/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2015 CERN * Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "pns_debug_decorator.h" #include "pns_itemset.h" #include "pns_meander_placer.h" #include "pns_node.h" #include "pns_router.h" #include "pns_solid.h" #include "pns_topology.h" namespace PNS { MEANDER_PLACER::MEANDER_PLACER( ROUTER* aRouter ) : MEANDER_PLACER_BASE( aRouter ) { m_currentNode = nullptr; // Init temporary variables (do not leave uninitialized members) m_initialSegment = nullptr; m_lastLength = 0; m_lastStatus = TOO_SHORT; m_padToDieLength = 0; } MEANDER_PLACER::~MEANDER_PLACER() { } NODE* MEANDER_PLACER::CurrentNode( bool aLoopsRemoved ) const { if( !m_currentNode ) return m_world; return m_currentNode; } bool MEANDER_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem ) { if( !aStartItem || !aStartItem->OfKind( ITEM::SEGMENT_T | ITEM::ARC_T ) ) { Router()->SetFailureReason( _( "Please select a track whose length you want to tune." ) ); return false; } m_initialSegment = static_cast( aStartItem ); m_currentNode = nullptr; m_currentStart = getSnappedStartPoint( m_initialSegment, aP ); m_world = Router()->GetWorld()->Branch(); m_originLine = m_world->AssembleLine( m_initialSegment ); TOPOLOGY topo( m_world ); m_tunedPath = topo.AssembleTuningPath( m_initialSegment, &m_startPad_n, &m_endPad_n ); m_padToDieLength = 0; if( m_startPad_n ) m_padToDieLength += m_startPad_n->GetPadToDie(); if( m_endPad_n ) m_padToDieLength += m_endPad_n->GetPadToDie(); m_world->Remove( m_originLine ); m_currentWidth = m_originLine.Width(); m_currentEnd = VECTOR2I( 0, 0 ); return true; } long long int MEANDER_PLACER::origPathLength() const { return m_padToDieLength + lineLength( m_tunedPath, m_startPad_n, m_endPad_n ); } bool MEANDER_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem ) { return doMove( aP, aEndItem, m_settings.m_targetLength.Opt(), m_settings.m_targetLength.Min(), m_settings.m_targetLength.Max() ); } bool MEANDER_PLACER::doMove( const VECTOR2I& aP, ITEM* aEndItem, long long int aTargetLength, long long int aTargetMin, long long int aTargetMax ) { if( m_currentStart == aP ) return false; if( m_currentNode ) delete m_currentNode; m_currentNode = m_world->Branch(); SHAPE_LINE_CHAIN pre, tuned, post; m_originLine.CLine().Split( m_currentStart, aP, pre, tuned, post ); m_result = MEANDERED_LINE( this, false ); m_result.SetWidth( m_originLine.Width() ); m_result.SetBaselineOffset( 0 ); for( int i = 0; i < tuned.SegmentCount(); i++ ) { if( tuned.IsArcSegment( i ) ) { ssize_t arcIndex = tuned.ArcIndex( i ); m_result.AddArc( tuned.Arc( arcIndex ) ); i = tuned.NextShape( i ); // NextShape will return -1 if last shape if( i < 0 ) i = tuned.SegmentCount(); continue; } bool side = false; const SEG s = tuned.CSegment( i ); if( m_settings.m_initialSide == 0 ) side = s.Side( aP ) < 0; else side = m_settings.m_initialSide < 0; m_result.AddCorner( s.A ); m_result.MeanderSegment( s, side ); m_result.AddCorner( s.B ); } long long int lineLen = origPathLength(); m_lastLength = lineLen; m_lastStatus = TUNED; if( lineLen > m_settings.m_targetLength.Max() ) { m_lastStatus = TOO_LONG; } else { m_lastLength = lineLen - tuned.Length(); tuneLineLength( m_result, aTargetLength - lineLen ); } for( const ITEM* item : m_tunedPath.CItems() ) { if( const LINE* l = dyn_cast( item ) ) { PNS_DBG( Dbg(), AddItem, l, BLUE, 30000, wxT( "tuned-line" ) ); m_router->GetInterface()->DisplayPathLine( l->CLine(), 1 ); } } if( m_lastStatus != TOO_LONG ) { tuned.Clear(); for( MEANDER_SHAPE* m : m_result.Meanders() ) { if( m->Type() != MT_EMPTY ) { tuned.Append ( m->CLine( 0 ) ); } } m_lastLength += tuned.Length(); if( m_lastLength > aTargetMax ) m_lastStatus = TOO_LONG; else if( m_lastLength < aTargetMin ) m_lastStatus = TOO_SHORT; else m_lastStatus = TUNED; } m_finalShape.Clear(); m_finalShape.Append( pre ); m_finalShape.Append( tuned ); m_finalShape.Append( post ); m_finalShape.Simplify(); return true; } bool MEANDER_PLACER::FixRoute( const VECTOR2I& aP, ITEM* aEndItem, bool aForceFinish ) { if( !m_currentNode ) return false; m_currentTrace = LINE( m_originLine, m_finalShape ); m_currentNode->Add( m_currentTrace ); CommitPlacement(); return true; } bool MEANDER_PLACER::AbortPlacement() { m_world->KillChildren(); return true; } bool MEANDER_PLACER::HasPlacedAnything() const { return m_currentTrace.SegmentCount() > 0; } bool MEANDER_PLACER::CommitPlacement() { if( m_currentNode ) Router()->CommitRouting( m_currentNode ); m_currentNode = nullptr; return true; } bool MEANDER_PLACER::CheckFit( MEANDER_SHAPE* aShape ) { LINE l( m_originLine, aShape->CLine( 0 ) ); if( m_currentNode->CheckColliding( &l ) ) return false; int w = aShape->Width(); int clearance = w + m_settings.m_spacing; return m_result.CheckSelfIntersections( aShape, clearance ); } const ITEM_SET MEANDER_PLACER::Traces() { m_currentTrace = LINE( m_originLine, m_finalShape ); return ITEM_SET( &m_currentTrace ); } const VECTOR2I& MEANDER_PLACER::CurrentStart() const { return m_currentStart; } const VECTOR2I& MEANDER_PLACER::CurrentEnd() const { return m_currentEnd; } int MEANDER_PLACER::CurrentLayer() const { return m_initialSegment->Layers().Start(); } long long int MEANDER_PLACER::TuningResult() const { return m_lastLength; } MEANDER_PLACER::TUNING_STATUS MEANDER_PLACER::TuningStatus() const { return m_lastStatus; } }