/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SCH_LINE::SCH_LINE( const VECTOR2I& pos, int layer ) : SCH_ITEM( nullptr, SCH_LINE_T ) { m_start = pos; m_end = pos; m_stroke.SetWidth( 0 ); m_stroke.SetPlotStyle( PLOT_DASH_TYPE::DEFAULT ); m_stroke.SetColor( COLOR4D::UNSPECIFIED ); switch( layer ) { default: m_layer = LAYER_NOTES; break; case LAYER_WIRE: m_layer = LAYER_WIRE; break; case LAYER_BUS: m_layer = LAYER_BUS; break; } if( layer == LAYER_NOTES ) m_startIsDangling = m_endIsDangling = true; else m_startIsDangling = m_endIsDangling = false; if( layer == LAYER_WIRE ) m_lastResolvedWidth = Mils2iu( DEFAULT_WIRE_WIDTH_MILS ); else if( layer == LAYER_BUS ) m_lastResolvedWidth = Mils2iu( DEFAULT_BUS_WIDTH_MILS ); else m_lastResolvedWidth = Mils2iu( DEFAULT_LINE_WIDTH_MILS ); m_lastResolvedLineStyle = PLOT_DASH_TYPE::SOLID; m_lastResolvedColor = COLOR4D::UNSPECIFIED; } SCH_LINE::SCH_LINE( const SCH_LINE& aLine ) : SCH_ITEM( aLine ) { m_start = aLine.m_start; m_end = aLine.m_end; m_stroke = aLine.m_stroke; m_startIsDangling = aLine.m_startIsDangling; m_endIsDangling = aLine.m_endIsDangling; m_lastResolvedLineStyle = aLine.m_lastResolvedLineStyle; m_lastResolvedWidth = aLine.m_lastResolvedWidth; m_lastResolvedColor = aLine.m_lastResolvedColor; } wxString SCH_LINE::GetNetname( const SCH_SHEET_PATH& aSheet ) { std::list checkedLines; checkedLines.push_back(this); return FindWireSegmentNetNameRecursive( this, checkedLines, aSheet ); } wxString SCH_LINE::FindWireSegmentNetNameRecursive( SCH_LINE *line, std::list &checkedLines, const SCH_SHEET_PATH& aSheet ) const { for ( auto connected : line->ConnectedItems( aSheet ) ) { if( connected->Type() == SCH_LINE_T ) { if( std::find(checkedLines.begin(), checkedLines.end(), connected ) == checkedLines.end() ) { SCH_LINE* connectedLine = static_cast( connected ); checkedLines.push_back( connectedLine ); wxString netName = FindWireSegmentNetNameRecursive( connectedLine, checkedLines, aSheet ); if( !netName.IsEmpty() ) return netName; } } else if( connected->Type() == SCH_LABEL_T || connected->Type() == SCH_GLOBAL_LABEL_T || connected->Type() == SCH_DIRECTIVE_LABEL_T) { return static_cast( connected )->GetText(); } } return ""; } EDA_ITEM* SCH_LINE::Clone() const { return new SCH_LINE( *this ); } void SCH_LINE::Move( const VECTOR2I& aOffset ) { if( aOffset != VECTOR2I( 0, 0 ) ) { m_start += aOffset; m_end += aOffset; SetModified(); } } void SCH_LINE::MoveStart( const VECTOR2I& aOffset ) { if( aOffset != VECTOR2I( 0, 0 ) ) { m_start += aOffset; SetModified(); } } void SCH_LINE::MoveEnd( const VECTOR2I& aOffset ) { if( aOffset != VECTOR2I( 0, 0 ) ) { m_end += aOffset; SetModified(); } } #if defined(DEBUG) void SCH_LINE::Show( int nestLevel, std::ostream& os ) const { NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << " layer=\"" << m_layer << '"' << " startIsDangling=\"" << m_startIsDangling << '"' << " endIsDangling=\"" << m_endIsDangling << '"' << ">" << " " << " " << "\n"; } #endif void SCH_LINE::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 3; aLayers[0] = LAYER_DANGLING; aLayers[1] = m_layer; aLayers[2] = LAYER_SELECTION_SHADOWS; } const BOX2I SCH_LINE::GetBoundingBox() const { int width = m_stroke.GetWidth() / 2; int extra = m_stroke.GetWidth() & 0x1; int xmin = std::min( m_start.x, m_end.x ) - width; int ymin = std::min( m_start.y, m_end.y ) - width; int xmax = std::max( m_start.x, m_end.x ) + width + extra; int ymax = std::max( m_start.y, m_end.y ) + width + extra; BOX2I ret( VECTOR2I( xmin, ymin ), VECTOR2I( xmax - xmin, ymax - ymin ) ); return ret; } double SCH_LINE::GetLength() const { return GetLineLength( m_start, m_end ); } void SCH_LINE::SetLineColor( const COLOR4D& aColor ) { m_stroke.SetColor( aColor ); m_lastResolvedColor = GetLineColor(); } void SCH_LINE::SetLineColor( const double r, const double g, const double b, const double a ) { COLOR4D newColor(r, g, b, a); if( newColor == COLOR4D::UNSPECIFIED ) { m_stroke.SetColor( COLOR4D::UNSPECIFIED ); } else { // Eeschema does not allow alpha channel in colors newColor.a = 1.0; m_stroke.SetColor( newColor ); } } COLOR4D SCH_LINE::GetLineColor() const { if( m_stroke.GetColor() != COLOR4D::UNSPECIFIED ) m_lastResolvedColor = m_stroke.GetColor(); else if( !IsConnectable() ) m_lastResolvedColor = COLOR4D::UNSPECIFIED; else if( !IsConnectivityDirty() ) m_lastResolvedColor = GetEffectiveNetClass()->GetSchematicColor(); return m_lastResolvedColor; } void SCH_LINE::SetLineStyle( const int aStyleId ) { SetLineStyle( static_cast( aStyleId ) ); } void SCH_LINE::SetLineStyle( const PLOT_DASH_TYPE aStyle ) { m_stroke.SetPlotStyle( aStyle ); m_lastResolvedLineStyle = GetLineStyle(); } PLOT_DASH_TYPE SCH_LINE::GetLineStyle() const { if( m_stroke.GetPlotStyle() != PLOT_DASH_TYPE::DEFAULT ) return m_stroke.GetPlotStyle(); return PLOT_DASH_TYPE::SOLID; } PLOT_DASH_TYPE SCH_LINE::GetEffectiveLineStyle() const { if( m_stroke.GetPlotStyle() != PLOT_DASH_TYPE::DEFAULT ) m_lastResolvedLineStyle = m_stroke.GetPlotStyle(); else if( !IsConnectable() ) m_lastResolvedLineStyle = PLOT_DASH_TYPE::SOLID; else if( !IsConnectivityDirty() ) m_lastResolvedLineStyle = (PLOT_DASH_TYPE) GetEffectiveNetClass()->GetLineStyle(); return m_lastResolvedLineStyle; } void SCH_LINE::SetLineWidth( const int aSize ) { m_stroke.SetWidth( aSize ); m_lastResolvedWidth = GetPenWidth(); } int SCH_LINE::GetPenWidth() const { SCHEMATIC* schematic = Schematic(); switch ( m_layer ) { default: if( m_stroke.GetWidth() > 0 ) return m_stroke.GetWidth(); if( schematic ) return schematic->Settings().m_DefaultLineWidth; return Mils2iu( DEFAULT_LINE_WIDTH_MILS ); case LAYER_WIRE: if( m_stroke.GetWidth() > 0 ) m_lastResolvedWidth = m_stroke.GetWidth(); else if( !IsConnectivityDirty() ) m_lastResolvedWidth = GetEffectiveNetClass()->GetWireWidth(); return m_lastResolvedWidth; case LAYER_BUS: if( m_stroke.GetWidth() > 0 ) m_lastResolvedWidth = m_stroke.GetWidth(); else if( !IsConnectivityDirty() ) m_lastResolvedWidth = GetEffectiveNetClass()->GetBusWidth(); return m_lastResolvedWidth; } } void SCH_LINE::Print( const RENDER_SETTINGS* aSettings, const VECTOR2I& offset ) { wxDC* DC = aSettings->GetPrintDC(); COLOR4D color = GetLineColor(); if( color == COLOR4D::UNSPECIFIED ) color = aSettings->GetLayerColor( GetLayer() ); VECTOR2I start = m_start; VECTOR2I end = m_end; PLOT_DASH_TYPE lineStyle = GetEffectiveLineStyle(); int penWidth = std::max( GetPenWidth(), aSettings->GetDefaultPenWidth() ); if( lineStyle <= PLOT_DASH_TYPE::FIRST_TYPE ) { GRLine( DC, start.x, start.y, end.x, end.y, penWidth, color ); } else { SHAPE_SEGMENT segment( start, end ); STROKE_PARAMS::Stroke( &segment, lineStyle, penWidth, aSettings, [&]( const VECTOR2I& a, const VECTOR2I& b ) { GRLine( DC, a.x, a.y, b.x, b.y, penWidth, color ); } ); } } void SCH_LINE::MirrorVertically( int aCenter ) { if( m_flags & STARTPOINT ) MIRROR( m_start.y, aCenter ); if( m_flags & ENDPOINT ) MIRROR( m_end.y, aCenter ); } void SCH_LINE::MirrorHorizontally( int aCenter ) { if( m_flags & STARTPOINT ) MIRROR( m_start.x, aCenter ); if( m_flags & ENDPOINT ) MIRROR( m_end.x, aCenter ); } void SCH_LINE::Rotate( const VECTOR2I& aCenter ) { // When we allow off grid items, the // else if should become a plain if to allow // rotation around the center of the line if( m_flags & STARTPOINT ) RotatePoint( m_start, aCenter, ANGLE_90 ); else if( m_flags & ENDPOINT ) RotatePoint( m_end, aCenter, ANGLE_90 ); } void SCH_LINE::RotateStart( const VECTOR2I& aCenter ) { RotatePoint( m_start, aCenter, ANGLE_90 ); } void SCH_LINE::RotateEnd( const VECTOR2I& aCenter ) { RotatePoint( m_end, aCenter, ANGLE_90 ); } int SCH_LINE::GetAngleFrom( const VECTOR2I& aPoint ) const { VECTOR2I vec; if( aPoint == m_start ) vec = m_end - aPoint; else vec = m_start - aPoint; return KiROUND( EDA_ANGLE( vec ).AsDegrees() ); } int SCH_LINE::GetReverseAngleFrom( const VECTOR2I& aPoint ) const { VECTOR2I vec; if( aPoint == m_end ) vec = m_start - aPoint; else vec = m_end - aPoint; return KiROUND( EDA_ANGLE( vec ).AsDegrees() ); } bool SCH_LINE::IsParallel( const SCH_LINE* aLine ) const { wxCHECK_MSG( aLine != nullptr && aLine->Type() == SCH_LINE_T, false, wxT( "Cannot test line segment for overlap." ) ); VECTOR2I firstSeg = m_end - m_start; VECTOR2I secondSeg = aLine->m_end - aLine->m_start; // Use long long here to avoid overflow in calculations return !( (long long) firstSeg.x * secondSeg.y - (long long) firstSeg.y * secondSeg.x ); } SCH_LINE* SCH_LINE::MergeOverlap( SCH_SCREEN* aScreen, SCH_LINE* aLine, bool aCheckJunctions ) { auto less = []( const VECTOR2I& lhs, const VECTOR2I& rhs ) -> bool { if( lhs.x == rhs.x ) return lhs.y < rhs.y; return lhs.x < rhs.x; }; wxCHECK_MSG( aLine != nullptr && aLine->Type() == SCH_LINE_T, nullptr, wxT( "Cannot test line segment for overlap." ) ); if( this == aLine || GetLayer() != aLine->GetLayer() ) return nullptr; VECTOR2I leftmost_start = aLine->m_start; VECTOR2I leftmost_end = aLine->m_end; VECTOR2I rightmost_start = m_start; VECTOR2I rightmost_end = m_end; // We place the start to the left and below the end of both lines if( leftmost_start != std::min( { leftmost_start, leftmost_end }, less ) ) std::swap( leftmost_start, leftmost_end ); if( rightmost_start != std::min( { rightmost_start, rightmost_end }, less ) ) std::swap( rightmost_start, rightmost_end ); // - leftmost is the line that starts farthest to the left // - other is the line that is _not_ leftmost // - rightmost is the line that ends farthest to the right. This may or may not be 'other' // as the second line may be completely covered by the first. if( less( rightmost_start, leftmost_start ) ) { std::swap( leftmost_start, rightmost_start ); std::swap( leftmost_end, rightmost_end ); } VECTOR2I other_start = rightmost_start; VECTOR2I other_end = rightmost_end; if( less( rightmost_end, leftmost_end ) ) { rightmost_start = leftmost_start; rightmost_end = leftmost_end; } // If we end one before the beginning of the other, no overlap is possible if( less( leftmost_end, other_start ) ) { return nullptr; } // Search for a common end: if( ( leftmost_start == other_start ) && ( leftmost_end == other_end ) ) // Trivial case { SCH_LINE* ret = new SCH_LINE( *aLine ); ret->SetStartPoint( leftmost_start ); ret->SetEndPoint( leftmost_end ); ret->SetConnectivityDirty( true ); if( IsSelected() || aLine->IsSelected() ) ret->SetSelected(); return ret; } bool colinear = false; /* Test alignment: */ if( ( leftmost_start.y == leftmost_end.y ) && ( other_start.y == other_end.y ) ) // Horizontal segment { colinear = ( leftmost_start.y == other_start.y ); } else if( ( leftmost_start.x == leftmost_end.x ) && ( other_start.x == other_end.x ) ) // Vertical segment { colinear = ( leftmost_start.x == other_start.x ); } else { // We use long long here to avoid overflow -- it enforces promotion // The slope of the left-most line is dy/dx. Then we check that the slope from the // left most start to the right most start is the same as well as the slope from the // left most start to right most end. long long dx = leftmost_end.x - leftmost_start.x; long long dy = leftmost_end.y - leftmost_start.y; colinear = ( ( ( other_start.y - leftmost_start.y ) * dx == ( other_start.x - leftmost_start.x ) * dy ) && ( ( other_end.y - leftmost_start.y ) * dx == ( other_end.x - leftmost_start.x ) * dy ) ); } if( !colinear ) return nullptr; // We either have a true overlap or colinear touching segments. We always want to merge // the former, but the later only get merged if there no junction at the touch point. bool touching = leftmost_end == rightmost_start; if( touching && aCheckJunctions && aScreen->IsJunction( leftmost_end ) ) return nullptr; // Make a new segment that merges the 2 segments leftmost_end = rightmost_end; SCH_LINE* ret = new SCH_LINE( *aLine ); ret->SetStartPoint( leftmost_start ); ret->SetEndPoint( leftmost_end ); ret->SetConnectivityDirty( true ); if( IsSelected() || aLine->IsSelected() ) ret->SetSelected(); return ret; } void SCH_LINE::GetEndPoints( std::vector & aItemList ) { if( IsConnectable() ) { aItemList.emplace_back( IsBus() ? BUS_END : WIRE_END, this, m_start ); aItemList.emplace_back( IsBus() ? BUS_END : WIRE_END, this, m_end ); } } bool SCH_LINE::UpdateDanglingState( std::vector& aItemList, const SCH_SHEET_PATH* aPath ) { if( IsConnectable() ) { bool previousStartState = m_startIsDangling; bool previousEndState = m_endIsDangling; m_startIsDangling = m_endIsDangling = true; for( DANGLING_END_ITEM item : aItemList ) { if( item.GetItem() == this ) continue; if( ( IsWire() && item.GetType() != BUS_END && item.GetType() != BUS_ENTRY_END ) || ( IsBus() && item.GetType() != WIRE_END && item.GetType() != PIN_END ) ) { if( m_start == item.GetPosition() ) m_startIsDangling = false; if( m_end == item.GetPosition() ) m_endIsDangling = false; if( !m_startIsDangling && !m_endIsDangling ) break; } } // We only use the bus dangling state for automatic line starting, so we don't care if it // has changed or not (and returning true will result in extra work) if( IsBus() ) return false; return previousStartState != m_startIsDangling || previousEndState != m_endIsDangling; } return false; } bool SCH_LINE::IsConnectable() const { if( m_layer == LAYER_WIRE || m_layer == LAYER_BUS ) return true; return false; } bool SCH_LINE::CanConnect( const SCH_ITEM* aItem ) const { if( m_layer == LAYER_WIRE ) { switch( aItem->Type() ) { case SCH_JUNCTION_T: case SCH_NO_CONNECT_T: case SCH_LABEL_T: case SCH_GLOBAL_LABEL_T: case SCH_HIER_LABEL_T: case SCH_DIRECTIVE_LABEL_T: case SCH_BUS_WIRE_ENTRY_T: case SCH_SYMBOL_T: case SCH_SHEET_T: case SCH_SHEET_PIN_T: return true; default: break; } } else if( m_layer == LAYER_BUS ) { switch( aItem->Type() ) { case SCH_JUNCTION_T: case SCH_LABEL_T: case SCH_GLOBAL_LABEL_T: case SCH_HIER_LABEL_T: case SCH_DIRECTIVE_LABEL_T: case SCH_BUS_WIRE_ENTRY_T: case SCH_SHEET_T: case SCH_SHEET_PIN_T: return true; default: break; } } return aItem->GetLayer() == m_layer; } std::vector SCH_LINE::GetConnectionPoints() const { return { m_start, m_end }; } bool SCH_LINE::ConnectionPropagatesTo( const EDA_ITEM* aItem ) const { switch( aItem->Type() ) { case SCH_LINE_T: return IsBus() == static_cast( aItem )->IsBus(); default: return true; } } void SCH_LINE::GetSelectedPoints( std::vector& aPoints ) const { if( m_flags & STARTPOINT ) aPoints.push_back( m_start ); if( m_flags & ENDPOINT ) aPoints.push_back( m_end ); } wxString SCH_LINE::GetSelectMenuText( EDA_UNITS aUnits ) const { wxString txtfmt; if( m_start.x == m_end.x ) { switch( m_layer ) { case LAYER_WIRE: txtfmt = _( "Vertical Wire, length %s" ); break; case LAYER_BUS: txtfmt = _( "Vertical Bus, length %s" ); break; default: txtfmt = _( "Vertical Graphic Line, length %s" ); break; } } else if( m_start.y == m_end.y ) { switch( m_layer ) { case LAYER_WIRE: txtfmt = _( "Horizontal Wire, length %s" ); break; case LAYER_BUS: txtfmt = _( "Horizontal Bus, length %s" ); break; default: txtfmt = _( "Horizontal Graphic Line, length %s" ); break; } } else { switch( m_layer ) { case LAYER_WIRE: txtfmt = _( "Wire, length %s" ); break; case LAYER_BUS: txtfmt = _( "Bus, length %s" ); break; default: txtfmt = _( "Graphic Line, length %s" ); break; } } return wxString::Format( txtfmt, MessageTextFromValue( aUnits, EuclideanNorm( m_start - m_end ) ) ); } BITMAPS SCH_LINE::GetMenuImage() const { if( m_layer == LAYER_NOTES ) return BITMAPS::add_dashed_line; else if( m_layer == LAYER_WIRE ) return BITMAPS::add_line; return BITMAPS::add_bus; } bool SCH_LINE::operator <( const SCH_ITEM& aItem ) const { if( Type() != aItem.Type() ) return Type() < aItem.Type(); const SCH_LINE* line = static_cast( &aItem ); if( GetLayer() != line->GetLayer() ) return GetLayer() < line->GetLayer(); if( GetStartPoint().x != line->GetStartPoint().x ) return GetStartPoint().x < line->GetStartPoint().x; if( GetStartPoint().y != line->GetStartPoint().y ) return GetStartPoint().y < line->GetStartPoint().y; if( GetEndPoint().x != line->GetEndPoint().x ) return GetEndPoint().x < line->GetEndPoint().x; return GetEndPoint().y < line->GetEndPoint().y; } bool SCH_LINE::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const { // Performance enhancement for connection-building if( aPosition == m_start || aPosition == m_end ) return true; if( aAccuracy >= 0 ) aAccuracy += GetPenWidth() / 2; else aAccuracy = abs( aAccuracy ); return TestSegmentHit( aPosition, m_start, m_end, aAccuracy ); } bool SCH_LINE::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { if( m_flags & (STRUCT_DELETED | SKIP_STRUCT ) ) return false; EDA_RECT rect = aRect; if ( aAccuracy ) rect.Inflate( aAccuracy ); if( aContained ) return rect.Contains( m_start ) && rect.Contains( m_end ); return rect.Intersects( m_start, m_end ); } void SCH_LINE::SwapData( SCH_ITEM* aItem ) { SCH_LINE* item = (SCH_LINE*) aItem; std::swap( m_layer, item->m_layer ); std::swap( m_start, item->m_start ); std::swap( m_end, item->m_end ); std::swap( m_startIsDangling, item->m_startIsDangling ); std::swap( m_endIsDangling, item->m_endIsDangling ); std::swap( m_stroke, item->m_stroke ); } bool SCH_LINE::doIsConnected( const VECTOR2I& aPosition ) const { if( m_layer != LAYER_WIRE && m_layer != LAYER_BUS ) return false; return IsEndPoint( aPosition ); } void SCH_LINE::Plot( PLOTTER* aPlotter, bool aBackground ) const { if( aBackground ) return; auto* settings = static_cast( aPlotter->RenderSettings() ); int penWidth = std::max( GetPenWidth(), settings->GetMinPenWidth() ); COLOR4D color = GetLineColor(); if( color == COLOR4D::UNSPECIFIED ) color = settings->GetLayerColor( GetLayer() ); aPlotter->SetColor( color ); aPlotter->SetCurrentLineWidth( penWidth ); aPlotter->SetDash( penWidth, GetEffectiveLineStyle() ); aPlotter->MoveTo( m_start ); aPlotter->FinishTo( m_end ); aPlotter->SetDash( penWidth, PLOT_DASH_TYPE::SOLID ); } void SCH_LINE::SetPosition( const VECTOR2I& aPosition ) { m_end = m_end - ( m_start - aPosition ); m_start = aPosition; } void SCH_LINE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { wxString msg; switch( GetLayer() ) { case LAYER_WIRE: msg = _( "Wire" ); break; case LAYER_BUS: msg = _( "Bus" ); break; default: msg = _( "Graphical" ); break; } aList.emplace_back( _( "Line Type" ), msg ); PLOT_DASH_TYPE lineStyle = GetLineStyle(); if( GetEffectiveLineStyle() != lineStyle ) aList.emplace_back( _( "Line Style" ), _( "from netclass" ) ); else m_stroke.GetMsgPanelInfo( aFrame->GetUserUnits(), aList, true, false ); SCH_CONNECTION* conn = nullptr; if( !IsConnectivityDirty() && dynamic_cast( aFrame ) ) conn = Connection(); if( conn ) { conn->AppendInfoToMsgPanel( aList ); if( !conn->IsBus() ) { aList.emplace_back( _( "Resolved Netclass" ), UnescapeString( GetEffectiveNetClass()->GetName() ) ); } } } bool SCH_LINE::IsGraphicLine() const { return ( GetLayer() == LAYER_NOTES ); } bool SCH_LINE::IsWire() const { return ( GetLayer() == LAYER_WIRE ); } bool SCH_LINE::IsBus() const { return ( GetLayer() == LAYER_BUS ); }