/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2012 Torsten Hueter, torstenhtr gmx.de * Copyright (C) 2013 CERN * @author Maciej Suminski * Copyright (C) 2016 Kicad Developers, see change_log.txt for contributors. * * Stroke font class * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include // for KiROUND #include #include using namespace KIGFX; const double STROKE_FONT::INTERLINE_PITCH_RATIO = 1.61; const double STROKE_FONT::OVERBAR_POSITION_FACTOR = 1.33; const double STROKE_FONT::UNDERLINE_POSITION_FACTOR = 0.41; const double STROKE_FONT::BOLD_FACTOR = 1.3; const double STROKE_FONT::STROKE_FONT_SCALE = 1.0 / 21.0; const double STROKE_FONT::ITALIC_TILT = 1.0 / 8; GLYPH_LIST* g_newStrokeFontGlyphs = nullptr; ///< Glyph list std::vector* g_newStrokeFontGlyphBoundingBoxes; ///< Bounding boxes of the glyphs STROKE_FONT::STROKE_FONT( GAL* aGal ) : m_gal( aGal ), m_glyphs( nullptr ), m_glyphBoundingBoxes( nullptr ), m_maxGlyphWidth( 1.0 ) { } bool STROKE_FONT::LoadNewStrokeFont( const char* const aNewStrokeFont[], int aNewStrokeFontSize ) { if( g_newStrokeFontGlyphs ) { m_glyphs = g_newStrokeFontGlyphs; m_glyphBoundingBoxes = g_newStrokeFontGlyphBoundingBoxes; return true; } g_newStrokeFontGlyphs = new GLYPH_LIST; g_newStrokeFontGlyphs->reserve( aNewStrokeFontSize ); g_newStrokeFontGlyphBoundingBoxes = new std::vector; g_newStrokeFontGlyphBoundingBoxes->reserve( aNewStrokeFontSize ); for( int j = 0; j < aNewStrokeFontSize; j++ ) { GLYPH* glyph = new GLYPH; double glyphStartX = 0.0; double glyphEndX = 0.0; double glyphWidth = 0.0; std::vector* pointList = nullptr; int strokes = 0; int i = 0; while( aNewStrokeFont[j][i] ) { if( aNewStrokeFont[j][i] == ' ' && aNewStrokeFont[j][i+1] == 'R' ) strokes++; i += 2; } glyph->reserve( strokes + 1 ); i = 0; while( aNewStrokeFont[j][i] ) { VECTOR2D point( 0.0, 0.0 ); char coordinate[2] = { 0, }; for( int k : { 0, 1 } ) coordinate[k] = aNewStrokeFont[j][i + k]; if( i < 2 ) { // The first two values contain the width of the char glyphStartX = ( coordinate[0] - 'R' ) * STROKE_FONT_SCALE; glyphEndX = ( coordinate[1] - 'R' ) * STROKE_FONT_SCALE; glyphWidth = glyphEndX - glyphStartX; } else if( ( coordinate[0] == ' ' ) && ( coordinate[1] == 'R' ) ) { if( pointList ) pointList->shrink_to_fit(); // Raise pen pointList = nullptr; } else { // In stroke font, coordinates values are coded as + 'R', // is an ASCII char. // therefore every coordinate description of the Hershey format has an offset, // it has to be subtracted // Note: // * the stroke coordinates are stored in reduced form (-1.0 to +1.0), // and the actual size is stroke coordinate * glyph size // * a few shapes have a height slightly bigger than 1.0 ( like '{' '[' ) point.x = (double) ( coordinate[0] - 'R' ) * STROKE_FONT_SCALE - glyphStartX; #define FONT_OFFSET -10 // FONT_OFFSET is here for historical reasons, due to the way the stroke font // was built. It allows shapes coordinates like W M ... to be >= 0 // Only shapes like j y have coordinates < 0 point.y = (double) ( coordinate[1] - 'R' + FONT_OFFSET ) * STROKE_FONT_SCALE; if( !pointList ) { pointList = new std::vector; glyph->push_back( pointList ); } pointList->push_back( point ); } i += 2; } if( pointList ) pointList->shrink_to_fit(); // Compute the bounding box of the glyph g_newStrokeFontGlyphBoundingBoxes->emplace_back( computeBoundingBox( glyph, glyphWidth ) ); g_newStrokeFontGlyphs->push_back( glyph ); m_maxGlyphWidth = std::max( m_maxGlyphWidth, g_newStrokeFontGlyphBoundingBoxes->back().GetWidth() ); } m_glyphs = g_newStrokeFontGlyphs; m_glyphBoundingBoxes = g_newStrokeFontGlyphBoundingBoxes; return true; } // Static function: double STROKE_FONT::GetInterline( double aGlyphHeight ) { // Do not add the glyph thickness to the interline. This makes bold text line-spacing // different from normal text, which is poor typography. return ( aGlyphHeight * INTERLINE_PITCH_RATIO ); } BOX2D STROKE_FONT::computeBoundingBox( const GLYPH* aGLYPH, double aGlyphWidth ) const { VECTOR2D min( 0, 0 ); VECTOR2D max( aGlyphWidth, 0 ); for( const std::vector* pointList : *aGLYPH ) { for( const VECTOR2D& point : *pointList ) { min.y = std::min( min.y, point.y ); max.y = std::max( max.y, point.y ); } } return BOX2D( min, max - min ); } void STROKE_FONT::Draw( const UTF8& aText, const VECTOR2D& aPosition, double aRotationAngle ) { if( aText.empty() ) return; // Context needs to be saved before any transformations m_gal->Save(); m_gal->Translate( aPosition ); m_gal->Rotate( -aRotationAngle ); // Single line height int lineHeight = KiROUND( GetInterline( m_gal->GetGlyphSize().y ) ); int lineCount = linesCount( aText ); const VECTOR2D& glyphSize = m_gal->GetGlyphSize(); // align the 1st line of text switch( m_gal->GetVerticalJustify() ) { case GR_TEXT_VJUSTIFY_TOP: m_gal->Translate( VECTOR2D( 0, glyphSize.y ) ); break; case GR_TEXT_VJUSTIFY_CENTER: m_gal->Translate( VECTOR2D( 0, glyphSize.y / 2.0 ) ); break; case GR_TEXT_VJUSTIFY_BOTTOM: break; default: break; } if( lineCount > 1 ) { switch( m_gal->GetVerticalJustify() ) { case GR_TEXT_VJUSTIFY_TOP: break; case GR_TEXT_VJUSTIFY_CENTER: m_gal->Translate( VECTOR2D(0, -( lineCount - 1 ) * lineHeight / 2) ); break; case GR_TEXT_VJUSTIFY_BOTTOM: m_gal->Translate( VECTOR2D(0, -( lineCount - 1 ) * lineHeight ) ); break; } } m_gal->SetIsStroke( true ); //m_gal->SetIsFill( false ); if( m_gal->IsFontBold() ) m_gal->SetLineWidth( m_gal->GetLineWidth() * BOLD_FACTOR ); // Split multiline strings into separate ones and draw them line by line size_t begin = 0; size_t newlinePos = aText.find( '\n' ); while( newlinePos != aText.npos ) { size_t length = newlinePos - begin; drawSingleLineText( aText.substr( begin, length ) ); m_gal->Translate( VECTOR2D( 0.0, lineHeight ) ); begin = newlinePos + 1; newlinePos = aText.find( '\n', begin ); } // Draw the last (or the only one) line if( !aText.empty() ) drawSingleLineText( aText.substr( begin ) ); m_gal->Restore(); } void STROKE_FONT::drawSingleLineText( const UTF8& aText ) { double xOffset; double yOffset; VECTOR2D baseGlyphSize( m_gal->GetGlyphSize() ); double overbar_italic_comp = computeOverbarVerticalPosition() * ITALIC_TILT; if( m_gal->IsTextMirrored() ) overbar_italic_comp = -overbar_italic_comp; // Compute the text size VECTOR2D textSize = computeTextLineSize( aText ); double half_thickness = m_gal->GetLineWidth()/2; // Context needs to be saved before any transformations m_gal->Save(); // First adjust: the text X position is corrected by half_thickness // because when the text with thickness is draw, its full size is textSize, // but the position of lines is half_thickness to textSize - half_thickness // so we must translate the coordinates by half_thickness on the X axis // to place the text inside the 0 to textSize X area. m_gal->Translate( VECTOR2D( half_thickness, 0 ) ); // Adjust the text position to the given horizontal justification switch( m_gal->GetHorizontalJustify() ) { case GR_TEXT_HJUSTIFY_CENTER: m_gal->Translate( VECTOR2D( -textSize.x / 2.0, 0 ) ); break; case GR_TEXT_HJUSTIFY_RIGHT: if( !m_gal->IsTextMirrored() ) m_gal->Translate( VECTOR2D( -textSize.x, 0 ) ); break; case GR_TEXT_HJUSTIFY_LEFT: if( m_gal->IsTextMirrored() ) m_gal->Translate( VECTOR2D( -textSize.x, 0 ) ); break; default: break; } if( m_gal->IsTextMirrored() ) { // In case of mirrored text invert the X scale of points and their X direction // (m_glyphSize.x) and start drawing from the position where text normally should end // (textSize.x) xOffset = textSize.x - m_gal->GetLineWidth(); baseGlyphSize.x = -baseGlyphSize.x; } else { xOffset = 0.0; } // The overbar is indented inward at the beginning of an italicized section, but // must not be indented on subsequent letters to ensure that the bar segments // overlap. bool last_had_overbar = false; bool in_overbar = false; bool in_super_or_subscript = false; VECTOR2D glyphSize = baseGlyphSize; // Allocate only once (for performance) std::vector ptListScaled; int char_count = 0; yOffset = 0; for( UTF8::uni_iter chIt = aText.ubegin(), end = aText.uend(); chIt < end; ++chIt ) { // Handle tabs as locked to the nearest 4th column (counting in spaces) // The choice of spaces is somewhat arbitrary but sufficient for aligning text if( *chIt == '\t' ) { // We align to the 4th column. This is based on the monospace font used in the text input // boxes. Here, we take the widest character as our baseline spacing and make tab stops // at each fourth of this widest character char_count = ( char_count / 4 + 1 ) * 4 - 1; xOffset = m_maxGlyphWidth * baseGlyphSize.x * char_count; glyphSize = baseGlyphSize; yOffset = 0; // Tab ends an overbar in_overbar = false; } else if( *chIt == '~' ) { if( ++chIt == end ) break; if( *chIt == '~' ) { // double ~ is really a ~ so go ahead and process the second one // so what's a triple ~? It could be a real ~ followed by an overbar, or // it could be an overbar followed by a real ~. The old algorithm did the // former so we will too.... } else { in_overbar = !in_overbar; } } else if( *chIt == '^' ) { auto lookahead = chIt; if( ++lookahead != end && *lookahead == '{' ) { // process superscript chIt = lookahead; in_super_or_subscript = true; glyphSize = baseGlyphSize * 0.8; yOffset = -baseGlyphSize.y * 0.3; continue; } } else if( *chIt == '_' ) { auto lookahead = chIt; if( ++lookahead != end && *lookahead == '{' ) { // process subscript chIt = lookahead; in_super_or_subscript = true; glyphSize = baseGlyphSize * 0.8; yOffset = baseGlyphSize.y * 0.1; continue; } } else if( *chIt == '}' && in_super_or_subscript ) { in_super_or_subscript = false; glyphSize = baseGlyphSize; yOffset = 0; continue; } // Overbar syntax is less precise so we have to have some special cases else if( in_overbar && ( *chIt == ' ' || *chIt == '}' || *chIt == ')' ) ) { in_overbar = false; } // Index into bounding boxes table int dd = (signed) *chIt - ' '; if( dd >= (int) m_glyphBoundingBoxes->size() || dd < 0 ) { int substitute = *chIt == '\t' ? ' ' : '?'; dd = substitute - ' '; } const GLYPH* glyph = m_glyphs->at( dd ); const BOX2D& bbox = m_glyphBoundingBoxes->at( dd ); if( in_overbar ) { double overbar_start_x = xOffset; double overbar_start_y = - computeOverbarVerticalPosition(); double overbar_end_x = xOffset + glyphSize.x * bbox.GetEnd().x; double overbar_end_y = overbar_start_y; if( !last_had_overbar ) { if( m_gal->IsFontItalic() ) overbar_start_x += overbar_italic_comp; last_had_overbar = true; } VECTOR2D startOverbar( overbar_start_x, overbar_start_y ); VECTOR2D endOverbar( overbar_end_x, overbar_end_y ); m_gal->DrawLine( startOverbar, endOverbar ); } else { last_had_overbar = false; } if( m_gal->IsFontUnderlined() ) { double vOffset = computeUnderlineVerticalPosition(); VECTOR2D startUnderline( xOffset, - vOffset ); VECTOR2D endUnderline( xOffset + glyphSize.x * bbox.GetEnd().x, - vOffset ); m_gal->DrawLine( startUnderline, endUnderline ); } for( const std::vector* ptList : *glyph ) { int ptCount = 0; ptListScaled.clear(); for( const VECTOR2D& pt : *ptList ) { VECTOR2D scaledPt( pt.x * glyphSize.x + xOffset, pt.y * glyphSize.y + yOffset ); if( m_gal->IsFontItalic() ) { // FIXME should be done other way - referring to the lowest Y value of point // because now italic fonts are translated a bit if( m_gal->IsTextMirrored() ) scaledPt.x += scaledPt.y * STROKE_FONT::ITALIC_TILT; else scaledPt.x -= scaledPt.y * STROKE_FONT::ITALIC_TILT; } ptListScaled.push_back( scaledPt ); ptCount++; } m_gal->DrawPolyline( &ptListScaled[0], ptCount ); } char_count++; xOffset += glyphSize.x * bbox.GetEnd().x; } m_gal->Restore(); } double STROKE_FONT::ComputeOverbarVerticalPosition( double aGlyphHeight ) const { // Static method. return aGlyphHeight * OVERBAR_POSITION_FACTOR; } double STROKE_FONT::computeOverbarVerticalPosition() const { // Compute the Y position of the overbar. This is the distance between // the text base line and the overbar axis. return ComputeOverbarVerticalPosition( m_gal->GetGlyphSize().y ); } double STROKE_FONT::computeUnderlineVerticalPosition() const { // Compute the Y position of the underline. This is the distance between // the text base line and the underline axis. return - m_gal->GetGlyphSize().y * UNDERLINE_POSITION_FACTOR; } VECTOR2D STROKE_FONT::computeTextLineSize( const UTF8& aText ) const { return ComputeStringBoundaryLimits( aText, m_gal->GetGlyphSize(), m_gal->GetLineWidth() ); } VECTOR2D STROKE_FONT::ComputeStringBoundaryLimits( const UTF8& aText, const VECTOR2D& aGlyphSize, double aGlyphThickness ) const { VECTOR2D string_bbox; int line_count = 1; double maxX = 0.0, curX = 0.0; double curScale = 1.0; bool in_overbar = false; bool in_super_or_subscript = false; for( UTF8::uni_iter it = aText.ubegin(), end = aText.uend(); it < end; ++it ) { if( *it == '\n' ) { curX = 0.0; maxX = std::max( maxX, curX ); ++line_count; continue; } // Handle tabs as locked to the nearest 4th column (counting in spaces) // The choice of spaces is somewhat arbitrary but sufficient for aligning text if( *it == '\t' ) { double spaces = m_glyphBoundingBoxes->at( 0 ).GetEnd().x; double addlSpace = 3.0 * spaces - std::fmod( curX, 4.0 * spaces ); // Add the remaining space (between 0 and 3 spaces) curX += addlSpace; // Tab ends an overbar in_overbar = false; } else if( *it == '~' ) { if( ++it == end ) break; if( *it == '~' ) { // double ~ is really a ~ so go ahead and process the second one // so what's a triple ~? It could be a real ~ followed by an overbar, or // it could be an overbar followed by a real ~. The old algorithm did the // former so we will too.... } else { // single ~ toggles overbar in_overbar = !in_overbar; } } else if( *it == '^' || *it == '_' ) { auto lookahead = it; if( ++lookahead != end && *lookahead == '{' ) { // process superscript it = lookahead; in_super_or_subscript = true; curScale = 0.8; continue; } } else if( *it == '}' && in_super_or_subscript ) { in_super_or_subscript = false; curScale = 1.0; continue; } // Overbar syntax is less precise so we have to have some special cases else if( in_overbar && ( *it == ' ' || *it == '}' || *it == ')' ) ) { in_overbar = false; } // Index in the bounding boxes table int dd = (signed) *it - ' '; if( dd >= (int) m_glyphBoundingBoxes->size() || dd < 0 ) { int substitute = *it == '\t' ? ' ' : '?'; dd = substitute - ' '; } const BOX2D& box = m_glyphBoundingBoxes->at( dd ); curX += box.GetEnd().x * curScale; } string_bbox.x = std::max( maxX, curX ) * aGlyphSize.x; string_bbox.x += aGlyphThickness; string_bbox.y = line_count * GetInterline( aGlyphSize.y ); // For italic correction, take in account italic tilt if( m_gal->IsFontItalic() ) string_bbox.x += string_bbox.y * STROKE_FONT::ITALIC_TILT; return string_bbox; }