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Abstract

Clipping 2D polygons is one of the basic routines in computer
graphics. In rendering complex 3D images it has to be done sev-
eral thousand times. Efficient algorithms are therefore very im-
portant. We present such an efficient algorithm for clipping arbi-
trary 2D polygons. The algorithm can handle arbitrary closed poly-
gons, specifically where the clip and subject polygons may self-
intersect. The algorithm is simple and faster than Vatti’s [11] al-
gorithm, which was designed for the general case as well. Simple
modifications allow determination of union and set-theoretic differ-
ence of two arbitrary polygons.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration—Display Algorithms I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modelling

Keywords: Clipping, Polygon Comparison

1 Introduction

Clipping 2D polygons is a fundamental operation in image synthe-
sis. For example, it can be used to render 3D images through hidden
surface removal [10], or to distribute the objects of a scene to ap-
propriate processors in a multiprocessor ray tracing system. Several
very efficient algorithms are available for special cases: Suther-
land and Hodgeman’s algorithm [4, 10] is limited to convex clip
polygons. That of Liang and Barsky [4, 5] require that the clip
polygon be rectangular. More general algorithms were presented in
[1, 6, 8, 9, 13]. They allow concave polygons with holes, but they
do not permit self-intersections, which may occur, e.g., by project-
ing warped quadrilaterals into the plane.

For the general case of arbitrary polygons (i.e., neither the clip
nor the subject polygon is convex, both polygons may have self-
intersections), little is known. To our knowledge, only the Weiler
algorithm [12, 4] and Vatti’s algorithm [11] can handle the general
case in reasonable time. Both algorithms are quite complicated.

In this paper we present an algorithm for the clipping of arbitrary
polygons, that is conceptually simple, for example, the data struc-
ture for the polygons we use is less complex. While in Weiler’s al-
gorithm the input polygons are combined into a single graph struc-
ture, we represent all polygons (input as well as output) as doubly
linked lists. In all three approaches all the intersections between
the two input polygons have to be determined first (in Vatti’s al-
gorithm, self-intersections of each input polygon as well). Merg-
ing these intersection points into the data structure is the decisive
step. We think that our approach is more intuitive and consider-
ably simpler than Weiler’s algorithm. Finally, we obtain each out-
put polygon by a simple traversal of the (modified) input polygons.
In Weiler’s algorithm, traversals of the tree are necessary. A run-
time comparison with Vatti’s algorithm is given in the final section.
Weiler’s algorithm as well as the one presented here can also de-
termine other Boolean operations of two arbitrary polygons: union
and set-theoretic difference.

∗greiner@cs.fau.de
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This paper is organized as follows. In the next section we spec-
ify what the interior of an arbitrary polygon is. In Section 3 we
outline the basic concept of the algorithm. We then describe the
data structure used to represent polygons in Section 4. In Section 5
we describe how the intersection points are merged into the data
structure and give details of the implementation. In the final sec-
tion, results are discussed and compared to Vatti’s algorithm.

2 Basics

A closed polygon P is described by the ordered set of its vertices
P0, P1, P2, . . . , Pn = P0. It consists of all line segments consec-
utively connecting the points Pi, i.e. P0P1, P1P2, . . . , Pn−1Pn =
Pn−1P0.

For a convex polygon it is quite simple to specify the interior
and the exterior. However, since we allow polygons with self-
intersections we must specify more carefully what the interior of
such a closed polygon is. We base the definition on the winding
number [4]. For a closed curve γ and a point A not lying on the
curve, the winding number ω(γ, A) tells how often a ray centered at
A and moving once along the whole closed curve winds around A,
counting counterclockwise windings by +1 and clockwise wind-
ings by −1 (see Figure 1). The winding number has several impor-
tant properties:

• When A is moved continuously and/or the curve γ is de-
formed continuously in such a way that A always keeps a
positive distance to γ, the winding number will not change.

• For a fixed curve γ the winding number ω(γ, ·) is constant on
each component of the complement IR2 \ γ. Moreover, if A
lies in the unbounded component of IR2\γ then ω(γ,A) = 0.

• If A moves and thereby crosses the curve once, the winding
number decreases or increases by exactly 1.

The third statement is the basis for the algorithm presented below.
It can be derived from the first as is illustrated in Figure 2.

The interior of a closed curve (e.g., a closed polygon) now is
defined as follows:

Definition 1 A point A lies in the interior of the closed curve γ if
and only if the winding number ω(γ, A) is odd.

This definition and the third property of the winding number stated
above then imply the following: A path that intersects the polygon
exactly once traverses either from the interior to the exterior of the
polygon, or vice versa.
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γ

Figure 1: Winding number: ω(γ,A) = 1
2π
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Figure 2: Change of the winding number when a point crosses the
curve.
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Figure 3: Winding numbers ( �= 0) and interior for an arbitrarily
complex polygon.

This property leads to an efficient algorithm to detect whether
a point lies inside or outside a polygon, namely the even-odd rule
(see [4]). In Figure 3 the winding numbers and the interior of a
closed polygon are shown.

Given two polygons, a clip (clipper) and a subject polygon
(clippee), the clipped polygon consists of all points interior to the
clip polygon that lie inside the subject polygon. This set will be a
polygon or a set of polygons. Thus, clipping a polygon against an-
other polygon means determining the intersection of two polygons.
In general, this intersection consists of several closed polygons. In-
stead of intersection, one can perform other Boolean operations (to
the interior): e.g., union and set-theoretic difference. (see Figure 5).

3 General Concept

The process of clipping an arbitrary polygon against another arbi-
trary polygon can be reduced to finding those portions of the bound-
ary of each polygon that lie inside the other polygon. These partial
boundaries can then be connected to form the final clipped polygon.

To clarify this, consider the example in Figure 4 where the task
is to clip the polygon with the dotted lines (referred to as the subject
polygon S) against the polygon with the broken lines (referred to
as the clip polygon C). We start by determining which parts of the
subject polygon boundary lie inside the clip polygon (Figure 4.c).
We can find those parts by considering the following analogous sit-
uation:

Imagine pushing a chalk cart along the subject polygon bound-
ary. We start at some vertex of the polygon, and open the distribu-
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Figure 4: Example of clipping a subject polygon S against a clip
polygon C. The lower row shows parts of subject polygon inside
clip polygon (S ∩ Cint) and parts of clip polygon inside the subject
polygon (C ∩ Sint), respectively.

tion hatch at the start if the vertex lies inside the clip polygon. Then
we push the cart along the subject polygon toggling the position of
the hatch (open/closed) whenever we cross an edge of the clip poly-
gon. We stop when we reach our starting vertex. Then the parts of
the subject polygon that lie inside the clip polygon will be marked
with chalk.

We use the same technique, but this time running our chalk cart
along the clip polygon in order to discover those parts of the clip
polygon that lie inside the subject polygon (Figure 4.d): Once we
have found all those parts of the polygon edges that lie inside the
other polygon, we merge these parts to obtain the clipped polygon
(Figure 4.b).

The process of merging is easy, considering the fact that each
part of the subject polygon that will be in the outcome is bounded by
two intersection points of subject and clip polygon. These vertices
are also the beginning or end of one of the clip polygon’s relevant
parts. Therefore, if you keep track of the intersection points and the
parts they come from, connecting the supporting parts in the correct
order is easy and shown in Section 5.

Set-theoretic difference and the union of the two polygons can
also be calculated by making the following modification to the al-
gorithm. To determine S\C, one first marks the parts of the subject
polygon that are exterior to the clip polygon. These will be merged
with the relevant parts of the clip polygon. The procedure is illus-
trated in the left part of Figure 5. Determination of the union is
sketched in the middle of Figure 5 and the right part shows how the
difference C \ S can be obtained.
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Figure 5: Set theoretic differences and union of two polygons

4 Data structures

Our algorithm requires a data structure for representing polygons.
As shown later, a doubly linked list of nodes is most suitable. Each
node represents one of the polygon’s vertices and contains the fol-
lowing information:

vertex = { x, y : coordinates;
next, prev : vertexPtr;
nextPoly : vertexPtr;
intersect : boolean;
neighbor : vertexPtr;
alpha : float;
entry_exit : boolean;

}

Figure 6: Vertex data structure.

Normally a vertex only needs x and y to store its coordinates and
next and prev as links to the neighboring vertices. As the clip-
ping process may result in a set of n polygons (P1, . . . ,P n), we
use nextPoly to be able to handle a linked list of polygons, i.e.,
we let the nextPoly pointer of the first vertex of the k-th poly-
gon (P k,0 → nextPoly) point at the first vertex of the (k + 1)th
polygon P k+1,0, k = 1, . . . , n − 1.

The remaining fields (intersect, neighbor, alpha,
entry exit) are used internally by the algorithm. Intersection
points of subject and clip polygon are marked by the intersect
flag. During execution of the algorithm, all intersection points will
be determined and two copies, linked by the neighbor pointer,
will be inserted into the data structures of both the subject and
the clip polygon. That means, the intersection point which is in-
serted into the subject polygon’s data structure will be connected
to the one inserted into the clip polygon’s data structure using the
neighbor pointer and vice versa. To accelerate the sorting pro-
cess, we store an alpha-value indicating where the intersection
point lies relatively to start and end point of the edge. Remember-
ing the chalk cart analogy we also need an entry exit flag to
record whether the intersecting point is an entry or an exit point to
the other polygon’s interior.

Figure 7 shows an example clipping problem and the data struc-
ture generated by the algorithm.

5 The algorithm

The algorithm operates in three phases:
In phase one (see Figure 8), we search for all intersection points

by testing whether each edge of the subject polygon and each of
the clip polygon intersect or not. If they do, the intersection routine
(Figure 11) will deliver two numbers between 0 and 1, the alpha-
values, which indicate where the intersection point lies relatively to
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Figure 7: Data structure for polygons.

for each vertex Si of subject polygon do
for each vertex Cj of clip polygon do
if intersect (Si,Si+1,Cj,Cj+1,a,b)

I1 = CreateVertex(Si,Si+1,a)
I2 = CreateVertex(Cj,Cj+1,b)
link intersection points I1 and I2
sort I1 into subject polygon
sort I2 into clip polygon

end if
end for

end for

Figure 8: Pseudo-code for phase one.

start and end point of both edges. With respect to these alpha-
values, we create new vertices and insert them into the data struc-
tures of subject and clip polygon between the start and end point
of the edges that intersect. If no intersection points are detected
we know that either the subject polygon lies entirely inside the clip
polygon or vice versa or that both polygons are disjoint. By per-
forming the even-odd rule we can easily decide which case we have
and simply return either the inner polygon as the clipped polygon
or nothing at all.

Phase two (see Figure 9) is analogous to the chalk cart in Sec-
tion 3. We trace each polygon once and mark entry and exit points
to the other polygon’s interior. We start at the polygon’s first vertex
and detect using the even-odd rule whether this point lies inside the
other polygon or not. Then we move along the polygon vertices
and mark the intersecting points that have been inserted in phase
one (and marked by the intersect flag) alternately as entry and
exit points respectively.

for both polygons P do
if P0 inside other polygon

status = exit
else

status = entry
end if
for each vertex Pi of polygon do

if Pi->intersect then
Pi->entry_exit = status
toggle status

end if
end for

end for

Figure 9: Pseudo Code for phase two.

In phase three (see Figure 10) we create the desired clipped poly-
gon by filtering it out of the enhanced data structures of subject and
clip polygon. In order to build the clipped polygon we use two rou-
tines: newPolygon and newVertex. newPolygon registers
the beginning of a new polygon while the vertices of that polygon
are transferred by newVertex; for example, the sequence

newPolygon
newVertex (A)
newVertex (B)
newVertex (C)
newPolygon
newVertex (D)
newVertex (E)
newVertex (F)
newVertex (G)



while unprocessed intersecting points in
subject polygon

current = first unprocessed intersecting
point of subject polygon

newPolygon
newVertex (current)
repeat
if current->entry

repeat
current = current->next
newVertex (current)

until current->intersect
else

repeat
current = current->prev
newVertex (current)

until current->intersect
end if
current = current->neighbor

until PolygonClosed
end while

Figure 10: Pseudo-code for part three.

intersect(P1,P2,Q1,Q2,alphaP,alphaQ)
WEC_P1 = <P1 - Q1 | (Q2 - Q1)⊥>
WEC_P2 = <P2 - Q1 | (Q2 - Q1)⊥>
if (WEC_P1*WEC_P2 <= 0)
WEC_Q1 = <Q1 - P1 | (P2 - P1)⊥>
WEC_Q2 = <Q2 - P1 | (P2 - P1)⊥>
if (WEC_Q1*WEC_Q2 <= 0)

alphaP = WEC_P1/(WEC_P1 - WEC_P2)
alphaQ = WEC_Q1/(WEC_Q1 - WEC_Q2)
return (1); exit

end if
end if
return (0)

end intersect

Figure 11: Pseudo-code for the intersection.

generates a set of two Polygons P1 = ABC and P2 = DEFG
and A → nextPoly points at D.

To illustrate the pseudo-code of phase three (Figure 10) we use
our chalk cart again, here called ’current’. First we place it at
one of the intersection points. Since we want to mark the clipped
polygon we open the hatch (newPolygon) and move the cart
along the subject polygon’s edge into the interior of the clip poly-
gon. The entry exit flag tells us which direction to choose:
’entry’ means forward direction (next) while ’exit’ signals us to
go backward (prev). Each time we reach a vertex we remember
it by calling newVertex. We leave the clip polygon’s interior
as soon as we come to the next intersection point. This is where
we turn the cart (current = current->neighbor) in order
to move along the clip polygon’s edges. Again the entry exit
flag tells us which route leads to the other polygon’s interior. We
continue this process until we arrive at the starting vertex and
close the hatch (and the polygon). If there are still intersection
points that have not yet been chalked (i.e., the clipped polygon
is a set of polygons) we move the chalk cart there and repeat the
whole procedure until there are no unmarked intersection points
left.

Q1

Q2

P1

P1˜

P1˜

P1˜

Q1

Q2
P1

P1˜

Figure 12: Two degenerate configurations (left and right) and two
possible perturbations for each example (upper and lower row).

Clearly finding the intersection of two lines, say P1P2 and
Q1Q2, is a basic operation of the algorithm. This can be done effec-
tively in the following way. Determine window edge coordinates,
outcodes and α-values (see [3, 4]) of Pi with respect to Q1Q2 and,
if necessary, also for Qi with respect to P1P2. By this algorithm,
many cases where there is no intersection will be detected early.
When there is an intersection, the procedure intersect (Fig-
ure 11) will return the α-values alphaP and alphaQ for the point
of intersection with respect to P1P2 and Q1Q2 respectively.

So far, we tacitly assumed that there are no degeneracies, i.e.,
each vertex of one polygon does not lie on an edge of the other
polygon (see also [2]). Degeneracies can be detected in the
intersect procedure. For example, P1 lies on the line Q1Q2

if and only if alphaP = 0 and 0 ≤ alphaQ ≤ 1. In this case,
we perturb P1 slightly such that for the perturbed point P̃1 we have
alphaP �= 0. We allow the algorithm to continue, replacing P1

with P̃1. Two typical examples are given in Figure 12. For each
case two possible perturbations are sketched. If we take care that
the perturbation is less than pixel width, the output on the screen
will be correct.

6 Evaluation

Both Vatti’s algorithm and the one presented here have been imple-
mented in C on a Silicon Graphics Indigo work station. Given an
integer n, a subject and a clip polygon with n vertices were gener-
ated at random and clipped against one other, first using Vatti’s al-
gorithm and then the on described above. This was done a thousand
times, and the running times of both algorithms were recorded. The
resulting average times (in ms) are listed in columns two and three
of Table 1. The improvement factors of our method over Vatti’s al-
gorithm are shown in the next column. The table demonstrates that
the improvement factor increases with the size of n. An explanation
for that will be given below.

As explained above, the intersection points of subject and clip
polygon are part of the clipped polygon, hence there is no way to
avoid calculating them. In order to illustrate the typical number of
intersections, we recorded them for each trial. The averages of these
numbers are listed in the last column of Table 1. Inspecting these
values, we observe that they grow with n2. Figure 13 shows that
if we have a polygon with n edges and another with m edges, the
number of intersections can be nm in the worst case. So the aver-



n Vatti New Algorithm Improvement Intersections

3 0.272 0.1754 1.55 1.98

5 0.644 0.3657 1.76 5.88

10 2.093 1.163 1.80 23.40

20 8.309 4.218 1.97 91.31

50 66.364 30.724 2.16 583.40

Table 1: Results of the implementation.

Figure 13: Worst case for intersection of two polygons.

Figure 14: Worst case for self-intersection.

age number of intersections grows by the order of O(nm). There is
a well-known result in computational geometry based on the plane
sweep algorithm, which says that if there are N line segments gen-
erating k intersections, then these intersections can be reported in
time O((N + k) log(N)) [7]. Note that this relation yields an even
worse complexity in the worst case. Since the computation of the
intersections involves floating point operations, it is a complex task
compared to the remaining work that has to be done by the algo-
rithm (sorting, pointer assignments, etc.). Measurements revealed
that intersection calculation accounts for roughly 80% of the run-
ning time.

Consequently, any clipping algorithm supporting arbitrary poly-
gons must have complexity O(nm) with n and m being the edge
numbers of the polygons. This statement is confirmed by the aver-
age timings of both algorithms.

The reason for the poorer performance of Vatti’s algorithm is that
it also has to compute the self-intersection points of both polygons.
Figure 14 indicates that the number of self-intersection points for a
polygon with n edges can be O(n2) in the worst case. This might
be the reason why the improvement factor of our algorithm (com-
pared to Vatti’s algorithm) grows with increasing number of edges.
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