/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014-2017 CERN * Copyright (C) 2014-2020 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Włostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // for KiROUND #include "zone_filler.h" static const double s_RoundPadThermalSpokeAngle = 450; // in deci-degrees ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) : m_board( aBoard ), m_brdOutlinesValid( false ), m_commit( aCommit ), m_progressReporter( nullptr ), m_maxError( ARC_HIGH_DEF ), m_worstClearance( 0 ) { // To enable add "DebugZoneFiller=1" to kicad_advanced settings file. m_debugZoneFiller = ADVANCED_CFG::GetCfg().m_DebugZoneFiller; } ZONE_FILLER::~ZONE_FILLER() { } void ZONE_FILLER::InstallNewProgressReporter( wxWindow* aParent, const wxString& aTitle, int aNumPhases ) { m_uniqueReporter = std::make_unique( aParent, aTitle, aNumPhases ); SetProgressReporter( m_uniqueReporter.get() ); } void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter ) { m_progressReporter = aReporter; wxASSERT_MSG( m_commit, "ZONE_FILLER must have a valid commit to call SetProgressReporter" ); } bool ZONE_FILLER::Fill( std::vector& aZones, bool aCheck, wxWindow* aParent ) { std::vector> toFill; std::vector islandsList; std::shared_ptr connectivity = m_board->GetConnectivity(); // Rebuild just in case. This really needs to be reliable. connectivity->Clear(); connectivity->Build( m_board, m_progressReporter ); BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); m_worstClearance = bds.GetBiggestClearanceValue(); if( m_progressReporter ) { m_progressReporter->Report( aCheck ? _( "Checking zone fills..." ) : _( "Building zone fills..." ) ); m_progressReporter->SetMaxProgress( aZones.size() ); m_progressReporter->KeepRefreshing(); } // The board outlines is used to clip solid areas inside the board (when outlines are valid) m_boardOutline.RemoveAllContours(); m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline ); // Update and cache zone bounding boxes and pad effective shapes so that we don't have to // make them thread-safe. for( ZONE* zone : m_board->Zones() ) { zone->CacheBoundingBox(); m_worstClearance = std::max( m_worstClearance, zone->GetLocalClearance() ); } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->IsDirty() ) { pad->BuildEffectiveShapes( UNDEFINED_LAYER ); pad->BuildEffectivePolygon(); } m_worstClearance = std::max( m_worstClearance, pad->GetLocalClearance() ); } for( ZONE* zone : footprint->Zones() ) { zone->CacheBoundingBox(); m_worstClearance = std::max( m_worstClearance, zone->GetLocalClearance() ); } } // Sort by priority to reduce deferrals waiting on higher priority zones. std::sort( aZones.begin(), aZones.end(), []( const ZONE* lhs, const ZONE* rhs ) { return lhs->GetPriority() > rhs->GetPriority(); } ); for( ZONE* zone : aZones ) { // Rule areas are not filled if( zone->GetIsRuleArea() ) continue; if( m_commit ) m_commit->Modify( zone ); // calculate the hash value for filled areas. it will be used later // to know if the current filled areas are up to date for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { zone->BuildHashValue( layer ); // Add the zone to the list of zones to test or refill toFill.emplace_back( std::make_pair( zone, layer ) ); } islandsList.emplace_back( CN_ZONE_ISOLATED_ISLAND_LIST( zone ) ); // Remove existing fill first to prevent drawing invalid polygons // on some platforms zone->UnFill(); zone->SetFillVersion( bds.m_ZoneFillVersion ); } size_t cores = std::thread::hardware_concurrency(); std::atomic nextItem; auto check_fill_dependency = [&]( ZONE* aZone, PCB_LAYER_ID aLayer, ZONE* aOtherZone ) -> bool { // Check to see if we have to knock-out the filled areas of a higher-priority // zone. If so we have to wait until said zone is filled before we can fill. // If the other zone is already filled then we're good-to-go if( aOtherZone->GetFillFlag( aLayer ) ) return false; // Even if keepouts exclude copper pours the exclusion is by outline, not by // filled area, so we're good-to-go here too. if( aOtherZone->GetIsRuleArea() ) return false; // If the zones share no common layers if( !aOtherZone->GetLayerSet().test( aLayer ) ) return false; if( aOtherZone->GetPriority() <= aZone->GetPriority() ) return false; // Same-net zones always use outline to produce predictable results if( aOtherZone->GetNetCode() == aZone->GetNetCode() ) return false; // A higher priority zone is found: if we intersect and it's not filled yet // then we have to wait. EDA_RECT inflatedBBox = aZone->GetCachedBoundingBox(); inflatedBBox.Inflate( m_worstClearance ); return inflatedBBox.Intersects( aOtherZone->GetCachedBoundingBox() ); }; auto fill_lambda = [&]( PROGRESS_REPORTER* aReporter ) { size_t num = 0; for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ ) { PCB_LAYER_ID layer = toFill[i].second; ZONE* zone = toFill[i].first; bool canFill = true; // Check for any fill dependencies. If our zone needs to be clipped by // another zone then we can't fill until that zone is filled. for( ZONE* otherZone : aZones ) { if( otherZone == zone ) continue; if( check_fill_dependency( zone, layer, otherZone ) ) { canFill = false; break; } } if( m_progressReporter && m_progressReporter->IsCancelled() ) break; if( !canFill ) continue; // Now we're ready to fill. SHAPE_POLY_SET rawPolys, finalPolys; fillSingleZone( zone, layer, rawPolys, finalPolys ); std::unique_lock zoneLock( zone->GetLock() ); zone->SetRawPolysList( layer, rawPolys ); zone->SetFilledPolysList( layer, finalPolys ); zone->SetFillFlag( layer, true ); if( m_progressReporter ) m_progressReporter->AdvanceProgress(); num++; } return num; }; while( !toFill.empty() ) { size_t parallelThreadCount = std::min( cores, toFill.size() ); std::vector> returns( parallelThreadCount ); nextItem = 0; if( parallelThreadCount <= 1 ) fill_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, fill_lambda, m_progressReporter ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating std::future_status status; do { if( m_progressReporter ) m_progressReporter->KeepRefreshing(); status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } } toFill.erase( std::remove_if( toFill.begin(), toFill.end(), [&] ( const std::pair pair ) -> bool { return pair.first->GetFillFlag( pair.second ); } ), toFill.end() ); if( m_progressReporter && m_progressReporter->IsCancelled() ) break; } // Now update the connectivity to check for copper islands if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false; m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Removing isolated copper islands..." ) ); m_progressReporter->KeepRefreshing(); } connectivity->SetProgressReporter( m_progressReporter ); connectivity->FindIsolatedCopperIslands( islandsList ); connectivity->SetProgressReporter( nullptr ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; for( ZONE* zone : aZones ) { // Keepout zones are not filled if( zone->GetIsRuleArea() ) continue; zone->SetIsFilled( true ); } // Now remove insulated copper islands for( CN_ZONE_ISOLATED_ISLAND_LIST& zone : islandsList ) { for( PCB_LAYER_ID layer : zone.m_zone->GetLayerSet().Seq() ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue; if( !zone.m_islands.count( layer ) ) continue; std::vector& islands = zone.m_islands.at( layer ); // The list of polygons to delete must be explored from last to first in list, // to allow deleting a polygon from list without breaking the remaining of the list std::sort( islands.begin(), islands.end(), std::greater() ); SHAPE_POLY_SET poly = zone.m_zone->GetFilledPolysList( layer ); long long int minArea = zone.m_zone->GetMinIslandArea(); ISLAND_REMOVAL_MODE mode = zone.m_zone->GetIslandRemovalMode(); for( int idx : islands ) { SHAPE_LINE_CHAIN& outline = poly.Outline( idx ); if( mode == ISLAND_REMOVAL_MODE::ALWAYS ) poly.DeletePolygon( idx ); else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area() < minArea ) poly.DeletePolygon( idx ); else zone.m_zone->SetIsIsland( layer, idx ); } zone.m_zone->SetFilledPolysList( layer, poly ); zone.m_zone->CalculateFilledArea(); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; } } // Now remove islands outside the board edge for( ZONE* zone : aZones ) { LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask( MAX_CU_LAYERS ); for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() ) { if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) ) continue; SHAPE_POLY_SET poly = zone->GetFilledPolysList( layer ); for( int ii = poly.OutlineCount() - 1; ii >= 0; ii-- ) { std::vector& island = poly.Polygon( ii ); if( island.empty() || !m_boardOutline.Contains( island.front().CPoint( 0 ) ) ) poly.DeletePolygon( ii ); } zone->SetFilledPolysList( layer, poly ); zone->CalculateFilledArea(); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; } } if( aCheck ) { bool outOfDate = false; for( ZONE* zone : aZones ) { // Keepout zones are not filled if( zone->GetIsRuleArea() ) continue; for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() ) { MD5_HASH was = zone->GetHashValue( layer ); zone->CacheTriangulation( layer ); zone->BuildHashValue( layer ); MD5_HASH is = zone->GetHashValue( layer ); if( is != was ) outOfDate = true; } } if( outOfDate ) { KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ), _( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING ); dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ ); if( dlg.ShowModal() == wxID_CANCEL ) return false; } } if( m_progressReporter ) { m_progressReporter->AdvancePhase(); m_progressReporter->Report( _( "Performing polygon fills..." ) ); m_progressReporter->SetMaxProgress( islandsList.size() ); } nextItem = 0; auto tri_lambda = [&]( PROGRESS_REPORTER* aReporter ) -> size_t { size_t num = 0; for( size_t i = nextItem++; i < islandsList.size(); i = nextItem++ ) { islandsList[i].m_zone->CacheTriangulation(); num++; if( m_progressReporter ) { m_progressReporter->AdvanceProgress(); if( m_progressReporter->IsCancelled() ) break; } } return num; }; size_t parallelThreadCount = std::min( cores, islandsList.size() ); std::vector> returns( parallelThreadCount ); if( parallelThreadCount <= 1 ) tri_lambda( m_progressReporter ); else { for( size_t ii = 0; ii < parallelThreadCount; ++ii ) returns[ii] = std::async( std::launch::async, tri_lambda, m_progressReporter ); for( size_t ii = 0; ii < parallelThreadCount; ++ii ) { // Here we balance returns with a 100ms timeout to allow UI updating std::future_status status; do { if( m_progressReporter ) { m_progressReporter->KeepRefreshing(); if( m_progressReporter->IsCancelled() ) break; } status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) ); } while( status != std::future_status::ready ); } } if( m_progressReporter ) { if( m_progressReporter->IsCancelled() ) return false; m_progressReporter->AdvancePhase(); m_progressReporter->KeepRefreshing(); } return true; } /** * Return true if the given pad has a thermal connection with the given zone. */ bool hasThermalConnection( PAD* pad, const ZONE* aZone ) { // Rejects non-standard pads with tht-only thermal reliefs if( aZone->GetPadConnection( pad ) == ZONE_CONNECTION::THT_THERMAL && pad->GetAttribute() != PAD_ATTRIB_PTH ) { return false; } if( aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THERMAL && aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THT_THERMAL ) { return false; } if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 ) return false; EDA_RECT item_boundingbox = pad->GetBoundingBox(); int thermalGap = aZone->GetThermalReliefGap( pad ); item_boundingbox.Inflate( thermalGap, thermalGap ); return item_boundingbox.Intersects( aZone->GetCachedBoundingBox() ); } /** * Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be * either the thermal clearance or the electrical clearance). */ void ZONE_FILLER::addKnockout( PAD* aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles ) { if( aPad->GetShape() == PAD_SHAPE_CUSTOM ) { SHAPE_POLY_SET poly; aPad->TransformShapeWithClearanceToPolygon( poly, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); // the pad shape in zone can be its convex hull or the shape itself if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL ) { std::vector convex_hull; BuildConvexHull( convex_hull, poly ); aHoles.NewOutline(); for( const wxPoint& pt : convex_hull ) aHoles.Append( pt ); } else aHoles.Append( poly ); } else { aPad->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE ); } } /** * Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which * might be either the electrical clearance or the board edge clearance). */ void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap, bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles ) { switch( aItem->Type() ) { case PCB_SHAPE_T: case PCB_TEXT_T: case PCB_FP_SHAPE_T: aItem->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, aIgnoreLineWidth ); break; case PCB_FP_TEXT_T: { FP_TEXT* text = static_cast( aItem ); if( text->IsVisible() ) { text->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, aIgnoreLineWidth ); } } break; default: break; } } /** * Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add * in spokes, which must be done later. */ void ZONE_FILLER::knockoutThermalReliefs( const ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFill ) { SHAPE_POLY_SET holes; for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( !hasThermalConnection( pad, aZone ) ) continue; int gap = aZone->GetThermalReliefGap( pad ); // If the pad is flashed to the current layer, or is on the same layer and shares a netcode, then // we need to knock out the thermal relief. if( pad->FlashLayer( aLayer ) || ( pad->IsOnLayer( aLayer ) && pad->GetNetCode() == aZone->GetNetCode() ) ) { addKnockout( pad, aLayer, gap, holes ); } else { // If the pad isn't on the current layer but has a hole, knock out a thermal relief // for the hole. if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 ) continue; // Note: drill size represents finish size, which means the actual holes size is // the plating thickness larger. if( pad->GetAttribute() == PAD_ATTRIB_PTH ) gap += pad->GetBoard()->GetDesignSettings().GetHolePlatingThickness(); pad->TransformHoleWithClearanceToPolygon( holes, gap, m_maxError, ERROR_OUTSIDE ); } } } aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST ); } /** * Removes clearance from the shape for copper items which share the zone's layer but are * not connected to it. */ void ZONE_FILLER::buildCopperItemClearances( const ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aHoles ) { long ticker = 0; auto checkForCancel = [&ticker]( PROGRESS_REPORTER* aReporter ) -> bool { return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled(); }; // A small extra clearance to be sure actual track clearances are not smaller than // requested clearance due to many approximations in calculations, like arc to segment // approx, rounding issues, etc. int extra_margin = Millimeter2iu( ADVANCED_CFG::GetCfg().m_ExtraClearance ); BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); int zone_clearance = aZone->GetLocalClearance(); EDA_RECT zone_boundingbox = aZone->GetCachedBoundingBox(); // Items outside the zone bounding box are skipped, so it needs to be inflated by the // largest clearance value found in the netclasses and rules zone_boundingbox.Inflate( m_worstClearance + extra_margin ); auto evalRulesForItems = [&bds]( DRC_CONSTRAINT_T aConstraint, const BOARD_ITEM* a, const BOARD_ITEM* b, PCB_LAYER_ID aEvalLayer ) -> int { auto c = bds.m_DRCEngine->EvalRulesForItems( aConstraint, a, b, aEvalLayer ); return c.Value().Min(); }; // Add non-connected pad clearances // auto knockoutPadClearance = [&]( PAD* aPad ) { if( aPad->GetBoundingBox().Intersects( zone_boundingbox ) ) { int gap; // For pads having the same netcode as the zone, the net clearance has no // meaning so use the greater of the zone clearance and the thermal relief. if( aPad->GetNetCode() > 0 && aPad->GetNetCode() == aZone->GetNetCode() ) gap = std::max( zone_clearance, aZone->GetThermalReliefGap( aPad ) ); else gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aPad, aLayer ); gap += extra_margin; // If the pad isn't on the current layer but has a hole, knock out the hole. if( !aPad->FlashLayer( aLayer ) ) { if( aPad->GetDrillSize().x == 0 && aPad->GetDrillSize().y == 0 ) return; // Note: drill size represents finish size, which means the actual hole // size is the plating thickness larger. if( aPad->GetAttribute() == PAD_ATTRIB_PTH ) gap += aPad->GetBoard()->GetDesignSettings().GetHolePlatingThickness(); aPad->TransformHoleWithClearanceToPolygon( aHoles, gap, m_maxError, ERROR_OUTSIDE ); } else { addKnockout( aPad, aLayer, gap, aHoles ); } } }; for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( checkForCancel( m_progressReporter ) ) return; if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 || aZone->GetPadConnection( pad ) == ZONE_CONNECTION::NONE ) { knockoutPadClearance( pad ); } } } // Add non-connected track clearances // auto knockoutTrackClearance = [&]( TRACK* aTrack ) { if( aTrack->GetBoundingBox().Intersects( zone_boundingbox ) ) { int gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aTrack, aLayer ); gap += extra_margin; if( aTrack->Type() == PCB_VIA_T ) { VIA* via = static_cast( aTrack ); if( !via->FlashLayer( aLayer ) && via->GetNetCode() != aZone->GetNetCode() ) { int radius = via->GetDrillValue() / 2 + bds.GetHolePlatingThickness(); TransformCircleToPolygon( aHoles, via->GetPosition(), radius + gap, m_maxError, ERROR_OUTSIDE ); } else { via->TransformShapeWithClearanceToPolygon( aHoles, aLayer, gap, m_maxError, ERROR_OUTSIDE ); } } else { aTrack->TransformShapeWithClearanceToPolygon( aHoles, aLayer, gap, m_maxError, ERROR_OUTSIDE ); } } }; for( TRACK* track : m_board->Tracks() ) { if( !track->IsOnLayer( aLayer ) ) continue; if( track->GetNetCode() == aZone->GetNetCode() && ( aZone->GetNetCode() != 0) ) continue; if( checkForCancel( m_progressReporter ) ) return; knockoutTrackClearance( track ); } // Add graphic item clearances. They are by definition unconnected, and have no clearance // definitions of their own. // auto knockoutGraphicClearance = [&]( BOARD_ITEM* aItem ) { // A item on the Edge_Cuts or Margin is always seen as on any layer: if( aItem->IsOnLayer( aLayer ) || aItem->IsOnLayer( Edge_Cuts ) || aItem->IsOnLayer( Margin ) ) { if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) ) { int gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aItem, aLayer ); if( aItem->IsOnLayer( Edge_Cuts ) ) { gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT, aZone, aItem, Edge_Cuts ) ); } if( aItem->IsOnLayer( Margin ) ) { gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT, aZone, aItem, Margin ) ); } addKnockout( aItem, aLayer, gap, aItem->IsOnLayer( Edge_Cuts ), aHoles ); } } }; for( FOOTPRINT* footprint : m_board->Footprints() ) { bool skipFootprint = false; knockoutGraphicClearance( &footprint->Reference() ); knockoutGraphicClearance( &footprint->Value() ); // Don't knock out holes in zones that share a net // with a nettie footprint if( footprint->IsNetTie() ) { for( PAD* pad : footprint->Pads() ) { if( aZone->GetNetCode() == pad->GetNetCode() ) { skipFootprint = true; break; } } } if( skipFootprint ) continue; for( BOARD_ITEM* item : footprint->GraphicalItems() ) { if( checkForCancel( m_progressReporter ) ) return; knockoutGraphicClearance( item ); } } for( BOARD_ITEM* item : m_board->Drawings() ) { if( checkForCancel( m_progressReporter ) ) return; knockoutGraphicClearance( item ); } // Add non-connected zone clearances // auto knockoutZoneClearance = [&]( ZONE* aKnockout ) { // If the zones share no common layers if( !aKnockout->GetLayerSet().test( aLayer ) ) return; if( aKnockout->GetCachedBoundingBox().Intersects( zone_boundingbox ) ) { if( aKnockout->GetIsRuleArea() ) { // Keepouts use outline with no clearance aKnockout->TransformSmoothedOutlineToPolygon( aHoles, 0, nullptr ); } else if( bds.m_ZoneFillVersion == 5 ) { // 5.x used outline with clearance int gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aKnockout, aLayer ); aKnockout->TransformSmoothedOutlineToPolygon( aHoles, gap, nullptr ); } else { // 6.0 uses filled areas with clearance int gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aKnockout, aLayer ); SHAPE_POLY_SET poly; aKnockout->TransformShapeWithClearanceToPolygon( poly, aLayer, gap, m_maxError, ERROR_OUTSIDE ); aHoles.Append( poly ); } } }; for( ZONE* otherZone : m_board->Zones() ) { if( checkForCancel( m_progressReporter ) ) return; if( otherZone->GetNetCode() != aZone->GetNetCode() && otherZone->GetPriority() > aZone->GetPriority() ) { knockoutZoneClearance( otherZone ); } else if( otherZone->GetIsRuleArea() && otherZone->GetDoNotAllowCopperPour() ) { knockoutZoneClearance( otherZone ); } } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( ZONE* otherZone : footprint->Zones() ) { if( checkForCancel( m_progressReporter ) ) return; if( otherZone->GetNetCode() != aZone->GetNetCode() && otherZone->GetPriority() > aZone->GetPriority() ) { knockoutZoneClearance( otherZone ); } else if( otherZone->GetIsRuleArea() && otherZone->GetDoNotAllowCopperPour() ) { knockoutZoneClearance( otherZone ); } } } aHoles.Simplify( SHAPE_POLY_SET::PM_FAST ); } /** * Removes the outlines of higher-proirity zones with the same net. These zones should be * in charge of the fill parameters within their own outlines. */ void ZONE_FILLER::subtractHigherPriorityZones( const ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aRawFill ) { auto knockoutZoneOutline = [&]( ZONE* aKnockout ) { // If the zones share no common layers if( !aKnockout->GetLayerSet().test( aLayer ) ) return; if( aKnockout->GetCachedBoundingBox().Intersects( aZone->GetCachedBoundingBox() ) ) { aRawFill.BooleanSubtract( *aKnockout->Outline(), SHAPE_POLY_SET::PM_FAST ); } }; for( ZONE* otherZone : m_board->Zones() ) { if( otherZone->GetNetCode() == aZone->GetNetCode() && otherZone->GetPriority() > aZone->GetPriority() ) { knockoutZoneOutline( otherZone ); } } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( ZONE* otherZone : footprint->Zones() ) { if( otherZone->GetNetCode() == aZone->GetNetCode() && otherZone->GetPriority() > aZone->GetPriority() ) { knockoutZoneOutline( otherZone ); } } } } #define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \ { if( m_debugZoneFiller && aDebugLayer == b ) \ { \ m_board->SetLayerName( b, c ); \ SHAPE_POLY_SET d = a; \ d.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \ d.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \ aRawPolys = d; \ return false; \ } \ } /** * 1 - Creates the main zone outline using a correction to shrink the resulting area by * m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2 * so that when drawing outline with segments having a thickness of m_ZoneMinThickness the * outlines will match exactly the initial outlines * 2 - Knocks out thermal reliefs around thermally-connected pads * 3 - Builds a set of thermal spoke for the whole zone * 4 - Knocks out unconnected copper items, deleting any affected spokes * 5 - Removes unconnected copper islands, deleting any affected spokes * 6 - Adds in the remaining spokes */ bool ZONE_FILLER::computeRawFilledArea( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, const SHAPE_POLY_SET& aSmoothedOutline, const SHAPE_POLY_SET& aMaxExtents, SHAPE_POLY_SET& aRawPolys ) { m_maxError = m_board->GetDesignSettings().m_MaxError; // Features which are min_width should survive pruning; features that are *less* than // min_width should not. Therefore we subtract epsilon from the min_width when // deflating/inflating. int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = GetArcToSegmentCount( half_min_width, m_maxError, 360.0 ); // Solid polygons are deflated and inflated during calculations. Deflating doesn't cause // issues, but inflate is tricky as it can create excessively long and narrow spikes for // acute angles. // ALLOW_ACUTE_CORNERS cannot be used due to the spike problem. // CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual // circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581). // It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided // as a "less-safe" option. // ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments. // CHAMFER_ALL_CORNERS improves the segement count. SHAPE_POLY_SET::CORNER_STRATEGY fastCornerStrategy = SHAPE_POLY_SET::CHAMFER_ALL_CORNERS; SHAPE_POLY_SET::CORNER_STRATEGY cornerStrategy = SHAPE_POLY_SET::ROUND_ALL_CORNERS; std::deque thermalSpokes; SHAPE_POLY_SET clearanceHoles; aRawPolys = aSmoothedOutline; DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In1_Cu, "smoothed-outline" ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; knockoutThermalReliefs( aZone, aLayer, aRawPolys ); DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In2_Cu, "minus-thermal-reliefs" ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; buildCopperItemClearances( aZone, aLayer, clearanceHoles ); DUMP_POLYS_TO_COPPER_LAYER( clearanceHoles, In3_Cu, "clearance-holes" ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; buildThermalSpokes( aZone, aLayer, thermalSpokes ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; // Create a temporary zone that we can hit-test spoke-ends against. It's only temporary // because the "real" subtract-clearance-holes has to be done after the spokes are added. static const bool USE_BBOX_CACHES = true; SHAPE_POLY_SET testAreas = aRawPolys; testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, "minus-clearance-holes" ); // Prune features that don't meet minimum-width criteria if( half_min_width - epsilon > epsilon ) { testAreas.Deflate( half_min_width - epsilon, numSegs, fastCornerStrategy ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, "spoke-test-deflated" ); testAreas.Inflate( half_min_width - epsilon, numSegs, fastCornerStrategy ); DUMP_POLYS_TO_COPPER_LAYER( testAreas, In6_Cu, "spoke-test-reinflated" ); } if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; // Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed // things up a bit. testAreas.BuildBBoxCaches(); int interval = 0; SHAPE_POLY_SET debugSpokes; for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes ) { const VECTOR2I& testPt = spoke.CPoint( 3 ); // Hit-test against zone body if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) ) { if( m_debugZoneFiller ) debugSpokes.AddOutline( spoke ); aRawPolys.AddOutline( spoke ); continue; } if( interval++ > 400 ) { if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; interval = 0; } // Hit-test against other spokes for( const SHAPE_LINE_CHAIN& other : thermalSpokes ) { if( &other != &spoke && other.PointInside( testPt, 1, USE_BBOX_CACHES ) ) { if( m_debugZoneFiller ) debugSpokes.AddOutline( spoke ); aRawPolys.AddOutline( spoke ); break; } } } DUMP_POLYS_TO_COPPER_LAYER( debugSpokes, In7_Cu, "spokes" ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; aRawPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In8_Cu, "after-spoke-trimming" ); // Prune features that don't meet minimum-width criteria if( half_min_width - epsilon > epsilon ) aRawPolys.Deflate( half_min_width - epsilon, numSegs, cornerStrategy ); DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In9_Cu, "deflated" ); if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; // Now remove the non filled areas due to the hatch pattern if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) { if( !addHatchFillTypeOnZone( aZone, aLayer, aDebugLayer, aRawPolys ) ) return false; } if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; // Re-inflate after pruning of areas that don't meet minimum-width criteria if( aZone->GetFilledPolysUseThickness() ) { // If we're stroking the zone with a min_width stroke then this will naturally inflate // the zone by half_min_width } else if( half_min_width - epsilon > epsilon ) { aRawPolys.Inflate( half_min_width - epsilon, numSegs, cornerStrategy ); } DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In15_Cu, "after-reinflating" ); // Ensure additive changes (thermal stubs and particularly inflating acute corners) do not // add copper outside the zone boundary or inside the clearance holes aRawPolys.BooleanIntersection( aMaxExtents, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In16_Cu, "after-trim-to-outline" ); aRawPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In17_Cu, "after-trim-to-clearance-holes" ); // Lastly give any same-net but higher-priority zones control over their own area. subtractHigherPriorityZones( aZone, aLayer, aRawPolys ); DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In18_Cu, "minus-higher-priority-zones" ); aRawPolys.Fracture( SHAPE_POLY_SET::PM_FAST ); return true; } /* * Build the filled solid areas data from real outlines (stored in m_Poly) * The solid areas can be more than one on copper layers, and do not have holes * ( holes are linked by overlapping segments to the main outline) */ bool ZONE_FILLER::fillSingleZone( ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys ) { SHAPE_POLY_SET* boardOutline = m_brdOutlinesValid ? &m_boardOutline : nullptr; SHAPE_POLY_SET maxExtents; SHAPE_POLY_SET smoothedPoly; PCB_LAYER_ID debugLayer = UNDEFINED_LAYER; if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) ) { debugLayer = aLayer; aLayer = F_Cu; } if ( !aZone->BuildSmoothedPoly( maxExtents, aLayer, boardOutline, &smoothedPoly ) ) return false; if( m_progressReporter && m_progressReporter->IsCancelled() ) return false; if( aZone->IsOnCopperLayer() ) { if( computeRawFilledArea( aZone, aLayer, debugLayer, smoothedPoly, maxExtents, aRawPolys ) ) aZone->SetNeedRefill( false ); aFinalPolys = aRawPolys; } else { // Features which are min_width should survive pruning; features that are *less* than // min_width should not. Therefore we subtract epsilon from the min_width when // deflating/inflating. int half_min_width = aZone->GetMinThickness() / 2; int epsilon = Millimeter2iu( 0.001 ); int numSegs = GetArcToSegmentCount( half_min_width, m_maxError, 360.0 ); smoothedPoly.Deflate( half_min_width - epsilon, numSegs ); // Remove the non filled areas due to the hatch pattern if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN ) addHatchFillTypeOnZone( aZone, aLayer, debugLayer, smoothedPoly ); // Re-inflate after pruning of areas that don't meet minimum-width criteria if( aZone->GetFilledPolysUseThickness() ) { // If we're stroking the zone with a min_width stroke then this will naturally // inflate the zone by half_min_width } else if( half_min_width - epsilon > epsilon ) { smoothedPoly.Inflate( half_min_width - epsilon, numSegs ); } aRawPolys = smoothedPoly; aFinalPolys = smoothedPoly; aFinalPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); aZone->SetNeedRefill( false ); } return true; } /** * Function buildThermalSpokes */ void ZONE_FILLER::buildThermalSpokes( const ZONE* aZone, PCB_LAYER_ID aLayer, std::deque& aSpokesList ) { auto zoneBB = aZone->GetCachedBoundingBox(); int zone_clearance = aZone->GetLocalClearance(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); biggest_clearance = std::max( biggest_clearance, zone_clearance ); zoneBB.Inflate( biggest_clearance ); // Is a point on the boundary of the polygon inside or outside? This small epsilon lets // us avoid the question. int epsilon = KiROUND( IU_PER_MM * 0.04 ); // about 1.5 mil for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( !hasThermalConnection( pad, aZone ) ) continue; // We currently only connect to pads, not pad holes if( !pad->IsOnLayer( aLayer ) ) continue; int thermalReliefGap = aZone->GetThermalReliefGap( pad ); // Calculate thermal bridge half width int spoke_w = aZone->GetThermalReliefSpokeWidth( pad ); // Avoid spoke_w bigger than the smaller pad size, because // it is not possible to create stubs bigger than the pad. // Possible refinement: have a separate size for vertical and horizontal stubs spoke_w = std::min( spoke_w, pad->GetSize().x ); spoke_w = std::min( spoke_w, pad->GetSize().y ); // Cannot create stubs having a width < zone min thickness if( spoke_w < aZone->GetMinThickness() ) continue; int spoke_half_w = spoke_w / 2; // Quick test here to possibly save us some work BOX2I itemBB = pad->GetBoundingBox(); itemBB.Inflate( thermalReliefGap + epsilon ); if( !( itemBB.Intersects( zoneBB ) ) ) continue; // Thermal spokes consist of segments from the pad center to points just outside // the thermal relief. // // We use the bounding-box to lay out the spokes, but for this to work the // bounding box has to be built at the same rotation as the spokes. // We have to use a dummy pad to avoid dirtying the cached shapes wxPoint shapePos = pad->ShapePos(); double padAngle = pad->GetOrientation(); PAD dummy_pad( *pad ); dummy_pad.SetOrientation( 0.0 ); dummy_pad.SetPosition( { 0, 0 } ); BOX2I reliefBB = dummy_pad.GetBoundingBox(); reliefBB.Inflate( thermalReliefGap + epsilon ); // For circle pads, the thermal spoke orientation is 45 deg if( pad->GetShape() == PAD_SHAPE_CIRCLE ) padAngle = s_RoundPadThermalSpokeAngle; for( int i = 0; i < 4; i++ ) { SHAPE_LINE_CHAIN spoke; switch( i ) { case 0: // lower stub spoke.Append( +spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetBottom() ); spoke.Append( 0, reliefBB.GetBottom() ); // test pt spoke.Append( +spoke_half_w, reliefBB.GetBottom() ); break; case 1: // upper stub spoke.Append( +spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, reliefBB.GetTop() ); spoke.Append( 0, reliefBB.GetTop() ); // test pt spoke.Append( +spoke_half_w, reliefBB.GetTop() ); break; case 2: // right stub spoke.Append( -spoke_half_w, spoke_half_w ); spoke.Append( -spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetRight(), -spoke_half_w ); spoke.Append( reliefBB.GetRight(), 0 ); // test pt spoke.Append( reliefBB.GetRight(), spoke_half_w ); break; case 3: // left stub spoke.Append( spoke_half_w, spoke_half_w ); spoke.Append( spoke_half_w, -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), -spoke_half_w ); spoke.Append( reliefBB.GetLeft(), 0 ); // test pt spoke.Append( reliefBB.GetLeft(), spoke_half_w ); break; } spoke.Rotate( -DECIDEG2RAD( padAngle ) ); spoke.Move( shapePos ); spoke.SetClosed( true ); spoke.GenerateBBoxCache(); aSpokesList.push_back( std::move( spoke ) ); } } } } bool ZONE_FILLER::addHatchFillTypeOnZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET& aRawPolys ) { // Build grid: // obviously line thickness must be > zone min thickness. // It can happens if a board file was edited by hand by a python script // Use 1 micron margin to be *sure* there is no issue in Gerber files // (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations // This margin also avoid problems due to rounding coordinates in next calculations // that can create incorrect polygons int thickness = std::max( aZone->GetHatchThickness(), aZone->GetMinThickness() + Millimeter2iu( 0.001 ) ); int linethickness = thickness - aZone->GetMinThickness(); int gridsize = thickness + aZone->GetHatchGap(); double orientation = aZone->GetHatchOrientation(); SHAPE_POLY_SET filledPolys = aRawPolys; // Use a area that contains the rotated bbox by orientation, // and after rotate the result by -orientation. if( orientation != 0.0 ) filledPolys.Rotate( M_PI / 180.0 * orientation, VECTOR2I( 0, 0 ) ); BOX2I bbox = filledPolys.BBox( 0 ); // Build hole shape // the hole size is aZone->GetHatchGap(), but because the outline thickness // is aZone->GetMinThickness(), the hole shape size must be larger SHAPE_LINE_CHAIN hole_base; int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness(); VECTOR2I corner( 0, 0 );; hole_base.Append( corner ); corner.x += hole_size; hole_base.Append( corner ); corner.y += hole_size; hole_base.Append( corner ); corner.x = 0; hole_base.Append( corner ); hole_base.SetClosed( true ); // Calculate minimal area of a grid hole. // All holes smaller than a threshold will be removed double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea(); // Now convert this hole to a smoothed shape: if( aZone->GetHatchSmoothingLevel() > 0 ) { // the actual size of chamfer, or rounded corner radius is the half size // of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue() // aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the // radius of corner (radius = half size of the hole) int smooth_value = KiROUND( aZone->GetHatchGap() * aZone->GetHatchSmoothingValue() / 2 ); // Minimal optimization: // make smoothing only for reasonnable smooth values, to avoid a lot of useless segments // and if the smooth value is small, use chamfer even if fillet is requested #define SMOOTH_MIN_VAL_MM 0.02 #define SMOOTH_SMALL_VAL_MM 0.04 if( smooth_value > Millimeter2iu( SMOOTH_MIN_VAL_MM ) ) { SHAPE_POLY_SET smooth_hole; smooth_hole.AddOutline( hole_base ); int smooth_level = aZone->GetHatchSmoothingLevel(); if( smooth_value < Millimeter2iu( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 ) smooth_level = 1; // Use a larger smooth_value to compensate the outline tickness // (chamfer is not visible is smooth value < outline thickess) smooth_value += aZone->GetMinThickness() / 2; // smooth_value cannot be bigger than the half size oh the hole: smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 ); // the error to approximate a circle by segments when smoothing corners by a arc int error_max = std::max( Millimeter2iu( 0.01 ), smooth_value / 20 ); switch( smooth_level ) { case 1: // Chamfer() uses the distance from a corner to create a end point // for the chamfer. hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 ); break; default: if( aZone->GetHatchSmoothingLevel() > 2 ) error_max /= 2; // Force better smoothing hole_base = smooth_hole.Fillet( smooth_value, error_max ).Outline( 0 ); break; case 0: break; }; } } // Build holes SHAPE_POLY_SET holes; for( int xx = 0; ; xx++ ) { int xpos = xx * gridsize; if( xpos > bbox.GetWidth() ) break; for( int yy = 0; ; yy++ ) { int ypos = yy * gridsize; if( ypos > bbox.GetHeight() ) break; // Generate hole SHAPE_LINE_CHAIN hole( hole_base ); hole.Move( VECTOR2I( xpos, ypos ) ); holes.AddOutline( hole ); } } holes.Move( bbox.GetPosition() ); if( orientation != 0.0 ) holes.Rotate( -M_PI/180.0 * orientation, VECTOR2I( 0,0 ) ); DUMP_POLYS_TO_COPPER_LAYER( holes, In10_Cu, "hatch-holes" ); int outline_margin = aZone->GetMinThickness() * 1.1; // Using GetHatchThickness() can look more consistent than GetMinThickness(). if( aZone->GetHatchBorderAlgorithm() && aZone->GetHatchThickness() > outline_margin ) outline_margin = aZone->GetHatchThickness(); // The fill has already been deflated to ensure GetMinThickness() so we just have to // account for anything beyond that. SHAPE_POLY_SET deflatedFilledPolys = aRawPolys; deflatedFilledPolys.Deflate( outline_margin - aZone->GetMinThickness(), 16 ); holes.BooleanIntersection( deflatedFilledPolys, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( holes, In11_Cu, "fill-clipped-hatch-holes" ); SHAPE_POLY_SET deflatedOutline = *aZone->Outline(); deflatedOutline.Deflate( outline_margin, 16 ); holes.BooleanIntersection( deflatedOutline, SHAPE_POLY_SET::PM_FAST ); DUMP_POLYS_TO_COPPER_LAYER( holes, In12_Cu, "outline-clipped-hatch-holes" ); if( aZone->GetNetCode() != 0 ) { // Vias and pads connected to the zone must not be allowed to become isolated inside // one of the holes. Effectively this means their copper outline needs to be expanded // to be at least as wide as the gap so that it is guaranteed to touch at least one // edge. EDA_RECT zone_boundingbox = aZone->GetCachedBoundingBox(); SHAPE_POLY_SET aprons; int min_apron_radius = ( aZone->GetHatchGap() * 10 ) / 19; for( TRACK* track : m_board->Tracks() ) { if( track->Type() == PCB_VIA_T ) { VIA* via = static_cast( track ); if( via->GetNetCode() == aZone->GetNetCode() && via->IsOnLayer( aLayer ) && via->GetBoundingBox().Intersects( zone_boundingbox ) ) { int r = std::max( min_apron_radius, via->GetDrillValue() / 2 + outline_margin ); TransformCircleToPolygon( aprons, via->GetPosition(), r, ARC_HIGH_DEF, ERROR_OUTSIDE ); } } } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->GetNetCode() == aZone->GetNetCode() && pad->IsOnLayer( aLayer ) && pad->GetBoundingBox().Intersects( zone_boundingbox ) ) { // What we want is to bulk up the pad shape so that the narrowest bit of // copper between the hole and the apron edge is at least outline_margin // wide (and that the apron itself meets min_apron_radius. But that would // take a lot of code and math, and the following approximation is close // enough. int pad_width = std::min( pad->GetSize().x, pad->GetSize().y ); int slot_width = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y ); int min_annulus = ( pad_width - slot_width ) / 2; int clearance = std::max( min_apron_radius - pad_width / 2, outline_margin - min_annulus ); clearance = std::max( 0, clearance - linethickness / 2 ); pad->TransformShapeWithClearanceToPolygon( aprons, aLayer, clearance, ARC_HIGH_DEF, ERROR_OUTSIDE ); } } } holes.BooleanSubtract( aprons, SHAPE_POLY_SET::PM_FAST ); } DUMP_POLYS_TO_COPPER_LAYER( holes, In13_Cu, "pad-via-clipped-hatch-holes" ); // Now filter truncated holes to avoid small holes in pattern // It happens for holes near the zone outline for( int ii = 0; ii < holes.OutlineCount(); ) { double area = holes.Outline( ii ).Area(); if( area < minimal_hole_area ) // The current hole is too small: remove it holes.DeletePolygon( ii ); else ++ii; } // create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to // generate strictly simple polygons needed by Gerber files and Fracture() aRawPolys.BooleanSubtract( aRawPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In14_Cu, "after-hatching" ); return true; }