/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2016 Cirilo Bernardo * Copyright (C) 2020 KiCad Developers, see CHANGELOG.TXT for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "plugins/3dapi/ifsg_all.h" // log mask for wxLogTrace #define MASK_OCE "PLUGIN_OCE" // precision for mesh creation; 0.07 should be good enough for ECAD viewing #define USER_PREC (0.14) // angular deflection for meshing // 10 deg (36 faces per circle) = 0.17453293 // 20 deg (18 faces per circle) = 0.34906585 // 30 deg (12 faces per circle) = 0.52359878 #define USER_ANGLE (0.52359878) typedef std::map< Standard_Real, SGNODE* > COLORMAP; typedef std::map< std::string, SGNODE* > FACEMAP; typedef std::map< std::string, std::vector< SGNODE* > > NODEMAP; typedef std::pair< std::string, std::vector< SGNODE* > > NODEITEM; struct DATA; bool processNode( const TopoDS_Shape& shape, DATA& data, SGNODE* parent, std::vector< SGNODE* >* items ); bool processComp( const TopoDS_Shape& shape, DATA& data, SGNODE* parent, std::vector< SGNODE* >* items ); bool processFace( const TopoDS_Face& face, DATA& data, SGNODE* parent, std::vector< SGNODE* >* items, Quantity_Color* color ); struct DATA { Handle( TDocStd_Document ) m_doc; Handle( XCAFDoc_ColorTool ) m_color; Handle( XCAFDoc_ShapeTool ) m_assy; SGNODE* scene; SGNODE* defaultColor; Quantity_Color refColor; NODEMAP shapes; // SGNODE lists representing a TopoDS_SOLID / COMPOUND COLORMAP colors; // SGAPPEARANCE nodes FACEMAP faces; // SGSHAPE items representing a TopoDS_FACE bool renderBoth; // set TRUE if we're processing IGES bool hasSolid; // set TRUE if there is no parent SOLID DATA() { scene = NULL; defaultColor = NULL; refColor.SetValues( Quantity_NOC_BLACK ); renderBoth = false; hasSolid = false; } ~DATA() { // destroy any colors with no parent if( !colors.empty() ) { COLORMAP::iterator sC = colors.begin(); COLORMAP::iterator eC = colors.end(); while( sC != eC ) { if( NULL == S3D::GetSGNodeParent( sC->second ) ) S3D::DestroyNode( sC->second ); ++sC; } colors.clear(); } if( defaultColor && NULL == S3D::GetSGNodeParent( defaultColor ) ) S3D::DestroyNode(defaultColor); // destroy any faces with no parent if( !faces.empty() ) { FACEMAP::iterator sF = faces.begin(); FACEMAP::iterator eF = faces.end(); while( sF != eF ) { if( NULL == S3D::GetSGNodeParent( sF->second ) ) S3D::DestroyNode( sF->second ); ++sF; } faces.clear(); } // destroy any shapes with no parent if( !shapes.empty() ) { NODEMAP::iterator sS = shapes.begin(); NODEMAP::iterator eS = shapes.end(); while( sS != eS ) { std::vector< SGNODE* >::iterator sV = sS->second.begin(); std::vector< SGNODE* >::iterator eV = sS->second.end(); while( sV != eV ) { if( NULL == S3D::GetSGNodeParent( *sV ) ) S3D::DestroyNode( *sV ); ++sV; } sS->second.clear(); ++sS; } shapes.clear(); } if( scene ) S3D::DestroyNode(scene); return; } // find collection of tagged nodes bool GetShape( const std::string& id, std::vector< SGNODE* >*& listPtr ) { listPtr = NULL; NODEMAP::iterator item; item = shapes.find( id ); if( item == shapes.end() ) return false; listPtr = &item->second; return true; } // find collection of tagged nodes SGNODE* GetFace( const std::string& id ) { FACEMAP::iterator item; item = faces.find( id ); if( item == faces.end() ) return NULL; return item->second; } // return color if found; if not found, create SGAPPEARANCE SGNODE* GetColor( Quantity_Color* colorObj ) { if( NULL == colorObj ) { if( defaultColor ) return defaultColor; IFSG_APPEARANCE app( true ); app.SetShininess( 0.05f ); app.SetSpecular( 0.04f, 0.04f, 0.04f ); app.SetAmbient( 0.1f, 0.1f, 0.1f ); app.SetDiffuse( 0.6f, 0.6f, 0.6f ); defaultColor = app.GetRawPtr(); return defaultColor; } Standard_Real id = colorObj->Distance( refColor ); std::map< Standard_Real, SGNODE* >::iterator item; item = colors.find( id ); if( item != colors.end() ) return item->second; IFSG_APPEARANCE app( true ); app.SetShininess( 0.1f ); app.SetSpecular( 0.12f, 0.12f, 0.12f ); app.SetAmbient( 0.1f, 0.1f, 0.1f ); app.SetDiffuse( colorObj->Red(), colorObj->Green(), colorObj->Blue() ); colors.insert( std::pair< Standard_Real, SGNODE* >( id, app.GetRawPtr() ) ); return app.GetRawPtr(); } }; enum FormatType { FMT_NONE = 0, FMT_STEP, FMT_STPZ, FMT_IGES }; FormatType fileType( const char* aFileName ) { wxFileName fname( wxString::FromUTF8Unchecked( aFileName ) ); wxFFileInputStream ifile( fname.GetFullPath() ); if( !ifile.IsOk() ) return FMT_NONE; if( fname.GetExt().MakeUpper().EndsWith( "STPZ" ) || fname.GetExt().MakeUpper().EndsWith( "GZ" ) ) return FMT_STPZ; char iline[82]; memset( iline, 0, 82 ); ifile.Read( iline, 82 ); iline[81] = 0; // ensure NULL termination when string is too long // check for STEP in Part 21 format // (this can give false positives since Part 21 is not exclusively STEP) if( !strncmp( iline, "ISO-10303-21;", 13 ) ) return FMT_STEP; std::string fstr = iline; // check for STEP in XML format // (this can give both false positive and false negatives) if( fstr.find( "urn:oid:1.0.10303." ) != std::string::npos ) return FMT_STEP; // Note: this is a very simple test which can yield false positives; the only // sure method for determining if a file *not* an IGES model is to attempt // to load it. if( iline[72] == 'S' && ( iline[80] == 0 || iline[80] == 13 || iline[80] == 10 ) ) return FMT_IGES; return FMT_NONE; } void getTag( TDF_Label& label, std::string& aTag ) { if( label.IsNull() ) return; std::string rtag; // tag in reverse aTag.clear(); int id = label.Tag(); std::ostringstream ostr; ostr << id; rtag = ostr.str(); ostr.str( "" ); ostr.clear(); TDF_Label nlab = label.Father(); while( !nlab.IsNull() ) { rtag.append( 1, ':' ); id = nlab.Tag(); ostr << id; rtag.append( ostr.str() ); ostr.str( "" ); ostr.clear(); nlab = nlab.Father(); }; std::string::reverse_iterator bI = rtag.rbegin(); std::string::reverse_iterator eI = rtag.rend(); while( bI != eI ) { aTag.append( 1, *bI ); ++bI; } return; } bool getColor( DATA& data, TDF_Label label, Quantity_Color& color ) { while( true ) { if( data.m_color->GetColor( label, XCAFDoc_ColorGen, color ) ) return true; else if( data.m_color->GetColor( label, XCAFDoc_ColorSurf, color ) ) return true; else if( data.m_color->GetColor( label, XCAFDoc_ColorCurv, color ) ) return true; label = label.Father(); if( label.IsNull() ) break; }; return false; } void addItems( SGNODE* parent, std::vector< SGNODE* >* lp ) { if( NULL == lp ) return; std::vector< SGNODE* >::iterator sL = lp->begin(); std::vector< SGNODE* >::iterator eL = lp->end(); SGNODE* item; while( sL != eL ) { item = *sL; if( NULL == S3D::GetSGNodeParent( item ) ) S3D::AddSGNodeChild( parent, item ); else S3D::AddSGNodeRef( parent, item ); ++sL; } return; } bool readIGES( Handle(TDocStd_Document)& m_doc, const char* fname ) { IGESCAFControl_Reader reader; IFSelect_ReturnStatus stat = reader.ReadFile( fname ); reader.PrintCheckLoad( Standard_False, IFSelect_ItemsByEntity ); if( stat != IFSelect_RetDone ) return false; // Enable file-defined shape precision if( !Interface_Static::SetIVal( "read.precision.mode", 0 ) ) return false; // set other translation options reader.SetColorMode(true); // use model colors reader.SetNameMode(false); // don't use IGES label names reader.SetLayerMode(false); // ignore LAYER data if ( !reader.Transfer( m_doc ) ) return false; // are there any shapes to translate? if( reader.NbShapes() < 1 ) return false; return true; } bool readSTEP( Handle(TDocStd_Document)& m_doc, const char* fname ) { STEPCAFControl_Reader reader; IFSelect_ReturnStatus stat = reader.ReadFile( fname ); if( stat != IFSelect_RetDone ) return false; // Enable user-defined shape precision if( !Interface_Static::SetIVal( "read.precision.mode", 1 ) ) return false; // Set the shape conversion precision to USER_PREC (default 0.0001 has too many triangles) if( !Interface_Static::SetRVal( "read.precision.val", USER_PREC ) ) return false; // set other translation options reader.SetColorMode(true); // use model colors reader.SetNameMode(false); // don't use label names reader.SetLayerMode(false); // ignore LAYER data if ( !reader.Transfer( m_doc ) ) { m_doc->Close(); return false; } // are there any shapes to translate? if( reader.NbRootsForTransfer() < 1 ) return false; return true; } bool readSTEPZ( Handle(TDocStd_Document)& m_doc, const char* aFileName ) { wxFileName fname( wxString::FromUTF8Unchecked( aFileName ) ); wxFFileInputStream ifile( fname.GetFullPath() ); wxFileName outFile( fname ); outFile.SetPath( wxStandardPaths::Get().GetTempDir() ); outFile.SetExt( "STEP" ); wxFileOffset size = ifile.GetLength(); wxBusyCursor busycursor; if( size == wxInvalidOffset ) return false; { bool success = false; wxFFileOutputStream ofile( outFile.GetFullPath() ); if( !ofile.IsOk() ) return false; char *buffer = new char[size]; ifile.Read( buffer, size); std::string expanded; try { expanded = gzip::decompress( buffer, size ); success = true; } catch(...) {} if( expanded.empty() ) { ifile.Reset(); ifile.SeekI( 0 ); wxZipInputStream izipfile( ifile ); std::unique_ptr zip_file( izipfile.GetNextEntry() ); if( zip_file && !zip_file->IsDir() && izipfile.CanRead() ) { izipfile.Read( ofile ); success = true; } } else { ofile.Write( expanded.data(), expanded.size() ); } delete[] buffer; ofile.Close(); if( !success ) return false; } bool retval = readSTEP( m_doc, outFile.GetFullPath().mb_str() ); // Cleanup our temporary file wxRemoveFile( outFile.GetFullPath() ); return retval; } SCENEGRAPH* LoadModel( char const* filename ) { DATA data; Handle(XCAFApp_Application) m_app = XCAFApp_Application::GetApplication(); m_app->NewDocument( "MDTV-XCAF", data.m_doc ); FormatType modelFmt = fileType( filename ); switch( modelFmt ) { case FMT_IGES: data.renderBoth = true; if( !readIGES( data.m_doc, filename ) ) return NULL; break; case FMT_STEP: if( !readSTEP( data.m_doc, filename ) ) return NULL; break; case FMT_STPZ: if( !readSTEPZ( data.m_doc, filename ) ) return NULL; break; default: return NULL; break; } data.m_assy = XCAFDoc_DocumentTool::ShapeTool( data.m_doc->Main() ); data.m_color = XCAFDoc_DocumentTool::ColorTool( data.m_doc->Main() ); // retrieve all free shapes TDF_LabelSequence frshapes; data.m_assy->GetFreeShapes( frshapes ); int nshapes = frshapes.Length(); int id = 1; bool ret = false; // create the top level SG node IFSG_TRANSFORM topNode( true ); data.scene = topNode.GetRawPtr(); while( id <= nshapes ) { TopoDS_Shape shape = data.m_assy->GetShape( frshapes.Value(id) ); if ( !shape.IsNull() && processNode( shape, data, data.scene, NULL ) ) ret = true; ++id; }; if( !ret ) return NULL; SCENEGRAPH* scene = (SCENEGRAPH*)data.scene; // DEBUG: WRITE OUT VRML2 FILE TO CONFIRM STRUCTURE #if ( defined( DEBUG_OCE ) && DEBUG_OCE > 3 ) if( data.scene ) { wxFileName fn( wxString::FromUTF8Unchecked( filename ) ); wxString output; if( FMT_STEP == modelFmt ) output = wxT( "_step-" ); else output = wxT( "_iges-" ); output.append( fn.GetName() ); output.append( wxT(".wrl") ); S3D::WriteVRML( output.ToUTF8(), true, data.scene, true, true ); } #endif // set to NULL to prevent automatic destruction of the scene data data.scene = NULL; return scene; } bool processShell( const TopoDS_Shape& shape, DATA& data, SGNODE* parent, std::vector< SGNODE* >* items, Quantity_Color* color ) { TopoDS_Iterator it; bool ret = false; for( it.Initialize( shape, false, false ); it.More(); it.Next() ) { const TopoDS_Face& face = TopoDS::Face( it.Value() ); if( processFace( face, data, parent, items, color ) ) ret = true; } return ret; } bool processSolid( const TopoDS_Shape& shape, DATA& data, SGNODE* parent, std::vector< SGNODE* >* items ) { TDF_Label label; data.hasSolid = true; std::string partID; Quantity_Color col; Quantity_Color* lcolor = NULL; // Search the whole model first to make sure something exists (may or may not have color) if( !data.m_assy->Search( shape, label ) ) { static int i = 0; std::ostringstream ostr; ostr << "KMISC_" << i++; partID = ostr.str(); } else { bool found_color = false; if( getColor( data, label, col ) ) { found_color = true; lcolor = &col; } // If the top-level label doesn't have the color information, search components if( !found_color ) { if( data.m_assy->Search( shape, label, Standard_False, Standard_True, Standard_True ) && getColor( data, label, col ) ) { found_color = true; lcolor = &col; } } // If the components do not have color information, search all components without location if( !found_color ) { if( data.m_assy->Search( shape, label, Standard_False, Standard_False, Standard_True ) && getColor( data, label, col ) ) { found_color = true; lcolor = &col; } } // Our last chance to find the color looks for color as a subshape of top-level simple shapes if( !found_color ) { if( data.m_assy->Search( shape, label, Standard_False, Standard_False, Standard_False ) && getColor( data, label, col ) ) { found_color = true; lcolor = &col; } } getTag( label, partID ); } TopoDS_Iterator it; IFSG_TRANSFORM childNode( parent ); SGNODE* pptr = childNode.GetRawPtr(); const TopLoc_Location& loc = shape.Location(); bool ret = false; if( !loc.IsIdentity() ) { gp_Trsf T = loc.Transformation(); gp_XYZ coord = T.TranslationPart(); childNode.SetTranslation( SGPOINT( coord.X(), coord.Y(), coord.Z() ) ); gp_XYZ axis; Standard_Real angle; if( T.GetRotation( axis, angle ) ) childNode.SetRotation( SGVECTOR( axis.X(), axis.Y(), axis.Z() ), angle ); } std::vector< SGNODE* >* component = NULL; if( !partID.empty() ) data.GetShape( partID, component ); if( component ) { addItems( pptr, component ); if( NULL != items ) items->push_back( pptr ); } // instantiate the solid std::vector< SGNODE* > itemList; for( it.Initialize( shape, false, false ); it.More(); it.Next() ) { const TopoDS_Shape& subShape = it.Value(); if( processShell( subShape, data, pptr, &itemList, lcolor ) ) ret = true; } if( !ret ) childNode.Destroy(); else if( NULL != items ) items->push_back( pptr ); return ret; } bool processComp( const TopoDS_Shape& shape, DATA& data, SGNODE* parent, std::vector< SGNODE* >* items ) { TopoDS_Iterator it; IFSG_TRANSFORM childNode( parent ); SGNODE* pptr = childNode.GetRawPtr(); const TopLoc_Location& loc = shape.Location(); bool ret = false; if( !loc.IsIdentity() ) { gp_Trsf T = loc.Transformation(); gp_XYZ coord = T.TranslationPart(); childNode.SetTranslation( SGPOINT( coord.X(), coord.Y(), coord.Z() ) ); gp_XYZ axis; Standard_Real angle; if( T.GetRotation( axis, angle ) ) childNode.SetRotation( SGVECTOR( axis.X(), axis.Y(), axis.Z() ), angle ); } for( it.Initialize( shape, false, false ); it.More(); it.Next() ) { const TopoDS_Shape& subShape = it.Value(); TopAbs_ShapeEnum stype = subShape.ShapeType(); data.hasSolid = false; switch( stype ) { case TopAbs_COMPOUND: case TopAbs_COMPSOLID: if( processComp( subShape, data, pptr, items ) ) ret = true; break; case TopAbs_SOLID: if( processSolid( subShape, data, pptr, items ) ) ret = true; break; case TopAbs_SHELL: if( processShell( subShape, data, pptr, items, NULL ) ) ret = true; break; case TopAbs_FACE: if( processFace( TopoDS::Face( subShape ), data, pptr, items, NULL ) ) ret = true; break; default: break; } } if( !ret ) childNode.Destroy(); else if( NULL != items ) items->push_back( pptr ); return ret; } bool processNode( const TopoDS_Shape& shape, DATA& data, SGNODE* parent, std::vector< SGNODE* >* items ) { TopAbs_ShapeEnum stype = shape.ShapeType(); bool ret = false; data.hasSolid = false; switch( stype ) { case TopAbs_COMPOUND: case TopAbs_COMPSOLID: if( processComp( shape, data, parent, items ) ) ret = true; break; case TopAbs_SOLID: if( processSolid( shape, data, parent, items ) ) ret = true; break; case TopAbs_SHELL: if( processShell( shape, data, parent, items, NULL ) ) ret = true; break; case TopAbs_FACE: if( processFace( TopoDS::Face( shape ), data, parent, items, NULL ) ) ret = true; break; default: break; } return ret; } bool processFace( const TopoDS_Face& face, DATA& data, SGNODE* parent, std::vector< SGNODE* >* items, Quantity_Color* color ) { if( Standard_True == face.IsNull() ) return false; bool reverse = ( face.Orientation() == TopAbs_REVERSED ); SGNODE* ashape = NULL; std::string partID; TDF_Label label; bool useBothSides = false; // for IGES renderBoth = TRUE; for STEP if a shell or face is not a descendant // of a SOLID then hasSolid = false and we must render both sides if( data.renderBoth || !data.hasSolid ) useBothSides = true; if( data.m_assy->FindShape( face, label, Standard_False ) ) getTag( label, partID ); if( !partID.empty() ) ashape = data.GetFace( partID ); if( ashape ) { if( NULL == S3D::GetSGNodeParent( ashape ) ) S3D::AddSGNodeChild( parent, ashape ); else S3D::AddSGNodeRef( parent, ashape ); if( NULL != items ) items->push_back( ashape ); if( useBothSides ) { std::string id2 = partID; id2.append( "b" ); SGNODE* shapeB = data.GetFace( id2 ); if( NULL == S3D::GetSGNodeParent( shapeB ) ) S3D::AddSGNodeChild( parent, shapeB ); else S3D::AddSGNodeRef( parent, shapeB ); if( NULL != items ) items->push_back( shapeB ); } return true; } TopLoc_Location loc; Standard_Boolean isTessellate (Standard_False); Handle(Poly_Triangulation) triangulation = BRep_Tool::Triangulation( face, loc ); if( triangulation.IsNull() || triangulation->Deflection() > USER_PREC + Precision::Confusion() ) isTessellate = Standard_True; if (isTessellate) { BRepMesh_IncrementalMesh IM(face, USER_PREC, Standard_False, USER_ANGLE ); triangulation = BRep_Tool::Triangulation( face, loc ); } if( triangulation.IsNull() == Standard_True ) return false; Quantity_Color lcolor; // check for a face color; this has precedence over SOLID colors do { TDF_Label L; if( data.m_color->ShapeTool()->Search( face, L ) ) { if( data.m_color->GetColor( L, XCAFDoc_ColorGen, lcolor ) || data.m_color->GetColor( L, XCAFDoc_ColorCurv, lcolor ) || data.m_color->GetColor( L, XCAFDoc_ColorSurf, lcolor ) ) color = &lcolor; } } while( 0 ); SGNODE* ocolor = data.GetColor( color ); // create a SHAPE and attach the color and data, // then attach the shape to the parent and return TRUE IFSG_SHAPE vshape( true ); IFSG_FACESET vface( vshape ); IFSG_COORDS vcoords( vface ); IFSG_COORDINDEX coordIdx( vface ); if( NULL == S3D::GetSGNodeParent( ocolor ) ) S3D::AddSGNodeChild( vshape.GetRawPtr(), ocolor ); else S3D::AddSGNodeRef( vshape.GetRawPtr(), ocolor ); const TColgp_Array1OfPnt& arrPolyNodes = triangulation->Nodes(); const Poly_Array1OfTriangle& arrTriangles = triangulation->Triangles(); std::vector< SGPOINT > vertices; std::vector< int > indices; std::vector< int > indices2; gp_Trsf tx; for(int i = 1; i <= triangulation->NbNodes(); i++) { gp_XYZ v( arrPolyNodes(i).Coord() ); vertices.emplace_back( v.X(), v.Y(), v.Z() ); } for(int i = 1; i <= triangulation->NbTriangles(); i++) { int a, b, c; arrTriangles( i ).Get( a, b, c ); a--; if( reverse ) { int tmp = b - 1; b = c - 1; c = tmp; } else { b--; c--; } indices.push_back( a ); indices.push_back( b ); indices.push_back( c ); if( useBothSides ) { indices2.push_back( b ); indices2.push_back( a ); indices2.push_back( c ); } } vcoords.SetCoordsList( vertices.size(), &vertices[0] ); coordIdx.SetIndices( indices.size(), &indices[0] ); vface.CalcNormals( NULL ); vshape.SetParent( parent ); if( !partID.empty() ) data.faces.insert( std::pair< std::string, SGNODE* >( partID, vshape.GetRawPtr() ) ); // The outer surface of an IGES model is indeterminate so // we must render both sides of a surface. if( useBothSides ) { std::string id2 = partID; id2.append( "b" ); IFSG_SHAPE vshape2( true ); IFSG_FACESET vface2( vshape2 ); IFSG_COORDS vcoords2( vface2 ); IFSG_COORDINDEX coordIdx2( vface2 ); S3D::AddSGNodeRef( vshape2.GetRawPtr(), ocolor ); vcoords2.SetCoordsList( vertices.size(), &vertices[0] ); coordIdx2.SetIndices( indices2.size(), &indices2[0] ); vface2.CalcNormals( NULL ); vshape2.SetParent( parent ); if( !partID.empty() ) data.faces.insert( std::pair< std::string, SGNODE* >( id2, vshape2.GetRawPtr() ) ); } return true; }