/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * Copyright (C) 1992-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include // for KiROUND #include #include EDA_SHAPE::EDA_SHAPE( SHAPE_T aType, int aLineWidth, FILL_T aFill, bool eeWinding ) : m_endsSwapped( false ), m_shape( aType ), m_width( aLineWidth ), m_fill( aFill ), m_editState( 0 ), m_eeWinding( eeWinding ) { } EDA_SHAPE::~EDA_SHAPE() { } wxString EDA_SHAPE::ShowShape() const { switch( m_shape ) { case SHAPE_T::SEGMENT: return _( "Line" ); case SHAPE_T::RECT: return _( "Rect" ); case SHAPE_T::ARC: return _( "Arc" ); case SHAPE_T::CIRCLE: return _( "Circle" ); case SHAPE_T::BEZIER: return _( "Bezier Curve" ); case SHAPE_T::POLY: return _( "Polygon" ); default: return wxT( "??" ); } } wxString EDA_SHAPE::SHAPE_T_asString() const { switch( m_shape ) { case SHAPE_T::SEGMENT: return wxT( "S_SEGMENT" ); case SHAPE_T::RECT: return wxT( "S_RECT" ); case SHAPE_T::ARC: return wxT( "S_ARC" ); case SHAPE_T::CIRCLE: return wxT( "S_CIRCLE" ); case SHAPE_T::POLY: return wxT( "S_POLYGON" ); case SHAPE_T::BEZIER: return wxT( "S_CURVE" ); case SHAPE_T::LAST: return wxT( "!S_LAST!" ); // Synthetic value, but if we come across it then // we're going to want to know. } return wxEmptyString; // Just to quiet GCC. } void EDA_SHAPE::setPosition( const wxPoint& aPos ) { move( aPos - getPosition() ); } wxPoint EDA_SHAPE::getPosition() const { if( m_shape == SHAPE_T::ARC ) return getCenter(); else if( m_shape == SHAPE_T::POLY ) return (wxPoint) m_poly.CVertex( 0 ); else return m_start; } double EDA_SHAPE::GetLength() const { double length = 0.0; switch( m_shape ) { case SHAPE_T::BEZIER: for( size_t ii = 1; ii < m_bezierPoints.size(); ++ii ) length += GetLineLength( m_bezierPoints[ ii - 1], m_bezierPoints[ii] ); return length; case SHAPE_T::SEGMENT: return GetLineLength( GetStart(), GetEnd() ); case SHAPE_T::POLY: for( int ii = 0; ii < m_poly.COutline( 0 ).SegmentCount(); ii++ ) length += m_poly.COutline( 0 ).CSegment( ii ).Length(); return length; case SHAPE_T::ARC: return 2 * M_PI * GetRadius() * ( GetArcAngle() / 3600.0 ); default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return 0.0; } } void EDA_SHAPE::move( const wxPoint& aMoveVector ) { switch ( m_shape ) { case SHAPE_T::ARC: case SHAPE_T::SEGMENT: case SHAPE_T::RECT: case SHAPE_T::CIRCLE: m_start += aMoveVector; m_end += aMoveVector; m_arcCenter += aMoveVector; break; case SHAPE_T::POLY: m_poly.Move( VECTOR2I( aMoveVector ) ); break; case SHAPE_T::BEZIER: m_start += aMoveVector; m_end += aMoveVector; m_bezierC1 += aMoveVector; m_bezierC2 += aMoveVector; for( wxPoint& pt : m_bezierPoints) pt += aMoveVector; break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; } } void EDA_SHAPE::scale( double aScale ) { auto scalePt = [&]( wxPoint& pt ) { pt.x = KiROUND( pt.x * aScale ); pt.y = KiROUND( pt.y * aScale ); }; switch( m_shape ) { case SHAPE_T::ARC: case SHAPE_T::SEGMENT: case SHAPE_T::RECT: scalePt( m_start ); scalePt( m_end ); scalePt( m_arcCenter ); break; case SHAPE_T::CIRCLE: // ring or circle scalePt( m_start ); m_end.x = m_start.x + KiROUND( GetRadius() * aScale ); m_end.y = m_start.y; break; case SHAPE_T::POLY: // polygon { std::vector pts; for( const VECTOR2I& pt : m_poly.Outline( 0 ).CPoints() ) { pts.emplace_back( pt ); scalePt( pts.back() ); } SetPolyPoints( pts ); } break; case SHAPE_T::BEZIER: scalePt( m_start ); scalePt( m_end ); scalePt( m_bezierC1 ); scalePt( m_bezierC2 ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; } } void EDA_SHAPE::rotate( const wxPoint& aRotCentre, double aAngle ) { switch( m_shape ) { case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: RotatePoint( &m_start, aRotCentre, aAngle ); RotatePoint( &m_end, aRotCentre, aAngle ); break; case SHAPE_T::ARC: RotatePoint( &m_start, aRotCentre, aAngle ); RotatePoint( &m_end, aRotCentre, aAngle ); RotatePoint( &m_arcCenter, aRotCentre, aAngle ); break; case SHAPE_T::RECT: if( KiROUND( aAngle ) % 900 == 0 ) { RotatePoint( &m_start, aRotCentre, aAngle ); RotatePoint( &m_end, aRotCentre, aAngle ); break; } // Convert non-cartesian-rotated rect to a diamond m_shape = SHAPE_T::POLY; m_poly.RemoveAllContours(); m_poly.NewOutline(); m_poly.Append( m_start ); m_poly.Append( m_end.x, m_start.y ); m_poly.Append( m_end ); m_poly.Append( m_start.x, m_end.y ); KI_FALLTHROUGH; case SHAPE_T::POLY: m_poly.Rotate( -DECIDEG2RAD( aAngle ), VECTOR2I( aRotCentre ) ); break; case SHAPE_T::BEZIER: RotatePoint( &m_start, aRotCentre, aAngle); RotatePoint( &m_end, aRotCentre, aAngle); RotatePoint( &m_bezierC1, aRotCentre, aAngle); RotatePoint( &m_bezierC2, aRotCentre, aAngle); for( wxPoint& pt : m_bezierPoints ) RotatePoint( &pt, aRotCentre, aAngle); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; } } void EDA_SHAPE::flip( const wxPoint& aCentre, bool aFlipLeftRight ) { switch ( m_shape ) { case SHAPE_T::SEGMENT: case SHAPE_T::RECT: if( aFlipLeftRight ) { m_start.x = aCentre.x - ( m_start.x - aCentre.x ); m_end.x = aCentre.x - ( m_end.x - aCentre.x ); } else { m_start.y = aCentre.y - ( m_start.y - aCentre.y ); m_end.y = aCentre.y - ( m_end.y - aCentre.y ); } std::swap( m_start, m_end ); break; case SHAPE_T::CIRCLE: if( aFlipLeftRight ) { m_start.x = aCentre.x - ( m_start.x - aCentre.x ); m_end.x = aCentre.x - ( m_end.x - aCentre.x ); } else { m_start.y = aCentre.y - ( m_start.y - aCentre.y ); m_end.y = aCentre.y - ( m_end.y - aCentre.y ); } break; case SHAPE_T::ARC: if( aFlipLeftRight ) { m_start.x = aCentre.x - ( m_start.x - aCentre.x ); m_end.x = aCentre.x - ( m_end.x - aCentre.x ); m_arcCenter.x = aCentre.x - ( m_arcCenter.x - aCentre.x ); } else { m_start.y = aCentre.y - ( m_start.y - aCentre.y ); m_end.y = aCentre.y - ( m_end.y - aCentre.y ); m_arcCenter.y = aCentre.y - ( m_arcCenter.y - aCentre.y ); } std::swap( m_start, m_end ); break; case SHAPE_T::POLY: m_poly.Mirror( aFlipLeftRight, !aFlipLeftRight, VECTOR2I( aCentre ) ); break; case SHAPE_T::BEZIER: if( aFlipLeftRight ) { m_start.x = aCentre.x - ( m_start.x - aCentre.x ); m_end.x = aCentre.x - ( m_end.x - aCentre.x ); m_bezierC1.x = aCentre.x - ( m_bezierC1.x - aCentre.x ); m_bezierC2.x = aCentre.x - ( m_bezierC2.x - aCentre.x ); } else { m_start.y = aCentre.y - ( m_start.y - aCentre.y ); m_end.y = aCentre.y - ( m_end.y - aCentre.y ); m_bezierC1.y = aCentre.y - ( m_bezierC1.y - aCentre.y ); m_bezierC2.y = aCentre.y - ( m_bezierC2.y - aCentre.y ); } // Rebuild the poly points shape { std::vector ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end }; BEZIER_POLY converter( ctrlPoints ); converter.GetPoly( m_bezierPoints, m_width ); } break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; } } void EDA_SHAPE::RebuildBezierToSegmentsPointsList( int aMinSegLen ) { // Has meaning only for S_CURVE DRAW_SEGMENT shape if( m_shape != SHAPE_T::BEZIER ) { m_bezierPoints.clear(); return; } // Rebuild the m_BezierPoints vertex list that approximate the Bezier curve m_bezierPoints = buildBezierToSegmentsPointsList( aMinSegLen ); } const std::vector EDA_SHAPE::buildBezierToSegmentsPointsList( int aMinSegLen ) const { std::vector bezierPoints; // Rebuild the m_BezierPoints vertex list that approximate the Bezier curve std::vector ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end }; BEZIER_POLY converter( ctrlPoints ); converter.GetPoly( bezierPoints, aMinSegLen ); return bezierPoints; } wxPoint EDA_SHAPE::getCenter() const { switch( m_shape ) { case SHAPE_T::ARC: return m_arcCenter; case SHAPE_T::CIRCLE: return m_start; case SHAPE_T::SEGMENT: // Midpoint of the line return ( m_start + m_end ) / 2; case SHAPE_T::POLY: case SHAPE_T::RECT: case SHAPE_T::BEZIER: return getBoundingBox().Centre(); default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return wxPoint(); } } void EDA_SHAPE::SetCenter( const wxPoint& aCenter ) { switch( m_shape ) { case SHAPE_T::ARC: m_arcCenter = aCenter; break; case SHAPE_T::CIRCLE: m_start = aCenter; break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } } wxPoint EDA_SHAPE::GetArcMid() const { // If none of the input data have changed since we loaded the arc, // keep the original mid point data to minimize churn if( m_arcMidData.start == m_start && m_arcMidData.end == m_end && m_arcMidData.center == m_arcCenter ) return m_arcMidData.mid; wxPoint mid = m_start; RotatePoint( &mid, m_arcCenter, -GetArcAngle() / 2.0 ); return mid; } void EDA_SHAPE::CalcArcAngles( double& aStartAngle, double& aEndAngle ) const { VECTOR2D startRadial( GetStart() - getCenter() ); VECTOR2D endRadial( GetEnd() - getCenter() ); aStartAngle = 180.0 / M_PI * atan2( startRadial.y, startRadial.x ); aEndAngle = 180.0 / M_PI * atan2( endRadial.y, endRadial.x ); if( aEndAngle == aStartAngle ) aEndAngle = aStartAngle + 360.0; // ring, not null if( aStartAngle > aEndAngle ) { if( aEndAngle < 0 ) aEndAngle = NormalizeAngleDegrees( aEndAngle, 0.0, 360.0 ); else aStartAngle = NormalizeAngleDegrees( aStartAngle, -360.0, 0.0 ); } } int EDA_SHAPE::GetRadius() const { double radius = 0.0; switch( m_shape ) { case SHAPE_T::ARC: radius = GetLineLength( m_arcCenter, m_start ); break; case SHAPE_T::CIRCLE: radius = GetLineLength( m_start, m_end ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } // don't allow degenerate circles/arcs return std::max( 1, KiROUND( radius ) ); } void EDA_SHAPE::SetCachedArcData( const wxPoint& aStart, const wxPoint& aMid, const wxPoint& aEnd, const wxPoint& aCenter ) { m_arcMidData.start = aStart; m_arcMidData.end = aEnd; m_arcMidData.center = aCenter; m_arcMidData.mid = aMid; } void EDA_SHAPE::SetArcGeometry( const wxPoint& aStart, const wxPoint& aMid, const wxPoint& aEnd ) { m_arcMidData = {}; m_start = aStart; m_end = aEnd; m_arcCenter = CalcArcCenter( aStart, aMid, aEnd ); wxPoint new_mid = GetArcMid(); m_endsSwapped = false; // Watch the ordering here. GetArcMid above needs to be called prior to initializing the // m_arcMidData structure in order to ensure we get the calculated variant, not the cached SetCachedArcData( aStart, aMid, aEnd, m_arcCenter ); /* * If the input winding doesn't match our internal winding, the calculated midpoint will end * up on the other side of the arc. In this case, we need to flip the start/end points and * flag this change for the system. */ VECTOR2D dist( new_mid - aMid ); VECTOR2D dist2( new_mid - m_arcCenter ); if( dist.SquaredEuclideanNorm() > dist2.SquaredEuclideanNorm() ) { std::swap( m_start, m_end ); m_endsSwapped = true; } } double EDA_SHAPE::GetArcAngle() const { double startAngle; double endAngle; CalcArcAngles( startAngle, endAngle ); return ( endAngle - startAngle ) * 10; } void EDA_SHAPE::SetArcAngleAndEnd( double aAngle, bool aCheckNegativeAngle ) { m_end = m_start; RotatePoint( &m_end, m_arcCenter, -NormalizeAngle360Max( aAngle ) ); if( aCheckNegativeAngle && aAngle < 0 ) { std::swap( m_start, m_end ); m_endsSwapped = true; } } void EDA_SHAPE::ShapeGetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { EDA_UNITS units = aFrame->GetUserUnits(); ORIGIN_TRANSFORMS originTransforms = aFrame->GetOriginTransforms(); wxString msg; wxString shape = _( "Shape" ); switch( m_shape ) { case SHAPE_T::CIRCLE: aList.emplace_back( shape, _( "Circle" ) ); msg = MessageTextFromValue( units, GetRadius() ); aList.emplace_back( _( "Radius" ), msg ); break; case SHAPE_T::ARC: aList.emplace_back( shape, _( "Arc" ) ); msg.Printf( wxT( "%.1f" ), GetArcAngle() / 10.0 ); aList.emplace_back( _( "Angle" ), msg ); msg = MessageTextFromValue( units, GetRadius() ); aList.emplace_back( _( "Radius" ), msg ); break; case SHAPE_T::BEZIER: aList.emplace_back( shape, _( "Curve" ) ); msg = MessageTextFromValue( units, GetLength() ); aList.emplace_back( _( "Length" ), msg ); break; case SHAPE_T::POLY: aList.emplace_back( shape, _( "Polygon" ) ); msg.Printf( wxT( "%d" ), GetPolyShape().Outline(0).PointCount() ); aList.emplace_back( _( "Points" ), msg ); break; case SHAPE_T::RECT: aList.emplace_back( shape, _( "Rectangle" ) ); msg = MessageTextFromValue( units, std::abs( GetEnd().x - GetStart().x ) ); aList.emplace_back( _( "Width" ), msg ); msg = MessageTextFromValue( units, std::abs( GetEnd().y - GetStart().y ) ); aList.emplace_back( _( "Height" ), msg ); break; case SHAPE_T::SEGMENT: { aList.emplace_back( shape, _( "Segment" ) ); msg = MessageTextFromValue( units, GetLineLength( GetStart(), GetEnd() ) ); aList.emplace_back( _( "Length" ), msg ); // angle counter-clockwise from 3'o-clock const double deg = RAD2DEG( atan2( (double)( GetStart().y - GetEnd().y ), (double)( GetEnd().x - GetStart().x ) ) ); aList.emplace_back( _( "Angle" ), wxString::Format( "%.1f", deg ) ); } break; default: aList.emplace_back( shape, _( "Unrecognized" ) ); break; } aList.emplace_back( _( "Line width" ), MessageTextFromValue( units, m_width ) ); } const EDA_RECT EDA_SHAPE::getBoundingBox() const { EDA_RECT bbox; switch( m_shape ) { case SHAPE_T::RECT: for( wxPoint& pt : GetRectCorners() ) bbox.Merge( pt ); break; case SHAPE_T::SEGMENT: bbox.SetOrigin( GetStart() ); bbox.SetEnd( GetEnd() ); break; case SHAPE_T::CIRCLE: bbox.SetOrigin( GetStart() ); bbox.Inflate( GetRadius() ); break; case SHAPE_T::ARC: computeArcBBox( bbox ); break; case SHAPE_T::POLY: if( m_poly.IsEmpty() ) break; for( auto iter = m_poly.CIterate(); iter; iter++ ) { wxPoint pt( iter->x, iter->y ); RotatePoint( &pt, getParentOrientation() ); pt += getParentPosition(); bbox.Merge( pt ); } break; case SHAPE_T::BEZIER: bbox.SetOrigin( GetStart() ); bbox.Merge( GetBezierC1() ); bbox.Merge( GetBezierC2() ); bbox.Merge( GetEnd() ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; } bbox.Inflate( std::max( 0, m_width / 2 ) ); bbox.Normalize(); return bbox; } bool EDA_SHAPE::hitTest( const wxPoint& aPosition, int aAccuracy ) const { int maxdist = aAccuracy; if( m_width > 0 ) maxdist += m_width / 2; switch( m_shape ) { case SHAPE_T::CIRCLE: { int radius = GetRadius(); int dist = KiROUND( EuclideanNorm( aPosition - getCenter() ) ); if( IsFilled() ) return dist <= radius + maxdist; // Filled circle hit-test else return abs( radius - dist ) <= maxdist; // Ring hit-test } case SHAPE_T::ARC: { if( EuclideanNorm( aPosition - m_start ) <= maxdist ) return true; if( EuclideanNorm( aPosition - m_end ) <= maxdist ) return true; wxPoint relPos = aPosition - getCenter(); int radius = GetRadius(); int dist = KiROUND( EuclideanNorm( relPos ) ); if( abs( radius - dist ) <= maxdist ) { double startAngle; double endAngle; CalcArcAngles( startAngle, endAngle ); if( m_eeWinding && NormalizeAngleDegrees( startAngle - endAngle, -180.0, 180.0 ) > 0 ) std::swap( startAngle, endAngle ); double relPosAngle = 180.0 / M_PI * atan2( relPos.y, relPos.x ); startAngle = NormalizeAngleDegrees( startAngle, 0.0, 360.0 ); endAngle = NormalizeAngleDegrees( endAngle, 0.0, 360.0 ); relPosAngle = NormalizeAngleDegrees( relPosAngle, 0.0, 360.0 ); if( endAngle > startAngle ) return relPosAngle >= startAngle && relPosAngle <= endAngle; else return relPosAngle >= startAngle || relPosAngle <= endAngle; } return false; } case SHAPE_T::BEZIER: const_cast( this )->RebuildBezierToSegmentsPointsList( m_width ); for( unsigned int i= 1; i < m_bezierPoints.size(); i++) { if( TestSegmentHit( aPosition, m_bezierPoints[ i - 1], m_bezierPoints[i], maxdist ) ) return true; } return false; case SHAPE_T::SEGMENT: return TestSegmentHit( aPosition, GetStart(), GetEnd(), maxdist ); case SHAPE_T::RECT: if( IsFilled() ) // Filled rect hit-test { SHAPE_POLY_SET poly; poly.NewOutline(); for( const wxPoint& pt : GetRectCorners() ) poly.Append( pt ); return poly.Collide( VECTOR2I( aPosition ), maxdist ); } else // Open rect hit-test { std::vector pts = GetRectCorners(); return TestSegmentHit( aPosition, pts[0], pts[1], maxdist ) || TestSegmentHit( aPosition, pts[1], pts[2], maxdist ) || TestSegmentHit( aPosition, pts[2], pts[3], maxdist ) || TestSegmentHit( aPosition, pts[3], pts[0], maxdist ); } case SHAPE_T::POLY: if( IsFilled() ) { return m_poly.Collide( VECTOR2I( aPosition ), maxdist ); } else { SHAPE_POLY_SET::VERTEX_INDEX dummy; return m_poly.CollideEdge( VECTOR2I( aPosition ), dummy, maxdist ); } default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return false; } } bool EDA_SHAPE::hitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const { EDA_RECT arect = aRect; arect.Normalize(); arect.Inflate( aAccuracy ); EDA_RECT arcRect; EDA_RECT bb = getBoundingBox(); switch( m_shape ) { case SHAPE_T::CIRCLE: // Test if area intersects or contains the circle: if( aContained ) { return arect.Contains( bb ); } else { // If the rectangle does not intersect the bounding box, this is a much quicker test if( !aRect.Intersects( bb ) ) { return false; } else { return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() ); } } case SHAPE_T::ARC: // Test for full containment of this arc in the rect if( aContained ) { return arect.Contains( bb ); } // Test if the rect crosses the arc else { arcRect = bb.Common( arect ); /* All following tests must pass: * 1. Rectangle must intersect arc BoundingBox * 2. Rectangle must cross the outside of the arc */ return arcRect.Intersects( arect ) && arcRect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() ); } case SHAPE_T::RECT: if( aContained ) { return arect.Contains( bb ); } else { std::vector pts = GetRectCorners(); // Account for the width of the lines arect.Inflate( GetWidth() / 2 ); return ( arect.Intersects( pts[0], pts[1] ) || arect.Intersects( pts[1], pts[2] ) || arect.Intersects( pts[2], pts[3] ) || arect.Intersects( pts[3], pts[0] ) ); } case SHAPE_T::SEGMENT: if( aContained ) { return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() ); } else { // Account for the width of the line arect.Inflate( GetWidth() / 2 ); return arect.Intersects( GetStart(), GetEnd() ); } case SHAPE_T::POLY: if( aContained ) { return arect.Contains( bb ); } else { // Fast test: if aRect is outside the polygon bounding box, // rectangles cannot intersect if( !arect.Intersects( bb ) ) return false; // Account for the width of the line arect.Inflate( GetWidth() / 2 ); // Polygons in footprints use coordinates relative to the footprint. // Therefore, instead of using m_poly, we make a copy which is translated // to the actual location in the board. double orientation = 0.0; wxPoint offset = getParentPosition(); if( getParentOrientation() ) orientation = -DECIDEG2RAD( getParentOrientation() ); SHAPE_LINE_CHAIN poly = m_poly.Outline( 0 ); poly.Rotate( orientation ); poly.Move( offset ); int count = poly.GetPointCount(); for( int ii = 0; ii < count; ii++ ) { VECTOR2I vertex = poly.GetPoint( ii ); // Test if the point is within aRect if( arect.Contains( ( wxPoint ) vertex ) ) return true; if( ii + 1 < count ) { VECTOR2I vertexNext = poly.GetPoint( ii + 1 ); // Test if this edge intersects aRect if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) ) return true; } else if( poly.IsClosed() ) { VECTOR2I vertexNext = poly.GetPoint( 0 ); // Test if this edge intersects aRect if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) ) return true; } } return false; } case SHAPE_T::BEZIER: if( aContained ) { return arect.Contains( bb ); } else { // Fast test: if aRect is outside the polygon bounding box, // rectangles cannot intersect if( !arect.Intersects( bb ) ) return false; // Account for the width of the line arect.Inflate( GetWidth() / 2 ); unsigned count = m_bezierPoints.size(); for( unsigned ii = 1; ii < count; ii++ ) { wxPoint vertex = m_bezierPoints[ ii - 1]; wxPoint vertexNext = m_bezierPoints[ii]; // Test if the point is within aRect if( arect.Contains( ( wxPoint ) vertex ) ) return true; // Test if this edge intersects aRect if( arect.Intersects( vertex, vertexNext ) ) return true; } return false; } default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return false; } } std::vector EDA_SHAPE::GetRectCorners() const { std::vector pts; wxPoint topLeft = GetStart(); wxPoint botRight = GetEnd(); // Un-rotate rect topLeft and botRight if( KiROUND( getParentOrientation() ) % 900 != 0 ) { topLeft -= getParentPosition(); RotatePoint( &topLeft, -getParentOrientation() ); botRight -= getParentPosition(); RotatePoint( &botRight, -getParentOrientation() ); } // Set up the un-rotated 4 corners pts.emplace_back( topLeft ); pts.emplace_back( botRight.x, topLeft.y ); pts.emplace_back( botRight ); pts.emplace_back( topLeft.x, botRight.y ); // Now re-rotate the 4 corners to get a diamond if( KiROUND( getParentOrientation() ) % 900 != 0 ) { for( wxPoint& pt : pts ) { RotatePoint( &pt, getParentOrientation() ); pt += getParentPosition(); } } return pts; } void EDA_SHAPE::computeArcBBox( EDA_RECT& aBBox ) const { wxPoint start = m_start; wxPoint end = m_end; double t1, t2; CalcArcAngles( t1, t2 ); if( m_eeWinding && NormalizeAngleDegrees( t1 - t2, -180.0, 180.0 ) > 0 ) std::swap( start, end ); // Do not include the center, which is not necessarily inside the BB of an arc with a small // included angle aBBox.SetOrigin( start ); aBBox.Merge( end ); // Determine the starting quarter // 0 right-bottom // 1 left-bottom // 2 left-top // 3 right-top unsigned int quarter; if( start.x < m_arcCenter.x ) { if( start.y <= m_arcCenter.y ) quarter = 2; else quarter = 1; } else if( start.x == m_arcCenter.x ) { if( start.y < m_arcCenter.y ) quarter = 3; else quarter = 1; } else { if( start.y < m_arcCenter.y ) quarter = 3; else quarter = 0; } int radius = GetRadius(); VECTOR2I startRadial = start - m_arcCenter; VECTOR2I endRadial = end - m_arcCenter; double angleStart = ArcTangente( startRadial.y, startRadial.x ); double arcAngle = RAD2DECIDEG( endRadial.Angle() - startRadial.Angle() ); int angle = (int) NormalizeAnglePos( angleStart ) % 900 + NormalizeAnglePos( arcAngle ); while( angle > 900 ) { switch( quarter ) { case 0: aBBox.Merge( wxPoint( m_arcCenter.x, m_arcCenter.y + radius ) ); break; // down case 1: aBBox.Merge( wxPoint( m_arcCenter.x - radius, m_arcCenter.y ) ); break; // left case 2: aBBox.Merge( wxPoint( m_arcCenter.x, m_arcCenter.y - radius ) ); break; // up case 3: aBBox.Merge( wxPoint( m_arcCenter.x + radius, m_arcCenter.y ) ); break; // right } ++quarter %= 4; angle -= 900; } } void EDA_SHAPE::SetPolyPoints( const std::vector& aPoints ) { m_poly.RemoveAllContours(); m_poly.NewOutline(); for ( const wxPoint& p : aPoints ) m_poly.Append( p.x, p.y ); } std::vector EDA_SHAPE::MakeEffectiveShapes() const { std::vector effectiveShapes; switch( m_shape ) { case SHAPE_T::ARC: effectiveShapes.emplace_back( new SHAPE_ARC( m_arcCenter, m_start, GetArcAngle() / 10.0, m_width ) ); break; case SHAPE_T::SEGMENT: effectiveShapes.emplace_back( new SHAPE_SEGMENT( m_start, m_end, m_width ) ); break; case SHAPE_T::RECT: { std::vector pts = GetRectCorners(); if( IsFilled() ) effectiveShapes.emplace_back( new SHAPE_SIMPLE( pts ) ); if( m_width > 0 || !IsFilled() ) { effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[0], pts[1], m_width ) ); effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[1], pts[2], m_width ) ); effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[2], pts[3], m_width ) ); effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[3], pts[0], m_width ) ); } } break; case SHAPE_T::CIRCLE: { if( IsFilled() ) effectiveShapes.emplace_back( new SHAPE_CIRCLE( getCenter(), GetRadius() ) ); if( m_width > 0 || !IsFilled() ) { // SHAPE_CIRCLE has no ConvertToPolyline() method, so use a 360.0 SHAPE_ARC SHAPE_ARC circle( getCenter(), GetEnd(), 360.0 ); SHAPE_LINE_CHAIN l = circle.ConvertToPolyline(); for( int i = 0; i < l.SegmentCount(); i++ ) { effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( i ).A, l.Segment( i ).B, m_width ) ); } } break; } case SHAPE_T::BEZIER: { auto bezierPoints = buildBezierToSegmentsPointsList( GetWidth() ); wxPoint start_pt = bezierPoints[0]; for( unsigned int jj = 1; jj < bezierPoints.size(); jj++ ) { wxPoint end_pt = bezierPoints[jj]; effectiveShapes.emplace_back( new SHAPE_SEGMENT( start_pt, end_pt, m_width ) ); start_pt = end_pt; } break; } case SHAPE_T::POLY: { if( GetPolyShape().OutlineCount() == 0 ) // malformed/empty polygon break; SHAPE_LINE_CHAIN l = GetPolyShape().COutline( 0 ); l.Rotate( -DECIDEG2RAD( getParentOrientation() ) ); l.Move( getParentPosition() ); if( IsFilled() ) effectiveShapes.emplace_back( new SHAPE_SIMPLE( l ) ); if( m_width > 0 || !IsFilled() ) { for( int i = 0; i < l.SegmentCount(); i++ ) effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( i ), m_width ) ); } } break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; } return effectiveShapes; } void EDA_SHAPE::DupPolyPointsList( std::vector& aBuffer ) const { if( m_poly.OutlineCount() ) { int pointCount = m_poly.COutline( 0 ).PointCount(); if( pointCount ) { aBuffer.reserve( pointCount ); for ( auto iter = m_poly.CIterate(); iter; iter++ ) aBuffer.emplace_back( iter->x, iter->y ); } } } bool EDA_SHAPE::IsPolyShapeValid() const { // return true if the polygonal shape is valid (has more than 2 points) if( GetPolyShape().OutlineCount() == 0 ) return false; const SHAPE_LINE_CHAIN& outline = ( (SHAPE_POLY_SET&)GetPolyShape() ).Outline( 0 ); return outline.PointCount() > 2; } int EDA_SHAPE::GetPointCount() const { // return the number of corners of the polygonal shape // this shape is expected to be only one polygon without hole if( GetPolyShape().OutlineCount() ) return GetPolyShape().VertexCount( 0 ); return 0; } void EDA_SHAPE::beginEdit( const wxPoint& aPosition ) { switch( GetShape() ) { case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: case SHAPE_T::RECT: SetStart( aPosition ); SetEnd( aPosition ); break; case SHAPE_T::ARC: SetArcGeometry( aPosition, aPosition, aPosition ); m_editState = 1; break; case SHAPE_T::POLY: m_poly.NewOutline(); m_poly.Outline( 0 ).SetClosed( false ); // Start and end of the first segment (co-located for now) m_poly.Outline( 0 ).Append( aPosition ); m_poly.Outline( 0 ).Append( aPosition, true ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } } bool EDA_SHAPE::continueEdit( const wxPoint& aPosition ) { switch( GetShape() ) { case SHAPE_T::ARC: case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: case SHAPE_T::RECT: return false; case SHAPE_T::POLY: { SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 ); // do not add zero-length segments if( poly.CPoint( poly.GetPointCount() - 2 ) != poly.CLastPoint() ) poly.Append( aPosition, true ); } return true; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return false; } } void EDA_SHAPE::calcEdit( const wxPoint& aPosition ) { #define sq( x ) pow( x, 2 ) switch( GetShape() ) { case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: case SHAPE_T::RECT: SetEnd( aPosition ); break; case SHAPE_T::ARC: { int radius = GetRadius(); // Edit state 0: drawing: place start // Edit state 1: drawing: place end (center calculated for 90-degree subtended angle) // Edit state 2: point edit: move start (center calculated for invariant subtended angle) // Edit state 3: point edit: move end (center calculated for invariant subtended angle) // Edit state 4: point edit: move center // Edit state 5: point edit: move arc-mid-point switch( m_editState ) { case 0: SetArcGeometry( aPosition, aPosition, aPosition ); return; case 1: m_end = aPosition; radius = KiROUND( sqrt( sq( GetLineLength( m_start, m_end ) ) / 2.0 ) ); break; case 2: case 3: { wxPoint v = m_start - m_end; double chordBefore = sq( v.x ) + sq( v.y ); if( m_editState == 2 ) m_start = aPosition; else m_end = aPosition; v = m_start - m_end; double chordAfter = sq( v.x ) + sq( v.y ); double ratio = chordAfter / chordBefore; if( ratio != 0 ) { radius = std::max( int( sqrt( sq( radius ) * ratio ) ) + 1, int( sqrt( chordAfter ) / 2 ) + 1 ); } } break; case 4: { double chordA = GetLineLength( m_start, aPosition ); double chordB = GetLineLength( m_end, aPosition ); radius = int( ( chordA + chordB ) / 2.0 ) + 1; } break; case 5: SetArcGeometry( GetStart(), aPosition, GetEnd() ); return; } // Calculate center based on start, end, and radius // // Let 'l' be the length of the chord and 'm' the middle point of the chord double l = GetLineLength( m_start, m_end ); wxPoint m = ( m_start + m_end ) / 2; // Calculate 'd', the vector from the chord midpoint to the center wxPoint d; d.x = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_start.y - m_end.y ) / l ); d.y = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_end.x - m_start.x ) / l ); wxPoint c1 = m + d; wxPoint c2 = m - d; // Solution gives us 2 centers; we need to pick one: switch( m_editState ) { case 1: { // Keep center clockwise from chord while drawing wxPoint chordVector = m_end - m_start; double chordAngle = ArcTangente( chordVector.y, chordVector.x ); NORMALIZE_ANGLE_POS( chordAngle ); wxPoint c1Test = c1; RotatePoint( &c1Test, m_start, -chordAngle ); m_arcCenter = c1Test.x > 0 ? c2 : c1; } break; case 2: case 3: // Pick the one closer to the old center m_arcCenter = GetLineLength( c1, m_arcCenter ) < GetLineLength( c2, m_arcCenter ) ? c1 : c2; break; case 4: // Pick the one closer to the mouse position m_arcCenter = GetLineLength( c1, aPosition ) < GetLineLength( c2, aPosition ) ? c1 : c2; break; } } break; case SHAPE_T::POLY: m_poly.Outline( 0 ).SetPoint( m_poly.Outline( 0 ).GetPointCount() - 1, aPosition ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } } void EDA_SHAPE::endEdit( bool aClosed ) { switch( GetShape() ) { case SHAPE_T::ARC: case SHAPE_T::SEGMENT: case SHAPE_T::CIRCLE: case SHAPE_T::RECT: break; case SHAPE_T::POLY: { SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 ); // do not include last point twice if( poly.GetPointCount() > 2 ) { if( poly.CPoint( poly.GetPointCount() - 2 ) == poly.CLastPoint() ) { poly.SetClosed( aClosed ); poly.Remove( poly.GetPointCount() - 1 ); } } } break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } } void EDA_SHAPE::SwapShape( EDA_SHAPE* aImage ) { EDA_SHAPE* image = dynamic_cast( aImage ); assert( image ); std::swap( m_width, image->m_width ); std::swap( m_start, image->m_start ); std::swap( m_end, image->m_end ); std::swap( m_arcCenter, image->m_arcCenter ); std::swap( m_shape, image->m_shape ); std::swap( m_bezierC1, image->m_bezierC1 ); std::swap( m_bezierC2, image->m_bezierC2 ); std::swap( m_bezierPoints, image->m_bezierPoints ); std::swap( m_poly, image->m_poly ); } int EDA_SHAPE::Compare( const EDA_SHAPE* aOther ) const { #define EPSILON 2 // Should be enough for rounding errors on calculated items #define TEST( a, b ) { if( a != b ) return a - b; } #define TEST_E( a, b ) { if( abs( a - b ) > EPSILON ) return a - b; } #define TEST_PT( a, b ) { TEST_E( a.x, b.x ); TEST_E( a.y, b.y ); } TEST_PT( m_start, aOther->m_start ); TEST_PT( m_end, aOther->m_end ); TEST( (int) m_shape, (int) aOther->m_shape ); if( m_shape == SHAPE_T::ARC ) { TEST_PT( m_arcCenter, aOther->m_arcCenter ); } else if( m_shape == SHAPE_T::BEZIER ) { TEST_PT( m_bezierC1, aOther->m_bezierC1 ); TEST_PT( m_bezierC2, aOther->m_bezierC2 ); } else if( m_shape == SHAPE_T::POLY ) { TEST( m_poly.TotalVertices(), aOther->m_poly.TotalVertices() ); for( int ii = 0; ii < m_poly.TotalVertices(); ++ii ) TEST_PT( m_poly.CVertex( ii ), aOther->m_poly.CVertex( ii ) ); } TEST_E( m_width, aOther->m_width ); TEST( (int) m_fill, (int) aOther->m_fill ); return 0; } void EDA_SHAPE::TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, int aClearanceValue, int aError, ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const { int width = ignoreLineWidth ? 0 : m_width; width += 2 * aClearanceValue; switch( m_shape ) { case SHAPE_T::CIRCLE: if( IsFilled() ) { TransformCircleToPolygon( aCornerBuffer, getCenter(), GetRadius() + width / 2, aError, aErrorLoc ); } else { TransformRingToPolygon( aCornerBuffer, getCenter(), GetRadius(), width, aError, aErrorLoc ); } break; case SHAPE_T::RECT: { std::vector pts = GetRectCorners(); if( IsFilled() ) { aCornerBuffer.NewOutline(); for( const wxPoint& pt : pts ) aCornerBuffer.Append( pt ); } if( width > 0 || !IsFilled() ) { // Add in segments TransformOvalToPolygon( aCornerBuffer, pts[0], pts[1], width, aError, aErrorLoc ); TransformOvalToPolygon( aCornerBuffer, pts[1], pts[2], width, aError, aErrorLoc ); TransformOvalToPolygon( aCornerBuffer, pts[2], pts[3], width, aError, aErrorLoc ); TransformOvalToPolygon( aCornerBuffer, pts[3], pts[0], width, aError, aErrorLoc ); } break; } case SHAPE_T::ARC: TransformArcToPolygon( aCornerBuffer, GetStart(), GetArcMid(), GetEnd(), width, aError, aErrorLoc ); break; case SHAPE_T::SEGMENT: TransformOvalToPolygon( aCornerBuffer, GetStart(), GetEnd(), width, aError, aErrorLoc ); break; case SHAPE_T::POLY: { if( !IsPolyShapeValid() ) break; // The polygon is expected to be a simple polygon; not self intersecting, no hole. double orientation = getParentOrientation(); wxPoint offset = getParentPosition(); // Build the polygon with the actual position and orientation: std::vector poly; DupPolyPointsList( poly ); for( wxPoint& point : poly ) { RotatePoint( &point, orientation ); point += offset; } if( IsFilled() ) { aCornerBuffer.NewOutline(); for( const wxPoint& point : poly ) aCornerBuffer.Append( point.x, point.y ); } if( width > 0 || !IsFilled() ) { wxPoint pt1( poly[ poly.size() - 1] ); for( const wxPoint& pt2 : poly ) { if( pt2 != pt1 ) TransformOvalToPolygon( aCornerBuffer, pt1, pt2, width, aError, aErrorLoc ); pt1 = pt2; } } break; } case SHAPE_T::BEZIER: { std::vector ctrlPts = { GetStart(), GetBezierC1(), GetBezierC2(), GetEnd() }; BEZIER_POLY converter( ctrlPts ); std::vector< wxPoint> poly; converter.GetPoly( poly, m_width ); for( unsigned ii = 1; ii < poly.size(); ii++ ) { TransformOvalToPolygon( aCornerBuffer, poly[ii - 1], poly[ii], width, aError, aErrorLoc ); } break; } default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); break; } } static struct EDA_SHAPE_DESC { EDA_SHAPE_DESC() { ENUM_MAP::Instance() .Map( SHAPE_T::SEGMENT, _HKI( "Segment" ) ) .Map( SHAPE_T::RECT, _HKI( "Rectangle" ) ) .Map( SHAPE_T::ARC, _HKI( "Arc" ) ) .Map( SHAPE_T::CIRCLE, _HKI( "Circle" ) ) .Map( SHAPE_T::POLY, _HKI( "Polygon" ) ) .Map( SHAPE_T::BEZIER, _HKI( "Bezier" ) ); ENUM_MAP::Instance() .Map( PLOT_DASH_TYPE::DEFAULT, _HKI( "Default" ) ) .Map( PLOT_DASH_TYPE::SOLID, _HKI( "Solid" ) ) .Map( PLOT_DASH_TYPE::DASH, _HKI( "Dashed" ) ) .Map( PLOT_DASH_TYPE::DOT, _HKI( "Dotted" ) ) .Map( PLOT_DASH_TYPE::DASHDOT, _HKI( "Dash-Dot" ) ); PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( EDA_SHAPE ); propMgr.AddProperty( new PROPERTY_ENUM( _HKI( "Shape" ), &EDA_SHAPE::SetShape, &EDA_SHAPE::GetShape ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Start X" ), &EDA_SHAPE::SetStartX, &EDA_SHAPE::GetStartX ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Start Y" ), &EDA_SHAPE::SetStartY, &EDA_SHAPE::GetStartY ) ); propMgr.AddProperty( new PROPERTY( _HKI( "End X" ), &EDA_SHAPE::SetEndX, &EDA_SHAPE::GetEndX ) ); propMgr.AddProperty( new PROPERTY( _HKI( "End Y" ), &EDA_SHAPE::SetEndY, &EDA_SHAPE::GetEndY ) ); // TODO: m_arcCenter, m_bezierC1, m_bezierC2, m_poly propMgr.AddProperty( new PROPERTY( _HKI( "Line Width" ), &EDA_SHAPE::SetWidth, &EDA_SHAPE::GetWidth ) ); } } _EDA_SHAPE_DESC; ENUM_TO_WXANY( SHAPE_T ) ENUM_TO_WXANY( PLOT_DASH_TYPE )