/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include // God forgive me doing this... #include #include "trace.h" #include "pns_node.h" #include "pns_itemset.h" #include "pns_topology.h" #include "pns_dp_meander_placer.h" #include "pns_diff_pair.h" #include "pns_router.h" #include "pns_utils.h" using boost::optional; PNS_DP_MEANDER_PLACER::PNS_DP_MEANDER_PLACER( PNS_ROUTER* aRouter ) : PNS_MEANDER_PLACER_BASE( aRouter ) { m_world = NULL; m_currentNode = NULL; } PNS_DP_MEANDER_PLACER::~PNS_DP_MEANDER_PLACER() { } const PNS_LINE PNS_DP_MEANDER_PLACER::Trace() const { return m_currentTraceP; } PNS_NODE* PNS_DP_MEANDER_PLACER::CurrentNode( bool aLoopsRemoved ) const { if( !m_currentNode ) return m_world; return m_currentNode; } bool PNS_DP_MEANDER_PLACER::Start( const VECTOR2I& aP, PNS_ITEM* aStartItem ) { VECTOR2I p; if( !aStartItem || !aStartItem->OfKind( PNS_ITEM::SEGMENT ) ) { Router()->SetFailureReason( _( "Please select a track whose length you want to tune." ) ); return false; } m_initialSegment = static_cast( aStartItem ); p = m_initialSegment->Seg().NearestPoint( aP ); m_currentNode=NULL; m_currentStart = p; m_world = Router()->GetWorld()->Branch(); PNS_TOPOLOGY topo( m_world ); if( !topo.AssembleDiffPair( m_initialSegment, m_originPair ) ) { Router()->SetFailureReason( _( "Unable to find complementary differential pair " "net for length tuning. Make sure the names of the nets belonging " "to a differential pair end with either _N/_P or +/-." ) ); return false; } m_originPair.SetGap( Router()->Sizes().DiffPairGap() ); if( !m_originPair.PLine().SegmentCount() || !m_originPair.NLine().SegmentCount() ) return false; m_tunedPathP = topo.AssembleTrivialPath( m_originPair.PLine().GetLink( 0 ) ); m_tunedPathN = topo.AssembleTrivialPath( m_originPair.NLine().GetLink( 0 ) ); m_world->Remove( m_originPair.PLine() ); m_world->Remove( m_originPair.NLine() ); m_currentWidth = m_originPair.Width(); return true; } void PNS_DP_MEANDER_PLACER::release() { #if 0 BOOST_FOREACH(PNS_MEANDER *m, m_meanders) { delete m; } m_meanders.clear(); #endif } int PNS_DP_MEANDER_PLACER::origPathLength() const { int totalP = 0; int totalN = 0; BOOST_FOREACH( const PNS_ITEM* item, m_tunedPathP.CItems() ) { if( const PNS_LINE* l = dyn_cast( item ) ) totalP += l->CLine().Length(); } BOOST_FOREACH( const PNS_ITEM* item, m_tunedPathN.CItems() ) { if( const PNS_LINE* l = dyn_cast( item ) ) totalN += l->CLine().Length(); } return std::max( totalP, totalN ); } const SEG PNS_DP_MEANDER_PLACER::baselineSegment( const PNS_DIFF_PAIR::COUPLED_SEGMENTS& aCoupledSegs ) { const VECTOR2I a( ( aCoupledSegs.coupledP.A + aCoupledSegs.coupledN.A ) / 2 ); const VECTOR2I b( ( aCoupledSegs.coupledP.B + aCoupledSegs.coupledN.B ) / 2 ); return SEG( a, b ); } #if 0 PNS_MEANDER_PLACER_BASE::TUNING_STATUS PNS_DP_MEANDER_PLACER::tuneLineLength ( PNS_MEANDERED_LINE& aTuned, int aElongation ) { int remaining = aElongation; bool finished = false; BOOST_FOREACH(PNS_MEANDER_SHAPE *m, aTuned.Meanders()) { if(m->Type() != MT_CORNER ) { if(remaining >= 0) remaining -= m->MaxTunableLength() - m->BaselineLength(); if(remaining < 0) { if(!finished) { PNS_MEANDER_TYPE newType; if ( m->Type() == MT_START || m->Type() == MT_SINGLE) newType = MT_SINGLE; else newType = MT_FINISH; m->SetType ( newType ); m->Recalculate( ); finished = true; } else { m->MakeEmpty(); } } } } remaining = aElongation; int meanderCount = 0; BOOST_FOREACH(PNS_MEANDER_SHAPE *m, aTuned.Meanders()) { if( m->Type() != MT_CORNER && m->Type() != MT_EMPTY ) { if(remaining >= 0) { remaining -= m->MaxTunableLength() - m->BaselineLength(); meanderCount ++; } } } int balance = 0; if( meanderCount ) balance = -remaining / meanderCount; if (balance >= 0) { BOOST_FOREACH(PNS_MEANDER_SHAPE *m, aTuned.Meanders()) { if(m->Type() != MT_CORNER && m->Type() != MT_EMPTY) { // int pre = m->MaxTunableLength(); m->Resize ( std::max( m->Amplitude() - balance / 2, m_settings.m_minAmplitude ) ); } } } return TUNED; } #endif bool pairOrientation( const PNS_DIFF_PAIR::COUPLED_SEGMENTS& aPair ) { VECTOR2I midp = ( aPair.coupledP.A + aPair.coupledN.A ) / 2; //DrawDebugPoint (midp, 6); return aPair.coupledP.Side( midp ) > 0; } bool PNS_DP_MEANDER_PLACER::Move( const VECTOR2I& aP, PNS_ITEM* aEndItem ) { // return false; if( m_currentNode ) delete m_currentNode; m_currentNode = m_world->Branch(); SHAPE_LINE_CHAIN preP, tunedP, postP; SHAPE_LINE_CHAIN preN, tunedN, postN; cutTunedLine( m_originPair.CP(), m_currentStart, aP, preP, tunedP, postP ); cutTunedLine( m_originPair.CN(), m_currentStart, aP, preN, tunedN, postN ); PNS_DIFF_PAIR tuned ( m_originPair ); tuned.SetShape( tunedP, tunedN ); m_coupledSegments.clear(); tuned.CoupledSegmentPairs( m_coupledSegments ); if( m_coupledSegments.size() == 0 ) return false; //Router()->DisplayDebugLine ( tuned.CP(), 5, 20000 ); //Router()->DisplayDebugLine ( tuned.CN(), 4, 20000 ); //Router()->DisplayDebugLine ( m_originPair.CP(), 5, 20000 ); //Router()->DisplayDebugLine ( m_originPair.CN(), 4, 20000 ); m_result = PNS_MEANDERED_LINE( this, true ); m_result.SetWidth( tuned.Width() ); int offset = ( tuned.Gap() + tuned.Width() ) / 2; if( !pairOrientation( m_coupledSegments[0] ) ) offset *= -1; m_result.SetBaselineOffset( offset ); BOOST_FOREACH( const PNS_ITEM* item, m_tunedPathP.CItems() ) { if( const PNS_LINE* l = dyn_cast( item ) ) Router()->DisplayDebugLine( l->CLine(), 5, 10000 ); } BOOST_FOREACH( const PNS_ITEM* item, m_tunedPathN.CItems() ) { if( const PNS_LINE* l = dyn_cast( item ) ) Router()->DisplayDebugLine( l->CLine(), 5, 10000 ); } BOOST_FOREACH( const PNS_DIFF_PAIR::COUPLED_SEGMENTS& sp, m_coupledSegments ) { SEG base = baselineSegment( sp ); // DrawDebugSeg ( base, 3 ); m_result.AddCorner( sp.parentP.A, sp.parentN.A ); m_result.MeanderSegment( base ); m_result.AddCorner( sp.parentP.B, sp.parentN.B ); } int dpLen = origPathLength(); m_lastStatus = TUNED; if( dpLen - m_settings.m_targetLength > m_settings.m_lengthTolerance ) { m_lastStatus = TOO_LONG; m_lastLength = dpLen; } else { m_lastLength = dpLen - std::max( tunedP.Length(), tunedN.Length() ); tuneLineLength( m_result, m_settings.m_targetLength - dpLen ); } if( m_lastStatus != TOO_LONG ) { tunedP.Clear(); tunedN.Clear(); BOOST_FOREACH( PNS_MEANDER_SHAPE* m, m_result.Meanders() ) { if( m->Type() != MT_EMPTY ) { tunedP.Append ( m->CLine( 0 ) ); tunedN.Append ( m->CLine( 1 ) ); } } m_lastLength += std::max( tunedP.Length(), tunedN.Length() ); int comp = compareWithTolerance( m_lastLength - m_settings.m_targetLength, 0, m_settings.m_lengthTolerance ); if( comp > 0 ) m_lastStatus = TOO_LONG; else if( comp < 0 ) m_lastStatus = TOO_SHORT; else m_lastStatus = TUNED; } m_finalShapeP.Clear(); m_finalShapeP.Append( preP ); m_finalShapeP.Append( tunedP ); m_finalShapeP.Append( postP ); m_finalShapeP.Simplify(); m_finalShapeN.Clear(); m_finalShapeN.Append( preN ); m_finalShapeN.Append( tunedN ); m_finalShapeN.Append( postN ); m_finalShapeN.Simplify(); return true; } bool PNS_DP_MEANDER_PLACER::FixRoute( const VECTOR2I& aP, PNS_ITEM* aEndItem ) { PNS_LINE lP( m_originPair.PLine(), m_finalShapeP ); PNS_LINE lN( m_originPair.NLine(), m_finalShapeN ); m_currentNode->Add( &lP ); m_currentNode->Add( &lN ); Router()->CommitRouting( m_currentNode ); return true; } bool PNS_DP_MEANDER_PLACER::CheckFit( PNS_MEANDER_SHAPE* aShape ) { PNS_LINE l1( m_originPair.PLine(), aShape->CLine( 0 ) ); PNS_LINE l2( m_originPair.NLine(), aShape->CLine( 1 ) ); if( m_currentNode->CheckColliding( &l1 ) ) return false; if( m_currentNode->CheckColliding( &l2 ) ) return false; int w = aShape->Width(); int clearance = w + m_settings.m_spacing; return m_result.CheckSelfIntersections( aShape, clearance ); } const PNS_ITEMSET PNS_DP_MEANDER_PLACER::Traces() { m_currentTraceP = PNS_LINE( m_originPair.PLine(), m_finalShapeP ); m_currentTraceN = PNS_LINE( m_originPair.NLine(), m_finalShapeN ); PNS_ITEMSET traces; traces.Add( &m_currentTraceP ); traces.Add( &m_currentTraceN ); return traces; } const VECTOR2I& PNS_DP_MEANDER_PLACER::CurrentEnd() const { return m_currentEnd; } int PNS_DP_MEANDER_PLACER::CurrentNet() const { return m_initialSegment->Net(); } int PNS_DP_MEANDER_PLACER::CurrentLayer() const { return m_initialSegment->Layers().Start(); } const wxString PNS_DP_MEANDER_PLACER::TuningInfo() const { wxString status; switch( m_lastStatus ) { case TOO_LONG: status = _( "Too long: " ); break; case TOO_SHORT: status = _("Too short: " ); break; case TUNED: status = _( "Tuned: " ); break; default: return _( "?" ); } status += LengthDoubleToString( (double) m_lastLength, false ); status += "/"; status += LengthDoubleToString( (double) m_settings.m_targetLength, false ); return status; } PNS_DP_MEANDER_PLACER::TUNING_STATUS PNS_DP_MEANDER_PLACER::TuningStatus() const { return m_lastStatus; }