/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include "pns_node.h" #include "pns_itemset.h" #include "pns_topology.h" #include "pns_dp_meander_placer.h" #include "pns_diff_pair.h" #include "pns_router.h" #include "pns_solid.h" namespace PNS { DP_MEANDER_PLACER::DP_MEANDER_PLACER( ROUTER* aRouter ) : MEANDER_PLACER_BASE( aRouter ) { m_world = nullptr; m_currentNode = nullptr; m_padToDieP = 0; m_padToDieN = 0; // Init temporary variables (do not leave uninitialized members) m_initialSegment = nullptr; m_lastLength = 0; m_lastStatus = TOO_SHORT; } DP_MEANDER_PLACER::~DP_MEANDER_PLACER() { } const LINE DP_MEANDER_PLACER::Trace() const { return m_currentTraceP; } const DIFF_PAIR& DP_MEANDER_PLACER::GetOriginPair() { return m_originPair; } NODE* DP_MEANDER_PLACER::CurrentNode( bool aLoopsRemoved ) const { if( !m_currentNode ) return m_world; return m_currentNode; } bool DP_MEANDER_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem ) { if( !aStartItem || !aStartItem->OfKind( ITEM::SEGMENT_T | ITEM::ARC_T ) ) { Router()->SetFailureReason( _( "Please select a track whose length you want to tune." ) ); return false; } m_initialSegment = static_cast( aStartItem ); m_currentNode = nullptr; m_currentStart = getSnappedStartPoint( m_initialSegment, aP ); m_world = Router()->GetWorld()->Branch(); TOPOLOGY topo( m_world ); if( !topo.AssembleDiffPair( m_initialSegment, m_originPair ) ) { Router()->SetFailureReason( _( "Unable to find complementary differential pair " "net for length tuning. Make sure the names of the nets " "belonging to a differential pair end with either _N/_P " "or +/-." ) ); return false; } if( m_originPair.Gap() < 0 ) m_originPair.SetGap( Router()->Sizes().DiffPairGap() ); if( !m_originPair.PLine().SegmentCount() || !m_originPair.NLine().SegmentCount() ) return false; m_tunedPathP = topo.AssembleTuningPath( m_originPair.PLine().GetLink( 0 ), &m_startPad_p, &m_endPad_p ); m_padToDieP = 0; if( m_startPad_p ) m_padToDieP += m_startPad_p->GetPadToDie(); if( m_endPad_p ) m_padToDieP += m_endPad_p->GetPadToDie(); m_tunedPathN = topo.AssembleTuningPath( m_originPair.NLine().GetLink( 0 ), &m_startPad_n, &m_endPad_n ); m_padToDieN = 0; if( m_startPad_n ) m_padToDieN += m_startPad_n->GetPadToDie(); if( m_endPad_n ) m_padToDieN += m_endPad_n->GetPadToDie(); m_world->Remove( m_originPair.PLine() ); m_world->Remove( m_originPair.NLine() ); m_currentWidth = m_originPair.Width(); return true; } void DP_MEANDER_PLACER::release() { } long long int DP_MEANDER_PLACER::origPathLength() const { long long int totalP = m_padToDieP + lineLength( m_tunedPathP, m_startPad_p, m_endPad_p ); long long int totalN = m_padToDieN + lineLength( m_tunedPathN, m_startPad_n, m_endPad_n ); return std::max( totalP, totalN ); } const SEG DP_MEANDER_PLACER::baselineSegment( const DIFF_PAIR::COUPLED_SEGMENTS& aCoupledSegs ) { const VECTOR2I a( ( aCoupledSegs.coupledP.A + aCoupledSegs.coupledN.A ) / 2 ); const VECTOR2I b( ( aCoupledSegs.coupledP.B + aCoupledSegs.coupledN.B ) / 2 ); return SEG( a, b ); } bool DP_MEANDER_PLACER::pairOrientation( const DIFF_PAIR::COUPLED_SEGMENTS& aPair ) { VECTOR2I midp = ( aPair.coupledP.A + aPair.coupledN.A ) / 2; //DrawDebugPoint(midp, 6); return aPair.coupledP.Side( midp ) > 0; } bool DP_MEANDER_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem ) { if( m_currentStart == aP ) return false; DIFF_PAIR::COUPLED_SEGMENTS_VEC coupledSegments; if( m_currentNode ) delete m_currentNode; m_currentNode = m_world->Branch(); SHAPE_LINE_CHAIN preP, tunedP, postP; SHAPE_LINE_CHAIN preN, tunedN, postN; m_originPair.CP().Split( m_currentStart, aP, preP, tunedP, postP ); m_originPair.CN().Split( m_currentStart, aP, preN, tunedN, postN ); auto updateStatus = [&]() { if( m_lastLength > m_settings.m_targetLength.Max() ) m_lastStatus = TOO_LONG; else if( m_lastLength < m_settings.m_targetLength.Min() ) m_lastStatus = TOO_SHORT; else m_lastStatus = TUNED; }; DIFF_PAIR tuned( m_originPair ); tuned.SetShape( tunedP, tunedN ); tuned.CoupledSegmentPairs( coupledSegments ); if( coupledSegments.size() == 0 ) { // Tuning started at an uncoupled area of the DP; we won't get a valid result until the // cursor is moved far enough along a coupled area. Prevent the track from disappearing and // the length from being zero by just using the original. m_finalShapeP = m_originPair.CP(); m_finalShapeN = m_originPair.CN(); m_lastLength = origPathLength(); updateStatus(); return false; } m_result = MEANDERED_LINE( this, true ); m_result.SetWidth( tuned.Width() ); int offset = ( tuned.Gap() + tuned.Width() ) / 2; if( pairOrientation( coupledSegments[0] ) ) offset *= -1; m_result.SetBaselineOffset( offset ); for( const ITEM* item : m_tunedPathP.CItems() ) { if( const LINE* l = dyn_cast( item ) ) { PNS_DBG( Dbg(), AddShape, &l->CLine(), YELLOW, 10000, wxT( "tuned-path-p" ) ); m_router->GetInterface()->DisplayPathLine( l->CLine(), 1 ); } } for( const ITEM* item : m_tunedPathN.CItems() ) { if( const LINE* l = dyn_cast( item ) ) { PNS_DBG( Dbg(), AddShape, &l->CLine(), YELLOW, 10000, wxT( "tuned-path-n" ) ); m_router->GetInterface()->DisplayPathLine( l->CLine(), 1 ); } } int curIndexP = 0, curIndexN = 0; for( const DIFF_PAIR::COUPLED_SEGMENTS& sp : coupledSegments ) { SEG base = baselineSegment( sp ); bool side = false; if( m_settings.m_initialSide == 0 ) side = base.Side( aP ) < 0; else side = m_settings.m_initialSide < 0; PNS_DBG( Dbg(), AddShape, base, GREEN, 10000, wxT( "dp-baseline" ) ); while( sp.indexP >= curIndexP && curIndexP != -1 ) { if( tunedP.IsArcSegment( curIndexP ) ) { ssize_t arcIndex = tunedP.ArcIndex( curIndexP ); m_result.AddArcAndPt( tunedP.Arc( arcIndex ), tunedN.CPoint( curIndexN ) ); } else { m_result.AddCorner( tunedP.CPoint( curIndexP ), tunedN.CPoint( curIndexN ) ); } curIndexP = tunedP.NextShape( curIndexP ); } while( sp.indexN >= curIndexN && curIndexN != -1 ) { if( tunedN.IsArcSegment( curIndexN ) ) { ssize_t arcIndex = tunedN.ArcIndex( curIndexN ); m_result.AddPtAndArc( tunedP.CPoint( sp.indexP ), tunedN.Arc( arcIndex ) ); } else { m_result.AddCorner( tunedP.CPoint( sp.indexP ), tunedN.CPoint( curIndexN ) ); } curIndexN = tunedN.NextShape( curIndexN ); } m_result.MeanderSegment( base, side ); } while( curIndexP < tunedP.PointCount() && curIndexP != -1 ) { if( tunedP.IsArcSegment( curIndexP ) ) { ssize_t arcIndex = tunedP.ArcIndex( curIndexP ); m_result.AddArcAndPt( tunedP.Arc( arcIndex ), tunedN.CPoint( curIndexN ) ); } else { m_result.AddCorner( tunedP.CPoint( curIndexP ), tunedN.CPoint( curIndexN ) ); } curIndexP = tunedP.NextShape( curIndexP ); } while( curIndexN < tunedN.PointCount() && curIndexN != -1 ) { if( tunedN.IsArcSegment( curIndexN ) ) { ssize_t arcIndex = tunedN.ArcIndex( curIndexN ); m_result.AddPtAndArc( tunedP.CPoint( -1 ), tunedN.Arc( arcIndex ) ); } else { m_result.AddCorner( tunedP.CPoint( -1 ), tunedN.CPoint( curIndexN ) ); } curIndexN = tunedN.NextShape( curIndexN ); } m_result.AddCorner( tunedP.CPoint( -1 ), tunedN.CPoint( -1 ) ); long long int dpLen = origPathLength(); m_lastStatus = TUNED; if( dpLen > m_settings.m_targetLength.Max() ) { m_lastStatus = TOO_LONG; m_lastLength = dpLen; } else { m_lastLength = dpLen - std::max( tunedP.Length(), tunedN.Length() ); tuneLineLength( m_result, m_settings.m_targetLength.Opt() - dpLen ); } if( m_lastStatus != TOO_LONG ) { tunedP.Clear(); tunedN.Clear(); for( MEANDER_SHAPE* m : m_result.Meanders() ) { if( m->Type() != MT_EMPTY ) { tunedP.Append( m->CLine( 0 ) ); tunedN.Append( m->CLine( 1 ) ); } } m_lastLength += std::max( tunedP.Length(), tunedN.Length() ); updateStatus(); } m_finalShapeP.Clear(); m_finalShapeN.Clear(); if( m_settings.m_keepEndpoints ) { preP.Simplify(); tunedP.Simplify(); postP.Simplify(); m_finalShapeP.Append( preP ); m_finalShapeP.Append( tunedP ); m_finalShapeP.Append( postP ); preN.Simplify(); tunedN.Simplify(); postN.Simplify(); m_finalShapeN.Append( preN ); m_finalShapeN.Append( tunedN ); m_finalShapeN.Append( postN ); } else { m_finalShapeP.Append( preP ); m_finalShapeP.Append( tunedP ); m_finalShapeP.Append( postP ); m_finalShapeP.Simplify(); m_finalShapeN.Append( preN ); m_finalShapeN.Append( tunedN ); m_finalShapeN.Append( postN ); m_finalShapeN.Simplify(); } return true; } bool DP_MEANDER_PLACER::FixRoute( const VECTOR2I& aP, ITEM* aEndItem, bool aForceFinish ) { LINE lP( m_originPair.PLine(), m_finalShapeP ); LINE lN( m_originPair.NLine(), m_finalShapeN ); m_currentNode->Add( lP ); m_currentNode->Add( lN ); CommitPlacement(); return true; } bool DP_MEANDER_PLACER::AbortPlacement() { m_world->KillChildren(); return true; } bool DP_MEANDER_PLACER::HasPlacedAnything() const { return m_originPair.CP().SegmentCount() > 0 || m_originPair.CN().SegmentCount() > 0; } bool DP_MEANDER_PLACER::CommitPlacement() { if( m_currentNode ) Router()->CommitRouting( m_currentNode ); m_currentNode = nullptr; return true; } bool DP_MEANDER_PLACER::CheckFit( MEANDER_SHAPE* aShape ) { LINE l1( m_originPair.PLine(), aShape->CLine( 0 ) ); LINE l2( m_originPair.NLine(), aShape->CLine( 1 ) ); if( m_currentNode->CheckColliding( &l1 ) ) return false; if( m_currentNode->CheckColliding( &l2 ) ) return false; int w = aShape->Width(); int clearance = w + w * 3; return m_result.CheckSelfIntersections( aShape, clearance ); } const ITEM_SET DP_MEANDER_PLACER::Traces() { m_currentTraceP = LINE( m_originPair.PLine(), m_finalShapeP ); m_currentTraceN = LINE( m_originPair.NLine(), m_finalShapeN ); ITEM_SET traces; traces.Add( &m_currentTraceP ); traces.Add( &m_currentTraceN ); return traces; } const ITEM_SET DP_MEANDER_PLACER::TunedPath() { ITEM_SET lines; for( ITEM* item : m_tunedPathN ) lines.Add( item ); for( ITEM* item : m_tunedPathP ) lines.Add( item ); return lines; } const VECTOR2I& DP_MEANDER_PLACER::CurrentStart() const { return m_currentStart; } const VECTOR2I& DP_MEANDER_PLACER::CurrentEnd() const { return m_currentEnd; } int DP_MEANDER_PLACER::CurrentLayer() const { return m_initialSegment->Layers().Start(); } long long int DP_MEANDER_PLACER::TuningResult() const { if( m_lastLength ) return m_lastLength; else return origPathLength(); } DP_MEANDER_PLACER::TUNING_STATUS DP_MEANDER_PLACER::TuningStatus() const { return m_lastStatus; } const std::vector DP_MEANDER_PLACER::CurrentNets() const { std::vector rv; rv.push_back( m_originPair.NetP() ); rv.push_back( m_originPair.NetN() ); return rv; } }