/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2012 Wayne Stambaugh * Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include // for KiROUND #include #include #include #include #include #include FP_SHAPE::FP_SHAPE( FOOTPRINT* parent, SHAPE_T aShape, KICAD_T aItemType ) : PCB_SHAPE( parent, aItemType, aShape ) { m_layer = F_SilkS; } FP_SHAPE::~FP_SHAPE() { } void FP_SHAPE::SetLocalCoord() { FOOTPRINT* fp = static_cast( m_parent ); if( fp == NULL ) { m_start0 = m_start; m_end0 = m_end; m_arcCenter0 = m_arcCenter; m_bezierC1_0 = m_bezierC1; m_bezierC2_0 = m_bezierC2; return; } m_start0 = m_start - fp->GetPosition(); m_end0 = m_end - fp->GetPosition(); m_arcCenter0 = m_arcCenter - fp->GetPosition(); m_bezierC1_0 = m_bezierC1 - fp->GetPosition(); m_bezierC2_0 = m_bezierC2 - fp->GetPosition(); RotatePoint( &m_start0.x, &m_start0.y, - fp->GetOrientation() ); RotatePoint( &m_end0.x, &m_end0.y, - fp->GetOrientation() ); RotatePoint( &m_arcCenter0.x, &m_arcCenter0.y, - fp->GetOrientation() ); RotatePoint( &m_bezierC1_0.x, &m_bezierC1_0.y, - fp->GetOrientation() ); RotatePoint( &m_bezierC2_0.x, &m_bezierC2_0.y, - fp->GetOrientation() ); } void FP_SHAPE::SetDrawCoord() { FOOTPRINT* fp = static_cast( m_parent ); m_start = m_start0; m_end = m_end0; m_arcCenter = m_arcCenter0; m_bezierC1 = m_bezierC1_0; m_bezierC2 = m_bezierC2_0; if( fp ) { RotatePoint( &m_start.x, &m_start.y, fp->GetOrientation() ); RotatePoint( &m_end.x, &m_end.y, fp->GetOrientation() ); RotatePoint( &m_arcCenter.x, &m_arcCenter.y, fp->GetOrientation() ); RotatePoint( &m_bezierC1.x, &m_bezierC1.y, fp->GetOrientation() ); RotatePoint( &m_bezierC2.x, &m_bezierC2.y, fp->GetOrientation() ); m_start += fp->GetPosition(); m_end += fp->GetPosition(); m_arcCenter += fp->GetPosition(); m_bezierC1 += fp->GetPosition(); m_bezierC2 += fp->GetPosition(); } RebuildBezierToSegmentsPointsList( GetWidth() ); } void FP_SHAPE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { if( aFrame->GetName() == PCB_EDIT_FRAME_NAME ) { FOOTPRINT* fp = static_cast( m_parent ); if( fp ) aList.emplace_back( _( "Footprint" ), fp->GetReference() ); } // append the features shared with the base class PCB_SHAPE::GetMsgPanelInfo( aFrame, aList ); } wxString FP_SHAPE::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const { return wxString::Format( _( "%s on %s" ), ShowShape(), GetLayerName() ); } BITMAPS FP_SHAPE::GetMenuImage() const { return BITMAPS::show_mod_edge; } EDA_ITEM* FP_SHAPE::Clone() const { return new FP_SHAPE( *this ); } VECTOR2I FP_SHAPE::GetCenter0() const { switch( m_shape ) { case SHAPE_T::ARC: return m_arcCenter0; case SHAPE_T::CIRCLE: return m_start0; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return VECTOR2I(); } } void FP_SHAPE::SetCenter0( const VECTOR2I& aCenter ) { switch( m_shape ) { case SHAPE_T::ARC: m_arcCenter0 = aCenter; break; case SHAPE_T::CIRCLE: m_start0 = aCenter; break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } } void FP_SHAPE::CalcArcAngles0( EDA_ANGLE& aStartAngle0, EDA_ANGLE& aEndAngle0 ) const { VECTOR2D startRadial( GetStart0() - GetCenter0() ); VECTOR2D endRadial( GetEnd0() - GetCenter0() ); aStartAngle0 = EDA_ANGLE( startRadial ); aEndAngle0 = EDA_ANGLE( endRadial ); if( aEndAngle0 == aStartAngle0 ) aEndAngle0 = aStartAngle0 + ANGLE_360; // ring, not null while( aEndAngle0 < aStartAngle0 ) aEndAngle0 += ANGLE_360; } EDA_ANGLE FP_SHAPE::GetArcAngle0() const { EDA_ANGLE startAngle0; EDA_ANGLE endAngle0; CalcArcAngles0( startAngle0, endAngle0 ); return endAngle0 - startAngle0; } VECTOR2I FP_SHAPE::GetArcMid0() const { // If none of the input data have changed since we loaded the arc, // keep the original mid point data to minimize churn if( m_arcMidData_0.start == m_start0 && m_arcMidData_0.end == m_end0 && m_arcMidData_0.center == m_arcCenter0 ) return m_arcMidData_0.mid; VECTOR2I mid0 = m_start0; RotatePoint( mid0, m_arcCenter0, -GetArcAngle0() / 2.0 ); return mid0; } void FP_SHAPE::SetArcAngleAndEnd0( const EDA_ANGLE& aAngle, bool aCheckNegativeAngle ) { EDA_ANGLE angle( aAngle ); m_end0 = m_start0; RotatePoint( m_end0, m_arcCenter0, -angle.Normalize720() ); if( aCheckNegativeAngle && aAngle < ANGLE_0 ) { std::swap( m_start0, m_end0 ); m_endsSwapped = true; } } void FP_SHAPE::SetCachedArcData0( const VECTOR2I& aStart0, const VECTOR2I& aMid0, const VECTOR2I& aEnd0, const VECTOR2I& aCenter0 ) { m_arcMidData_0.start = aStart0; m_arcMidData_0.end = aEnd0; m_arcMidData_0.center = aCenter0; m_arcMidData_0.mid = aMid0; } void FP_SHAPE::SetArcGeometry0( const VECTOR2I& aStart0, const VECTOR2I& aMid0, const VECTOR2I& aEnd0 ) { m_arcMidData_0 = {}; m_start0 = aStart0; m_end0 = aEnd0; m_arcCenter0 = CalcArcCenter( aStart0, aMid0, aEnd0 ); const VECTOR2I new_mid = GetArcMid0(); m_endsSwapped = false; SetCachedArcData0( aStart0, aMid0, aEnd0, m_arcCenter0 ); /* * If the input winding doesn't match our internal winding, the calculated midpoint will end * up on the other side of the arc. In this case, we need to flip the start/end points and * flag this change for the system. */ VECTOR2D dist( new_mid - aMid0 ); VECTOR2D dist2( new_mid - m_arcCenter0 ); if( dist.SquaredEuclideanNorm() > dist2.SquaredEuclideanNorm() ) { std::swap( m_start0, m_end0 ); m_endsSwapped = true; } } void FP_SHAPE::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight ) { VECTOR2I pt( 0, 0 ); switch( GetShape() ) { case SHAPE_T::ARC: case SHAPE_T::SEGMENT: case SHAPE_T::RECT: case SHAPE_T::CIRCLE: case SHAPE_T::BEZIER: // If Start0 and Start are equal (ie: Footprint Editor), then flip both sets around the // centre point. if( m_start == m_start0 ) pt = aCentre; if( aFlipLeftRight ) { MIRROR( m_start.x, aCentre.x ); MIRROR( m_end.x, aCentre.x ); MIRROR( m_arcCenter.x, aCentre.x ); MIRROR( m_bezierC1.x, aCentre.x ); MIRROR( m_bezierC2.x, aCentre.x ); MIRROR( m_start0.x, pt.x ); MIRROR( m_end0.x, pt.x ); MIRROR( m_arcCenter0.x, pt.x ); MIRROR( m_bezierC1_0.x, pt.x ); MIRROR( m_bezierC2_0.x, pt.x ); } else { MIRROR( m_start.y, aCentre.y ); MIRROR( m_end.y, aCentre.y ); MIRROR( m_arcCenter.y, aCentre.y ); MIRROR( m_bezierC1.y, aCentre.y ); MIRROR( m_bezierC2.y, aCentre.y ); MIRROR( m_start0.y, pt.y ); MIRROR( m_end0.y, pt.y ); MIRROR( m_arcCenter0.y, pt.y ); MIRROR( m_bezierC1_0.y, pt.y ); MIRROR( m_bezierC2_0.y, pt.y ); } if( GetShape() == SHAPE_T::BEZIER ) RebuildBezierToSegmentsPointsList( GetWidth() ); if( GetShape() == SHAPE_T::ARC ) { std::swap( m_start, m_end ); std::swap( m_start0, m_end0 ); } break; case SHAPE_T::POLY: // polygon corners coordinates are relative to the footprint position, orientation 0 m_poly.Mirror( aFlipLeftRight, !aFlipLeftRight ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } SetLayer( FlipLayer( GetLayer(), GetBoard()->GetCopperLayerCount() ) ); } bool FP_SHAPE::IsParentFlipped() const { if( GetParent() && GetParent()->GetLayer() == B_Cu ) return true; return false; } void FP_SHAPE::Mirror( const VECTOR2I& aCentre, bool aMirrorAroundXAxis ) { switch( GetShape() ) { case SHAPE_T::ARC: case SHAPE_T::SEGMENT: case SHAPE_T::RECT: case SHAPE_T::CIRCLE: case SHAPE_T::BEZIER: if( aMirrorAroundXAxis ) { MIRROR( m_start0.y, aCentre.y ); MIRROR( m_end0.y, aCentre.y ); MIRROR( m_arcCenter0.y, aCentre.y ); MIRROR( m_bezierC1_0.y, aCentre.y ); MIRROR( m_bezierC2_0.y, aCentre.y ); } else { MIRROR( m_start0.x, aCentre.x ); MIRROR( m_end0.x, aCentre.x ); MIRROR( m_arcCenter0.x, aCentre.x ); MIRROR( m_bezierC1_0.x, aCentre.x ); MIRROR( m_bezierC2_0.x, aCentre.x ); } if( GetShape() == SHAPE_T::ARC ) { std::swap( m_start, m_end ); std::swap( m_start0, m_end0 ); } if( GetShape() == SHAPE_T::BEZIER ) RebuildBezierToSegmentsPointsList( GetWidth() ); break; case SHAPE_T::POLY: m_poly.Mirror( !aMirrorAroundXAxis, aMirrorAroundXAxis, aCentre ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } SetDrawCoord(); } void FP_SHAPE::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle ) { // We should rotate the relative coordinates, but to avoid duplicate code do the base class // rotation of draw coordinates, which is acceptable because in the footprint editor // m_Pos0 = m_Pos PCB_SHAPE::Rotate( aRotCentre, aAngle ); // and now update the relative coordinates, which are the reference in most transforms. SetLocalCoord(); } void FP_SHAPE::Move( const VECTOR2I& aMoveVector ) { // Move an edge of the footprint. // This is a footprint shape modification. switch( GetShape() ) { case SHAPE_T::ARC: case SHAPE_T::SEGMENT: case SHAPE_T::RECT: case SHAPE_T::CIRCLE: case SHAPE_T::BEZIER: m_start0 += aMoveVector; m_end0 += aMoveVector; m_arcCenter0 += aMoveVector; m_bezierC1_0 += aMoveVector; m_bezierC2_0 += aMoveVector; break; case SHAPE_T::POLY: // polygon corners coordinates are always relative to the // footprint position, orientation 0 m_poly.Move( VECTOR2I( aMoveVector ) ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } SetDrawCoord(); } double FP_SHAPE::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const { constexpr double HIDE = std::numeric_limits::max(); if( !aView ) return 0; // Handle Render tab switches if( !IsParentFlipped() && !aView->IsLayerVisible( LAYER_MOD_FR ) ) return HIDE; if( IsParentFlipped() && !aView->IsLayerVisible( LAYER_MOD_BK ) ) return HIDE; // Other layers are shown without any conditions return 0.0; } wxString FP_SHAPE::GetParentAsString() const { if( FOOTPRINT* fp = dynamic_cast( m_parent ) ) return fp->GetReference(); return m_parent->m_Uuid.AsString(); } static struct FP_SHAPE_DESC { FP_SHAPE_DESC() { PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance(); REGISTER_TYPE( FP_SHAPE ); propMgr.AddTypeCast( new TYPE_CAST ); propMgr.AddTypeCast( new TYPE_CAST ); propMgr.AddTypeCast( new TYPE_CAST ); propMgr.InheritsAfter( TYPE_HASH( FP_SHAPE ), TYPE_HASH( BOARD_ITEM ) ); propMgr.InheritsAfter( TYPE_HASH( FP_SHAPE ), TYPE_HASH( EDA_SHAPE ) ); propMgr.InheritsAfter( TYPE_HASH( FP_SHAPE ), TYPE_HASH( PCB_SHAPE ) ); propMgr.AddProperty( new PROPERTY( _HKI( "Parent" ), NO_SETTER( FP_SHAPE, wxString ), &FP_SHAPE::GetParentAsString ) ); } } _FP_SHAPE_DESC;