextMode() ); break; } case PCB_TABLE_T: { const PCB_TABLE* table = static_cast( item ); m_plotter->SetTextMode( PLOT_TEXT_MODE::STROKE ); for( const PCB_TABLECELL* cell : table->GetCells() ) PlotText( cell, cell->GetLayer(), cell->IsKnockout(), cell->GetFontMetrics() ); PlotTableBorders( table ); m_plotter->SetTextMode( GetTextMode() ); break; } case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: m_plotter->SetTextMode( PLOT_TEXT_MODE::STROKE ); PlotDimension( static_cast( item ) ); m_plotter->SetTextMode( GetTextMode() ); break; case PCB_TARGET_T: PlotPcbTarget( static_cast( item ) ); break; default: break; } } void BRDITEMS_PLOTTER::PlotDimension( const PCB_DIMENSION_BASE* aDim ) { if( !m_layerMask[aDim->GetLayer()] ) return; COLOR4D color = ColorSettings()->GetColor( aDim->GetLayer() ); // Set plot color (change WHITE to LIGHTGRAY because // the white items are not seen on a white paper or screen m_plotter->SetColor( color != WHITE ? color : LIGHTGRAY); PlotText( aDim, aDim->GetLayer(), false, aDim->GetFontMetrics() ); PCB_SHAPE temp_item; temp_item.SetStroke( STROKE_PARAMS( aDim->GetLineThickness(), LINE_STYLE::SOLID ) ); temp_item.SetLayer( aDim->GetLayer() ); for( const std::shared_ptr& shape : aDim->GetShapes() ) { switch( shape->Type() ) { case SH_SEGMENT: { const SEG& seg = static_cast( shape.get() )->GetSeg(); temp_item.SetShape( SHAPE_T::SEGMENT ); temp_item.SetStart( seg.A ); temp_item.SetEnd( seg.B ); PlotShape( &temp_item ); break; } case SH_CIRCLE: { VECTOR2I start( shape->Centre() ); int radius = static_cast( shape.get() )->GetRadius(); temp_item.SetShape( SHAPE_T::CIRCLE ); temp_item.SetFilled( false ); temp_item.SetStart( start ); temp_item.SetEnd( VECTOR2I( start.x + radius, start.y ) ); PlotShape( &temp_item ); break; } default: break; } } } void BRDITEMS_PLOTTER::PlotPcbTarget( const PCB_TARGET* aMire ) { int dx1, dx2, dy1, dy2, radius; if( !m_layerMask[aMire->GetLayer()] ) return; m_plotter->SetColor( getColor( aMire->GetLayer() ) ); PCB_SHAPE temp_item; temp_item.SetShape( SHAPE_T::CIRCLE ); temp_item.SetFilled( false ); temp_item.SetStroke( STROKE_PARAMS( aMire->GetWidth(), LINE_STYLE::SOLID ) ); temp_item.SetLayer( aMire->GetLayer() ); temp_item.SetStart( aMire->GetPosition() ); radius = aMire->GetSize() / 3; if( aMire->GetShape() ) // temp_item X radius = aMire->GetSize() / 2; // Draw the circle temp_item.SetEnd( VECTOR2I( temp_item.GetStart().x + radius, temp_item.GetStart().y ) ); PlotShape( &temp_item ); temp_item.SetShape( SHAPE_T::SEGMENT ); radius = aMire->GetSize() / 2; dx1 = radius; dy1 = 0; dx2 = 0; dy2 = radius; if( aMire->GetShape() ) // Shape X { dx1 = dy1 = radius; dx2 = dx1; dy2 = -dy1; } VECTOR2I mirePos( aMire->GetPosition() ); // Draw the X or + temp_item: temp_item.SetStart( VECTOR2I( mirePos.x - dx1, mirePos.y - dy1 ) ); temp_item.SetEnd( VECTOR2I( mirePos.x + dx1, mirePos.y + dy1 ) ); PlotShape( &temp_item ); temp_item.SetStart( VECTOR2I( mirePos.x - dx2, mirePos.y - dy2 ) ); temp_item.SetEnd( VECTOR2I( mirePos.x + dx2, mirePos.y + dy2 ) ); PlotShape( &temp_item ); } void BRDITEMS_PLOTTER::PlotFootprintGraphicItems( const FOOTPRINT* aFootprint ) { for( const BOARD_ITEM* item : aFootprint->GraphicalItems() ) { if( aFootprint->GetPrivateLayers().test( item->GetLayer() ) ) continue; if( !m_layerMask[ item->GetLayer() ] ) continue; switch( item->Type() ) { case PCB_SHAPE_T: PlotShape( static_cast( item ) ); break; case PCB_TEXTBOX_T: { const PCB_TEXTBOX* textbox = static_cast( item ); m_plotter->SetTextMode( PLOT_TEXT_MODE::STROKE ); PlotText( textbox, textbox->GetLayer(), textbox->IsKnockout(), textbox->GetFontMetrics() ); if( textbox->IsBorderEnabled() ) PlotShape( textbox ); m_plotter->SetTextMode( GetTextMode() ); break; } case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: PlotDimension( static_cast( item ) ); break; case PCB_TEXT_T: // Plotted in PlotFootprintTextItems() break; default: UNIMPLEMENTED_FOR( item->GetClass() ); } } } #include void BRDITEMS_PLOTTER::PlotText( const EDA_TEXT* aText, PCB_LAYER_ID aLayer, bool aIsKnockout, const KIFONT::METRICS& aFontMetrics ) { KIFONT::FONT* font = aText->GetFont(); if( !font ) { wxString defaultFontName; // empty string is the KiCad stroke font if( m_plotter->RenderSettings() ) defaultFontName = m_plotter->RenderSettings()->GetDefaultFont(); font = KIFONT::FONT::GetFont( defaultFontName, aText->IsBold(), aText->IsItalic() ); } wxString shownText( aText->GetShownText( true ) ); if( shownText.IsEmpty() ) return; if( !m_layerMask[aLayer] ) return; GBR_METADATA gbr_metadata; if( IsCopperLayer( aLayer ) ) gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_NONCONDUCTOR ); COLOR4D color = getColor( aLayer ); m_plotter->SetColor( color ); VECTOR2I pos = aText->GetTextPos(); TEXT_ATTRIBUTES attrs = aText->GetAttributes(); attrs.m_StrokeWidth = aText->GetEffectiveTextPenWidth(); attrs.m_Angle = aText->GetDrawRotation(); attrs.m_Multiline = false; m_plotter->SetCurrentLineWidth( attrs.m_StrokeWidth ); if( aIsKnockout ) { const PCB_TEXT* text = static_cast( aText ); SHAPE_POLY_SET finalPoly; text->TransformTextToPolySet( finalPoly, 0, m_board->GetDesignSettings().m_MaxError, ERROR_INSIDE ); finalPoly.Fracture( SHAPE_POLY_SET::PM_FAST ); for( int ii = 0; ii < finalPoly.OutlineCount(); ++ii ) m_plotter->PlotPoly( finalPoly.Outline( ii ), FILL_T::FILLED_SHAPE, 0, &gbr_metadata ); } else if( aText->IsMultilineAllowed() ) { std::vector positions; wxArrayString strings_list; wxStringSplit( shownText, strings_list, '\n' ); positions.reserve( strings_list.Count() ); aText->GetLinePositions( positions, strings_list.Count() ); for( unsigned ii = 0; ii < strings_list.Count(); ii++ ) { wxString& txt = strings_list.Item( ii ); m_plotter->PlotText( positions[ii], color, txt, attrs, font, aFontMetrics, &gbr_metadata ); } } else { m_plotter->PlotText( pos, color, shownText, attrs, font, aFontMetrics, &gbr_metadata ); } } void BRDITEMS_PLOTTER::PlotZone( const ZONE* aZone, PCB_LAYER_ID aLayer, const SHAPE_POLY_SET& aPolysList ) { if( aPolysList.IsEmpty() ) return; GBR_METADATA gbr_metadata; if( aZone->IsOnCopperLayer() ) { gbr_metadata.SetNetName( aZone->GetNetname() ); gbr_metadata.SetCopper( true ); // Zones with no net name can exist. // they are not used to connect items, so the aperture attribute cannot // be set as conductor if( aZone->GetNetname().IsEmpty() ) { gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_NONCONDUCTOR ); } else { gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONDUCTOR ); gbr_metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_NET ); } } m_plotter->SetColor( getColor( aLayer ) ); m_plotter->StartBlock( nullptr ); // Clean current object attributes /* * In non filled mode the outline is plotted, but not the filling items */ for( int idx = 0; idx < aPolysList.OutlineCount(); ++idx ) { const SHAPE_LINE_CHAIN& outline = aPolysList.Outline( idx ); // Plot the current filled area (as region for Gerber plotter to manage attributes) if( GetPlotMode() == FILLED ) { if( m_plotter->GetPlotterType() == PLOT_FORMAT::GERBER ) { static_cast( m_plotter )->PlotGerberRegion( outline, &gbr_metadata ); } else { m_plotter->PlotPoly( outline, FILL_T::FILLED_SHAPE, 0, &gbr_metadata ); } } else { m_plotter->SetCurrentLineWidth( -1 ); } } m_plotter->EndBlock( nullptr ); // Clear object attributes } void BRDITEMS_PLOTTER::PlotShape( const PCB_SHAPE* aShape ) { if( !m_layerMask[aShape->GetLayer()] ) return; bool sketch = GetPlotMode() == SKETCH; int thickness = aShape->GetWidth(); LINE_STYLE lineStyle = aShape->GetStroke().GetLineStyle(); m_plotter->SetColor( getColor( aShape->GetLayer() ) ); const FOOTPRINT* parentFP = aShape->GetParentFootprint(); GBR_METADATA gbr_metadata; if( parentFP ) { gbr_metadata.SetCmpReference( parentFP->GetReference() ); gbr_metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_CMP ); } if( aShape->GetLayer() == Edge_Cuts ) { gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_EDGECUT ); } else if( IsCopperLayer( aShape->GetLayer() ) ) { if( parentFP ) { gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_ETCHEDCMP ); gbr_metadata.SetCopper( true ); } else if( aShape->GetNetCode() > 0 ) { gbr_metadata.SetCopper( true ); gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONDUCTOR ); gbr_metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_NET ); gbr_metadata.SetNetName( aShape->GetNetname() ); } else { // Graphic items (PCB_SHAPE, TEXT) having no net have the NonConductor attribute // Graphic items having a net have the Conductor attribute, but are not (yet?) // supported in Pcbnew gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_NONCONDUCTOR ); } } if( lineStyle <= LINE_STYLE::FIRST_TYPE ) { switch( aShape->GetShape() ) { case SHAPE_T::SEGMENT: m_plotter->ThickSegment( aShape->GetStart(), aShape->GetEnd(), thickness, GetPlotMode(), &gbr_metadata ); break; case SHAPE_T::CIRCLE: if( aShape->IsFilled() ) { m_plotter->FilledCircle( aShape->GetStart(), aShape->GetRadius() * 2 + thickness, GetPlotMode(), &gbr_metadata ); } else { m_plotter->ThickCircle( aShape->GetStart(), aShape->GetRadius() * 2, thickness, GetPlotMode(), &gbr_metadata ); } break; case SHAPE_T::ARC: { // when startAngle == endAngle ThickArc() doesn't know whether it's 0 deg and 360 deg // but it is a circle if( std::abs( aShape->GetArcAngle().AsDegrees() ) == 360.0 ) { m_plotter->ThickCircle( aShape->GetCenter(), aShape->GetRadius() * 2, thickness, GetPlotMode(), &gbr_metadata ); } else { m_plotter->ThickArc( *aShape, GetPlotMode(), &gbr_metadata ); } break; } case SHAPE_T::BEZIER: m_plotter->BezierCurve( aShape->GetStart(), aShape->GetBezierC1(), aShape->GetBezierC2(), aShape->GetEnd(), 0, thickness ); break; case SHAPE_T::POLY: if( aShape->IsPolyShapeValid() ) { if( sketch ) { for( auto it = aShape->GetPolyShape().CIterateSegments( 0 ); it; it++ ) { auto seg = it.Get(); m_plotter->ThickSegment( seg.A, seg.B, thickness, GetPlotMode(), &gbr_metadata ); } } else { m_plotter->SetCurrentLineWidth( thickness, &gbr_metadata ); // Draw the polygon: only one polygon is expected // However we provide a multi polygon shape drawing // ( for the future or to show a non expected shape ) // This must be simplified and fractured to prevent overlapping polygons // from generating invalid Gerber files SHAPE_POLY_SET tmpPoly = aShape->GetPolyShape().CloneDropTriangulation(); tmpPoly.Fracture( SHAPE_POLY_SET::PM_FAST ); FILL_T fill = aShape->IsFilled() ? FILL_T::FILLED_SHAPE : FILL_T::NO_FILL; for( int jj = 0; jj < tmpPoly.OutlineCount(); ++jj ) { SHAPE_LINE_CHAIN& poly = tmpPoly.Outline( jj ); // Ensure the polygon is closed: poly.SetClosed( true ); // Plot the current filled area // (as region for Gerber plotter to manage attributes) if( m_plotter->GetPlotterType() == PLOT_FORMAT::GERBER ) { static_cast( m_plotter )-> PlotPolyAsRegion( poly, fill, thickness, &gbr_metadata ); } else { m_plotter->PlotPoly( poly, fill, thickness, &gbr_metadata ); } } } } break; case SHAPE_T::RECTANGLE: { std::vector pts = aShape->GetRectCorners(); if( sketch ) { m_plotter->ThickSegment( pts[0], pts[1], thickness, GetPlotMode(), &gbr_metadata ); m_plotter->ThickSegment( pts[1], pts[2], thickness, GetPlotMode(), &gbr_metadata ); m_plotter->ThickSegment( pts[2], pts[3], thickness, GetPlotMode(), &gbr_metadata ); m_plotter->ThickSegment( pts[3], pts[0], thickness, GetPlotMode(), &gbr_metadata ); } if( !sketch ) { SHAPE_LINE_CHAIN poly; for( const VECTOR2I& pt : pts ) poly.Append( pt ); poly.Append( pts[0] ); // Close polygon. FILL_T fill_mode = aShape->IsFilled() ? FILL_T::FILLED_SHAPE : FILL_T::NO_FILL; if( m_plotter->GetPlotterType() == PLOT_FORMAT::GERBER ) { static_cast( m_plotter )-> PlotPolyAsRegion( poly, fill_mode, thickness, &gbr_metadata ); } else { m_plotter->PlotPoly( poly, fill_mode, thickness, &gbr_metadata ); } } break; } default: UNIMPLEMENTED_FOR( aShape->SHAPE_T_asString() ); } } else { std::vector shapes = aShape->MakeEffectiveShapes( true ); for( SHAPE* shape : shapes ) { STROKE_PARAMS::Stroke( shape, lineStyle, thickness, m_plotter->RenderSettings(), [&]( const VECTOR2I& a, const VECTOR2I& b ) { m_plotter->ThickSegment( a, b, thickness, GetPlotMode(), &gbr_metadata ); } ); } for( SHAPE* shape : shapes ) delete shape; } } void BRDITEMS_PLOTTER::PlotTableBorders( const PCB_TABLE* aTable ) { VECTOR2I pos = aTable->GetPosition(); VECTOR2I end = aTable->GetEnd(); int lineWidth; LINE_STYLE lineStyle; GBR_METADATA gbr_metadata; if( const FOOTPRINT* parentFP = aTable->GetParentFootprint() ) { gbr_metadata.SetCmpReference( parentFP->GetReference() ); gbr_metadata.SetNetAttribType( GBR_NETLIST_METADATA::GBR_NETINFO_CMP ); } auto setupStroke = [&]( const STROKE_PARAMS& stroke ) { lineWidth = stroke.GetWidth(); lineStyle = stroke.GetLineStyle(); }; auto strokeShape = [&]( const SHAPE& shape ) { STROKE_PARAMS::Stroke( &shape, lineStyle, lineWidth, m_plotter->RenderSettings(), [&]( const VECTOR2I& a, const VECTOR2I& b ) { m_plotter->ThickSegment( a, b, lineWidth, GetPlotMode(), &gbr_metadata ); } ); }; auto strokeLine = [&]( const VECTOR2I& ptA, const VECTOR2I& ptB ) { if( lineStyle <= LINE_STYLE::FIRST_TYPE ) { m_plotter->ThickSegment( ptA, ptB, lineWidth, GetPlotMode(), &gbr_metadata ); } else { SHAPE_SEGMENT seg( ptA, ptB ); strokeShape( seg ); } }; auto strokeRect = [&]( const VECTOR2I& ptA, const VECTOR2I& ptB ) { strokeLine( VECTOR2I( ptA.x, ptA.y ), VECTOR2I( ptB.x, ptA.y ) ); strokeLine( VECTOR2I( ptB.x, ptA.y ), VECTOR2I( ptB.x, ptB.y ) ); strokeLine( VECTOR2I( ptB.x, ptB.y ), VECTOR2I( ptA.x, ptB.y ) ); strokeLine( VECTOR2I( ptA.x, ptB.y ), VECTOR2I( ptA.x, ptA.y ) ); }; if( aTable->GetSeparatorsStroke().GetWidth() >= 0 ) { setupStroke( aTable->GetSeparatorsStroke() ); if( aTable->StrokeColumns() ) { for( int col = 0; col < aTable->GetColCount() - 1; ++col ) { for( int row = 0; row < aTable->GetRowCount(); ++row ) { PCB_TABLECELL* cell = aTable->GetCell( row, col ); VECTOR2I topRight( cell->GetEndX(), cell->GetStartY() ); if( cell->GetColSpan() > 0 && cell->GetRowSpan() > 0 ) strokeLine( topRight, cell->GetEnd() ); } } } if( aTable->StrokeRows() ) { for( int row = 0; row < aTable->GetRowCount() - 1; ++row ) { for( int col = 0; col < aTable->GetColCount(); ++col ) { PCB_TABLECELL* cell = aTable->GetCell( row, col ); VECTOR2I botLeft( cell->GetStartX(), cell->GetEndY() ); if( cell->GetColSpan() > 0 && cell->GetRowSpan() > 0 ) strokeLine( botLeft, cell->GetEnd() ); } } } } if( aTable->GetBorderStroke().GetWidth() >= 0 ) { setupStroke( aTable->GetBorderStroke() ); if( aTable->StrokeHeader() ) { PCB_TABLECELL* cell = aTable->GetCell( 0, 0 ); strokeLine( VECTOR2I( pos.x, cell->GetEndY() ), VECTOR2I( end.x, cell->GetEndY() ) ); } if( aTable->StrokeExternal() ) strokeRect( pos, end ); } } void BRDITEMS_PLOTTER::plotOneDrillMark( PAD_DRILL_SHAPE_T aDrillShape, const VECTOR2I& aDrillPos, const VECTOR2I& aDrillSize, const VECTOR2I& aPadSize, const EDA_ANGLE& aOrientation, int aSmallDrill ) { VECTOR2I drillSize = aDrillSize; // Small drill marks have no significance when applied to slots if( aSmallDrill && aDrillShape == PAD_DRILL_SHAPE_CIRCLE ) drillSize.x = std::min( aSmallDrill, drillSize.x ); // Round holes only have x diameter, slots have both drillSize.x -= getFineWidthAdj(); drillSize.x = Clamp( 1, drillSize.x, aPadSize.x - 1 ); if( aDrillShape == PAD_DRILL_SHAPE_OBLONG ) { drillSize.y -= getFineWidthAdj(); drillSize.y = Clamp( 1, drillSize.y, aPadSize.y - 1 ); m_plotter->FlashPadOval( aDrillPos, drillSize, aOrientation, GetPlotMode(), nullptr ); } else { m_plotter->FlashPadCircle( aDrillPos, drillSize.x, GetPlotMode(), nullptr ); } } void BRDITEMS_PLOTTER::PlotDrillMarks() { /* If small drills marks were requested prepare a clamp value to pass to the helper function */ int smallDrill = GetDrillMarksType() == DRILL_MARKS::SMALL_DRILL_SHAPE ? pcbIUScale.mmToIU( ADVANCED_CFG::GetCfg().m_SmallDrillMarkSize ) : 0; /* In the filled trace mode drill marks are drawn white-on-black to scrape the underlying pad. This works only for drivers supporting color change, obviously... it means that: - PS, SVG and PDF output is correct (i.e. you have a 'donut' pad) - In HPGL you can't see them - In gerbers you can't see them, too. This is arguably the right thing to do since having drill marks and high speed drill stations is a sure recipe for broken tools and angry manufacturers. If you *really* want them you could start a layer with negative polarity to scrape the film. - In DXF they go into the 'WHITE' layer. This could be useful. */ if( GetPlotMode() == FILLED ) m_plotter->SetColor( WHITE ); for( PCB_TRACK* track : m_board->Tracks() ) { if( track->Type() == PCB_VIA_T ) { const PCB_VIA* via = static_cast( track ); // Via are not always on all layers if( ( via->GetLayerSet() & m_layerMask ).none() ) continue; plotOneDrillMark( PAD_DRILL_SHAPE_CIRCLE, via->GetStart(), VECTOR2I( via->GetDrillValue(), 0 ), VECTOR2I( via->GetWidth(), 0 ), ANGLE_0, smallDrill ); } } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->GetDrillSize().x == 0 ) continue; plotOneDrillMark( pad->GetDrillShape(), pad->GetPosition(), pad->GetDrillSize(), pad->GetSize(), pad->GetOrientation(), smallDrill ); } } if( GetPlotMode() == FILLED ) m_plotter->SetColor( BLACK ); }