/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file clayeritem.cpp * @brief */ #include "clayeritem.h" #include "3d_fastmath.h" #include CLAYERITEM::CLAYERITEM( const COBJECT2D *aObject2D, float aZMin, float aZMax ) : COBJECT( OBJ3D_LAYERITEM ), m_object2d(aObject2D) { wxASSERT( aObject2D ); CBBOX2D bbox2d = m_object2d->GetBBox(); bbox2d.ScaleNextUp(); bbox2d.ScaleNextUp(); m_bbox.Reset(); m_bbox.Set( SFVEC3F( bbox2d.Min().x, bbox2d.Min().y, aZMin ), SFVEC3F( bbox2d.Max().x, bbox2d.Max().y, aZMax ) ); m_bbox.ScaleNextUp(); m_centroid = SFVEC3F( aObject2D->GetCentroid().x, aObject2D->GetCentroid().y, (aZMax + aZMin) * 0.5f ); } bool CLAYERITEM::Intersect( const RAY &aRay, HITINFO &aHitInfo ) const { float tBBoxStart; float tBBoxEnd; if( !m_bbox.Intersect( aRay, &tBBoxStart, &tBBoxEnd ) ) return false; if( tBBoxStart >= aHitInfo.m_tHit ) return false; if( fabs(tBBoxStart - tBBoxEnd) < FLT_EPSILON ) return false; bool startedInside = m_bbox.Inside( aRay.m_Origin ); if( !startedInside ) { float tTop = FLT_MAX; float tBot = FLT_MAX; bool hit_top = false; bool hit_bot = false; if( (float)fabs(aRay.m_Dir.z) > FLT_EPSILON ) { tBot = (m_bbox.Min().z - aRay.m_Origin.z) * aRay.m_InvDir.z; tTop = (m_bbox.Max().z - aRay.m_Origin.z) * aRay.m_InvDir.z; float tBBoxStartAdjusted = NextFloatUp( tBBoxStart ); if( tBot > FLT_EPSILON ) { hit_bot = tBot <= tBBoxStartAdjusted; tBot = NextFloatDown( tBot ); } if( tTop > FLT_EPSILON ) { hit_top = tTop <= tBBoxStartAdjusted; tTop = NextFloatDown( tTop ); } } tBBoxStart = NextFloatDown( tBBoxStart ); tBBoxEnd = NextFloatUp( tBBoxEnd ); SFVEC2F topHitPoint2d; SFVEC2F botHitPoint2d; if( hit_top ) topHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tTop, aRay.m_Origin.y + aRay.m_Dir.y * tTop ); if( hit_bot ) botHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tBot, aRay.m_Origin.y + aRay.m_Dir.y * tBot ); if( hit_top && hit_bot ) { if( tBot < tTop ) { if( m_object2d->IsPointInside( botHitPoint2d ) ) { if( tBot < aHitInfo.m_tHit ) { aHitInfo.m_tHit = tBot; //aHitInfo.m_HitPoint = aRay.at( tBot ); aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, -1.0f ); aHitInfo.pHitObject = this; return true; } return false; } } else { if( m_object2d->IsPointInside( topHitPoint2d ) ) { if( tTop < aHitInfo.m_tHit ) { aHitInfo.m_tHit = tTop; //aHitInfo.m_HitPoint = aRay.at( tTop ); aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, 1.0f ); aHitInfo.pHitObject = this; return true; } return false; } } } else { if( hit_top ) { if( tTop < tBot ) { if( m_object2d->IsPointInside( topHitPoint2d ) ) { if( tTop < aHitInfo.m_tHit ) { aHitInfo.m_tHit = tTop; //aHitInfo.m_HitPoint = aRay.at( tTop ); aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, 1.0f ); aHitInfo.pHitObject = this; return true; } return false; } } } else { if( hit_bot ) { if( tBot < tTop ) { if( m_object2d->IsPointInside( botHitPoint2d ) ) { if( tBot < aHitInfo.m_tHit ) { aHitInfo.m_tHit = tBot; //aHitInfo.m_HitPoint = aRay.at( tBot ); aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, -1.0f ); aHitInfo.pHitObject = this; return true; } return false; } } } else { // At this point, the ray miss the two planes but it still // hits the box. It means that the rays are "(almost)paralell" // to the planes, so must calc the intersection } } } SFVEC3F boxHitPointStart = aRay.at( tBBoxStart ); SFVEC3F boxHitPointEnd = aRay.at( tBBoxEnd ); SFVEC2F boxHitPointStart2D( boxHitPointStart.x, boxHitPointStart.y ); //SFVEC2F boxHitPointStart2D( m_bbox.GetCenter().x, m_bbox.GetCenter().y ); SFVEC2F boxHitPointEnd2D( boxHitPointEnd.x, boxHitPointEnd.y ); float tOut; SFVEC2F outNormal; RAYSEG2D raySeg( boxHitPointStart2D, boxHitPointEnd2D ); if( m_object2d->Intersect( raySeg, &tOut, &outNormal ) ) { // The hitT is a hit value for the segment length 'start' - 'end', // so it ranges from 0.0 - 1.0. We now convert it to a 3D hit position // and calculate the real hitT of the ray. SFVEC3F hitPoint = boxHitPointStart + (boxHitPointEnd - boxHitPointStart) * tOut; const float t = glm::length( hitPoint - aRay.m_Origin ); if( t < aHitInfo.m_tHit ) { aHitInfo.m_tHit = t; //aHitInfo.m_HitPoint = hitPoint; aHitInfo.m_HitNormal = SFVEC3F( outNormal.x, outNormal.y, 0.0f ); aHitInfo.pHitObject = this; return true; } } return false; } else { // Started inside const SFVEC3F boxHitPointStart = aRay.at( tBBoxStart ); const SFVEC3F boxHitPointEnd = aRay.at( tBBoxEnd ); const SFVEC2F boxHitPointStart2D( boxHitPointStart.x, boxHitPointStart.y ); const SFVEC2F boxHitPointEnd2D( boxHitPointEnd.x, boxHitPointEnd.y ); if(!(m_object2d->IsPointInside( boxHitPointStart2D ) && m_object2d->IsPointInside( boxHitPointEnd2D ) ) ) return false; float tOut; SFVEC2F outNormal; RAYSEG2D raySeg( boxHitPointStart2D, boxHitPointEnd2D ); if( (m_object2d->IsPointInside( boxHitPointStart2D ) && m_object2d->IsPointInside( boxHitPointEnd2D ) ) ) { if( tBBoxEnd < aHitInfo.m_tHit ) { aHitInfo.m_tHit = tBBoxEnd; if( aRay.m_Dir.z > 0.0f ) aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, -1.0f ); else aHitInfo.m_HitNormal = SFVEC3F( 0.0f, 0.0f, 1.0f ); aHitInfo.pHitObject = this; return true; } } else { if( m_object2d->Intersect( raySeg, &tOut, &outNormal ) ) { // The hitT is a hit value for the segment length 'start' - 'end', // so it ranges from 0.0 - 1.0. We now convert it to a 3D hit position // and calculate the real hitT of the ray. const SFVEC3F hitPoint = boxHitPointStart + (boxHitPointEnd - boxHitPointStart) * tOut; const float t = glm::length( hitPoint - aRay.m_Origin ); if( t < aHitInfo.m_tHit ) { aHitInfo.m_tHit = t; //aHitInfo.m_HitPoint = hitPoint; aHitInfo.m_HitNormal = SFVEC3F( outNormal.x, outNormal.y, 0.0f ); aHitInfo.pHitObject = this; return true; } } } } return false; } bool CLAYERITEM::IntersectP(const RAY &aRay , float aMaxDistance ) const { float tBBoxStart; float tBBoxEnd; if( !m_bbox.Intersect( aRay, &tBBoxStart, &tBBoxEnd ) ) return false; if( ( tBBoxStart > aMaxDistance ) || //( tBBoxEnd < FLT_EPSILON ) ( fabs(tBBoxStart - tBBoxEnd) < FLT_EPSILON ) ) return false; float tTop = FLT_MAX; float tBot = FLT_MAX; bool hit_top = false; bool hit_bot = false; if( (float)fabs(aRay.m_Dir.z) > FLT_EPSILON ) { tBot = (m_bbox.Min().z - aRay.m_Origin.z) * aRay.m_InvDir.z; tTop = (m_bbox.Max().z - aRay.m_Origin.z) * aRay.m_InvDir.z; const float tBBoxStartAdjusted = NextFloatUp( tBBoxStart ); if( tBot > FLT_EPSILON ) { hit_bot = tBot <= tBBoxStartAdjusted; tBot = NextFloatDown( tBot ); } if( tTop > FLT_EPSILON ) { hit_top = tTop <= tBBoxStartAdjusted; tTop = NextFloatDown( tTop ); } } tBBoxStart = NextFloatDown( tBBoxStart ); tBBoxEnd = NextFloatUp( tBBoxEnd ); SFVEC2F topHitPoint2d; SFVEC2F botHitPoint2d; if( hit_top ) topHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tTop, aRay.m_Origin.y + aRay.m_Dir.y * tTop ); if( hit_bot ) botHitPoint2d = SFVEC2F( aRay.m_Origin.x + aRay.m_Dir.x * tBot, aRay.m_Origin.y + aRay.m_Dir.y * tBot ); if( hit_top && hit_bot ) { if( tBot < tTop ) { if( m_object2d->IsPointInside( botHitPoint2d ) ) { if( tBot < aMaxDistance ) return true; return false; } } else { if( m_object2d->IsPointInside( topHitPoint2d ) ) { if( tTop < aMaxDistance ) return true; return false; } } } else { if( hit_top ) { if( tTop < tBot ) { if( m_object2d->IsPointInside( topHitPoint2d ) ) { if( tTop < aMaxDistance ) return true; return false; } } } else { if( hit_bot ) { if( tBot < tTop ) { if( m_object2d->IsPointInside( botHitPoint2d ) ) { if( tBot < aMaxDistance ) return true; return false; } } } else { // At this point, the ray miss the two planes but it still // hits the box. It means that the rays are "(almost)paralell" // to the planes, so must calc the intersection } } } SFVEC3F boxHitPointStart = aRay.at( tBBoxStart ); SFVEC3F boxHitPointEnd = aRay.at( tBBoxEnd ); SFVEC2F boxHitPointStart2D( boxHitPointStart.x, boxHitPointStart.y ); SFVEC2F boxHitPointEnd2D( boxHitPointEnd.x, boxHitPointEnd.y ); float tOut; SFVEC2F outNormal; RAYSEG2D raySeg( boxHitPointStart2D, boxHitPointEnd2D ); if( m_object2d->Intersect( raySeg, &tOut, &outNormal ) ) { //if( (tOut > FLT_EPSILON) && (tOut < 1.0f) ) { // The hitT is a hit value for the segment length 'start' - 'end', // so it ranges from 0.0 - 1.0. We now convert it to a 3D hit position // and calculate the real hitT of the ray. const SFVEC3F hitPoint = boxHitPointStart + (boxHitPointEnd - boxHitPointStart) * tOut; const float t = glm::length( hitPoint - aRay.m_Origin ); if( (t < 1.0f) && ( t > FLT_EPSILON ) ) return true; } } return false; } bool CLAYERITEM::Intersects( const CBBOX &aBBox ) const { if( !m_bbox.Intersects( aBBox ) ) return false; const CBBOX2D bbox2D( SFVEC2F( aBBox.Min().x, aBBox.Min().y), SFVEC2F( aBBox.Max().x, aBBox.Max().y) ); return m_object2d->Intersects( bbox2D ); } SFVEC3F CLAYERITEM::GetDiffuseColor( const HITINFO &aHitInfo ) const { (void)aHitInfo; // unused return m_diffusecolor; }