/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2012 Torsten Hueter, torstenhtr gmx.de * Copyright (C) 2012 Kicad Developers, see change_log.txt for contributors. * Copyright (C) 2013 CERN * @author Maciej Suminski * * Graphics Abstraction Layer (GAL) for OpenGL * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #ifdef __WXDEBUG__ #include #endif /* __WXDEBUG__ */ #include using namespace KIGFX; // Prototypes void InitTesselatorCallbacks( GLUtesselator* aTesselator ); const int glAttributes[] = { WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 16, 0 }; OPENGL_GAL::OPENGL_GAL( wxWindow* aParent, wxEvtHandler* aMouseListener, wxEvtHandler* aPaintListener, const wxString& aName ) : wxGLCanvas( aParent, wxID_ANY, (int*) glAttributes, wxDefaultPosition, wxDefaultSize, wxEXPAND, aName ), cachedManager( true ), nonCachedManager( false ), overlayManager( false ) { // Create the OpenGL-Context glContext = new wxGLContext( this ); parentWindow = aParent; mouseListener = aMouseListener; paintListener = aPaintListener; // Initialize the flags isGlewInitialized = false; isFramebufferInitialized = false; isShaderInitialized = false; isGrouping = false; groupCounter = 0; // Connecting the event handlers Connect( wxEVT_PAINT, wxPaintEventHandler( OPENGL_GAL::onPaint ) ); // Mouse events are skipped to the parent Connect( wxEVT_MOTION, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_LEFT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_LEFT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_LEFT_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_MIDDLE_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_MIDDLE_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_MIDDLE_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_RIGHT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_RIGHT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); Connect( wxEVT_RIGHT_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); #if defined _WIN32 || defined _WIN64 Connect( wxEVT_ENTER_WINDOW, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) ); #endif SetSize( aParent->GetSize() ); screenSize = VECTOR2D( aParent->GetSize() ); initCursor( 80 ); // Grid color settings are different in Cairo and OpenGL SetGridColor( COLOR4D( 0.8, 0.8, 0.8, 0.1 ) ); // Tesselator initialization tesselator = gluNewTess(); InitTesselatorCallbacks( tesselator ); if( tesselator == NULL ) { DisplayError( parentWindow, wxT( "Could not create the tesselator" ) ); exit( 1 ); } gluTessProperty( tesselator, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_POSITIVE ); } OPENGL_GAL::~OPENGL_GAL() { glFlush(); gluDeleteTess( tesselator ); ClearCache(); delete glContext; } void OPENGL_GAL::BeginDrawing() { SetCurrent( *glContext ); clientDC = new wxClientDC( this ); // Initialize GLEW, FBOs & VBOs if( !isGlewInitialized ) initGlew(); if( !isFramebufferInitialized ) { // Set up the view port glMatrixMode( GL_PROJECTION ); glLoadIdentity(); glViewport( 0, 0, (GLsizei) screenSize.x, (GLsizei) screenSize.y ); // Create the screen transformation glOrtho( 0, (GLint) screenSize.x, 0, (GLsizei) screenSize.y, -depthRange.x, -depthRange.y ); // Prepare rendering target buffers compositor.Initialize(); mainBuffer = compositor.CreateBuffer(); overlayBuffer = compositor.CreateBuffer(); isFramebufferInitialized = true; } // Compile the shaders if( !isShaderInitialized ) { if( !shader.LoadBuiltinShader( 0, SHADER_TYPE_VERTEX ) ) { DisplayError( parentWindow, wxT( "Cannot compile vertex shader!" ) ); exit( 1 ); } if( !shader.LoadBuiltinShader( 1, SHADER_TYPE_FRAGMENT ) ) { DisplayError( parentWindow, wxT( "Cannot compile fragment shader!" ) ); exit( 1 ); } if( !shader.Link() ) { DisplayError( parentWindow, wxT( "Cannot link the shaders!" ) ); exit( 1 ); } // Make VBOs use shaders cachedManager.SetShader( shader ); nonCachedManager.SetShader( shader ); overlayManager.SetShader( shader ); isShaderInitialized = true; } // Disable 2D Textures glDisable( GL_TEXTURE_2D ); // Enable the depth buffer glEnable( GL_DEPTH_TEST ); glDepthFunc( GL_LESS ); // Setup blending, required for transparent objects glEnable( GL_BLEND ); glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA ); glMatrixMode( GL_MODELVIEW ); // Set up the world <-> screen transformation ComputeWorldScreenMatrix(); GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; matrixData[0] = worldScreenMatrix.m_data[0][0]; matrixData[1] = worldScreenMatrix.m_data[1][0]; matrixData[2] = worldScreenMatrix.m_data[2][0]; matrixData[4] = worldScreenMatrix.m_data[0][1]; matrixData[5] = worldScreenMatrix.m_data[1][1]; matrixData[6] = worldScreenMatrix.m_data[2][1]; matrixData[12] = worldScreenMatrix.m_data[0][2]; matrixData[13] = worldScreenMatrix.m_data[1][2]; matrixData[14] = worldScreenMatrix.m_data[2][2]; glLoadMatrixd( matrixData ); // Set defaults SetFillColor( fillColor ); SetStrokeColor( strokeColor ); // Unbind buffers - set compositor for direct drawing compositor.SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING ); // Remove all previously stored items nonCachedManager.Clear(); overlayManager.Clear(); cachedManager.BeginDrawing(); nonCachedManager.BeginDrawing(); overlayManager.BeginDrawing(); } void OPENGL_GAL::EndDrawing() { // Cached & non-cached containers are rendered to the same buffer compositor.SetBuffer( mainBuffer ); nonCachedManager.EndDrawing(); cachedManager.EndDrawing(); // Overlay container is rendered to a different buffer compositor.SetBuffer( overlayBuffer ); overlayManager.EndDrawing(); // Be sure that the framebuffer is not colorized (happens on specific GPU&drivers combinations) glColor4d( 1.0, 1.0, 1.0, 1.0 ); // Draw the remaining contents, blit the rendering targets to the screen, swap the buffers compositor.DrawBuffer( mainBuffer ); compositor.DrawBuffer( overlayBuffer ); blitCursor(); glFlush(); SwapBuffers(); delete clientDC; } void OPENGL_GAL::DrawLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { const VECTOR2D startEndVector = aEndPoint - aStartPoint; double lineAngle = startEndVector.Angle(); drawLineQuad( aStartPoint, aEndPoint ); // Line caps if( lineWidth > 1.0 ) { drawFilledSemiCircle( aStartPoint, lineWidth / 2, lineAngle + M_PI / 2 ); drawFilledSemiCircle( aEndPoint, lineWidth / 2, lineAngle - M_PI / 2 ); } } void OPENGL_GAL::DrawSegment( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint, double aWidth ) { VECTOR2D startEndVector = aEndPoint - aStartPoint; double lineAngle = startEndVector.Angle(); if( isFillEnabled ) { // Filled tracks currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a ); SetLineWidth( aWidth ); drawLineQuad( aStartPoint, aEndPoint ); // Draw line caps drawFilledSemiCircle( aStartPoint, aWidth / 2, lineAngle + M_PI / 2 ); drawFilledSemiCircle( aEndPoint, aWidth / 2, lineAngle - M_PI / 2 ); } else { // Outlined tracks double lineLength = startEndVector.EuclideanNorm(); currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); Save(); currentManager->Translate( aStartPoint.x, aStartPoint.y, 0.0 ); currentManager->Rotate( lineAngle, 0.0f, 0.0f, 1.0f ); drawLineQuad( VECTOR2D( 0.0, aWidth / 2.0 ), VECTOR2D( lineLength, aWidth / 2.0 ) ); drawLineQuad( VECTOR2D( 0.0, -aWidth / 2.0 ), VECTOR2D( lineLength, -aWidth / 2.0 ) ); // Draw line caps drawStrokedSemiCircle( VECTOR2D( 0.0, 0.0 ), aWidth / 2, M_PI / 2 ); drawStrokedSemiCircle( VECTOR2D( lineLength, 0.0 ), aWidth / 2, -M_PI / 2 ); Restore(); } } void OPENGL_GAL::DrawCircle( const VECTOR2D& aCenterPoint, double aRadius ) { if( isFillEnabled ) { currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a ); /* Draw a triangle that contains the circle, then shade it leaving only the circle. * Parameters given to setShader are indices of the triangle's vertices * (if you want to understand more, check the vertex shader source [shader.vert]). * Shader uses this coordinates to determine if fragments are inside the circle or not. * v2 * /\ * //\\ * v0 /_\/_\ v1 */ currentManager->Shader( SHADER_FILLED_CIRCLE, 1.0 ); currentManager->Vertex( aCenterPoint.x - aRadius * sqrt( 3.0f ), // v0 aCenterPoint.y - aRadius, layerDepth ); currentManager->Shader( SHADER_FILLED_CIRCLE, 2.0 ); currentManager->Vertex( aCenterPoint.x + aRadius * sqrt( 3.0f ), // v1 aCenterPoint.y - aRadius, layerDepth ); currentManager->Shader( SHADER_FILLED_CIRCLE, 3.0 ); currentManager->Vertex( aCenterPoint.x, aCenterPoint.y + aRadius * 2.0f, // v2 layerDepth ); } if( isStrokeEnabled ) { currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); /* Draw a triangle that contains the circle, then shade it leaving only the circle. * Parameters given to setShader are indices of the triangle's vertices * (if you want to understand more, check the vertex shader source [shader.vert]). * and the line width. Shader uses this coordinates to determine if fragments are * inside the circle or not. * v2 * /\ * //\\ * v0 /_\/_\ v1 */ double outerRadius = aRadius + ( lineWidth / 2 ); currentManager->Shader( SHADER_STROKED_CIRCLE, 1.0, aRadius, lineWidth ); currentManager->Vertex( aCenterPoint.x - outerRadius * sqrt( 3.0f ), // v0 aCenterPoint.y - outerRadius, layerDepth ); currentManager->Shader( SHADER_STROKED_CIRCLE, 2.0, aRadius, lineWidth ); currentManager->Vertex( aCenterPoint.x + outerRadius * sqrt( 3.0f ), // v1 aCenterPoint.y - outerRadius, layerDepth ); currentManager->Shader( SHADER_STROKED_CIRCLE, 3.0, aRadius, lineWidth ); currentManager->Vertex( aCenterPoint.x, aCenterPoint.y + outerRadius * 2.0f, // v2 layerDepth ); } } void OPENGL_GAL::DrawArc( const VECTOR2D& aCenterPoint, double aRadius, double aStartAngle, double aEndAngle ) { if( aRadius <= 0 ) return; // Swap the angles, if start angle is greater than end angle SWAP( aStartAngle, >, aEndAngle ); VECTOR2D startPoint( cos( aStartAngle ), sin( aStartAngle ) ); VECTOR2D endPoint( cos( aEndAngle ), sin( aEndAngle ) ); VECTOR2D startEndPoint = startPoint + endPoint; VECTOR2D middlePoint = 0.5 * startEndPoint; Save(); currentManager->Translate( aCenterPoint.x, aCenterPoint.y, layerDepth ); if( isStrokeEnabled ) { double alphaIncrement = 2.0 * M_PI / CIRCLE_POINTS; currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); VECTOR2D p( cos( aStartAngle ) * aRadius, sin( aStartAngle ) * aRadius ); double alpha; for( alpha = aStartAngle + alphaIncrement; alpha < aEndAngle; alpha += alphaIncrement ) { VECTOR2D p_next( cos( alpha ) * aRadius, sin( alpha ) * aRadius ); DrawLine( p, p_next ); p = p_next; } // Draw the last missing part if( alpha != aEndAngle ) { VECTOR2D p_last( cos( aEndAngle ) * aRadius, sin( aEndAngle ) * aRadius ); DrawLine( p, p_last ); } } if( isFillEnabled ) { double alphaIncrement = 2 * M_PI / CIRCLE_POINTS; double alpha; currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a ); for( alpha = aStartAngle; ( alpha + alphaIncrement ) < aEndAngle; ) { currentManager->Vertex( middlePoint.x, middlePoint.y, 0.0 ); currentManager->Vertex( cos( alpha ), sin( alpha ), 0.0 ); alpha += alphaIncrement; currentManager->Vertex( cos( alpha ), sin( alpha ), 0.0 ); } currentManager->Vertex( middlePoint.x, middlePoint.y, 0.0 ); currentManager->Vertex( cos( alpha ), sin( alpha ), 0.0 ); currentManager->Vertex( endPoint.x, endPoint.y, 0.0 ); } Restore(); } void OPENGL_GAL::DrawRectangle( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { // Compute the diagonal points of the rectangle VECTOR2D diagonalPointA( aEndPoint.x, aStartPoint.y ); VECTOR2D diagonalPointB( aStartPoint.x, aEndPoint.y ); // Stroke the outline if( isStrokeEnabled ) { currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); std::deque pointList; pointList.push_back( aStartPoint ); pointList.push_back( diagonalPointA ); pointList.push_back( aEndPoint ); pointList.push_back( diagonalPointB ); pointList.push_back( aStartPoint ); DrawPolyline( pointList ); } // Fill the rectangle if( isFillEnabled ) { currentManager->Shader( SHADER_NONE ); currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a ); currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); currentManager->Vertex( diagonalPointA.x, diagonalPointA.y, layerDepth ); currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); currentManager->Vertex( diagonalPointB.x, diagonalPointB.y, layerDepth ); } } void OPENGL_GAL::DrawPolyline( std::deque& aPointList ) { std::deque::const_iterator it = aPointList.begin(); // Start from the second point for( it++; it != aPointList.end(); it++ ) { const VECTOR2D startEndVector = ( *it - *( it - 1 ) ); double lineAngle = startEndVector.Angle(); drawLineQuad( *( it - 1 ), *it ); // There is no need to draw line caps on both ends of polyline's segments drawFilledSemiCircle( *( it - 1 ), lineWidth / 2, lineAngle + M_PI / 2 ); } // ..and now - draw the ending cap const VECTOR2D startEndVector = ( *( it - 1 ) - *( it - 2 ) ); double lineAngle = startEndVector.Angle(); drawFilledSemiCircle( *( it - 1 ), lineWidth / 2, lineAngle - M_PI / 2 ); } void OPENGL_GAL::DrawPolygon( const std::deque& aPointList ) { // Any non convex polygon needs to be tesselated // for this purpose the GLU standard functions are used currentManager->Shader( SHADER_NONE ); currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a ); TessParams params = { currentManager, tessIntersects }; gluTessBeginPolygon( tesselator, ¶ms ); gluTessBeginContour( tesselator ); boost::shared_array points( new GLdouble[3 * aPointList.size()] ); int v = 0; for( std::deque::const_iterator it = aPointList.begin(); it != aPointList.end(); it++ ) { points[v] = it->x; points[v + 1] = it->y; points[v + 2] = layerDepth; gluTessVertex( tesselator, &points[v], &points[v] ); v += 3; } gluTessEndContour( tesselator ); gluTessEndPolygon( tesselator ); // Free allocated intersecting points tessIntersects.clear(); // vertexList destroyed here } void OPENGL_GAL::DrawCurve( const VECTOR2D& aStartPoint, const VECTOR2D& aControlPointA, const VECTOR2D& aControlPointB, const VECTOR2D& aEndPoint ) { // FIXME The drawing quality needs to be improved // FIXME Perhaps choose a quad/triangle strip instead? // FIXME Brute force method, use a better (recursive?) algorithm std::deque pointList; double t = 0.0; double dt = 1.0 / (double) CURVE_POINTS; for( int i = 0; i <= CURVE_POINTS; i++ ) { double omt = 1.0 - t; double omt2 = omt * omt; double omt3 = omt * omt2; double t2 = t * t; double t3 = t * t2; VECTOR2D vertex = omt3 * aStartPoint + 3.0 * t * omt2 * aControlPointA + 3.0 * t2 * omt * aControlPointB + t3 * aEndPoint; pointList.push_back( vertex ); t += dt; } DrawPolyline( pointList ); } void OPENGL_GAL::ResizeScreen( int aWidth, int aHeight ) { screenSize = VECTOR2D( aWidth, aHeight ); // Resize framebuffers compositor.Resize( aWidth, aHeight ); isFramebufferInitialized = false; wxGLCanvas::SetSize( aWidth, aHeight ); } bool OPENGL_GAL::Show( bool aShow ) { bool s = wxGLCanvas::Show( aShow ); if( aShow ) wxGLCanvas::Raise(); return s; } void OPENGL_GAL::Flush() { glFlush(); } void OPENGL_GAL::ClearScreen() { // Clear screen glClearColor( backgroundColor.r, backgroundColor.g, backgroundColor.b, backgroundColor.a ); glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); } void OPENGL_GAL::SetStrokeColor( const COLOR4D& aColor ) { strokeColor = aColor; // This is the default drawing color currentManager->Color( aColor.r, aColor.g, aColor.b, aColor.a ); } void OPENGL_GAL::Transform( MATRIX3x3D aTransformation ) { GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; matrixData[0] = aTransformation.m_data[0][0]; matrixData[1] = aTransformation.m_data[1][0]; matrixData[2] = aTransformation.m_data[2][0]; matrixData[4] = aTransformation.m_data[0][1]; matrixData[5] = aTransformation.m_data[1][1]; matrixData[6] = aTransformation.m_data[2][1]; matrixData[12] = aTransformation.m_data[0][2]; matrixData[13] = aTransformation.m_data[1][2]; matrixData[14] = aTransformation.m_data[2][2]; glMultMatrixd( matrixData ); } void OPENGL_GAL::Rotate( double aAngle ) { currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f ); } void OPENGL_GAL::Translate( const VECTOR2D& aVector ) { currentManager->Translate( aVector.x, aVector.y, 0.0f ); } void OPENGL_GAL::Scale( const VECTOR2D& aScale ) { currentManager->Scale( aScale.x, aScale.y, 0.0f ); } void OPENGL_GAL::Save() { currentManager->PushMatrix(); } void OPENGL_GAL::Restore() { currentManager->PopMatrix(); } int OPENGL_GAL::BeginGroup() { isGrouping = true; boost::shared_ptr newItem( new VERTEX_ITEM( cachedManager ) ); int groupNumber = getNewGroupNumber(); groups.insert( std::make_pair( groupNumber, newItem ) ); return groupNumber; } void OPENGL_GAL::EndGroup() { cachedManager.FinishItem(); isGrouping = false; } void OPENGL_GAL::DrawGroup( int aGroupNumber ) { cachedManager.DrawItem( *groups[aGroupNumber] ); } void OPENGL_GAL::ChangeGroupColor( int aGroupNumber, const COLOR4D& aNewColor ) { cachedManager.ChangeItemColor( *groups[aGroupNumber], aNewColor ); } void OPENGL_GAL::ChangeGroupDepth( int aGroupNumber, int aDepth ) { cachedManager.ChangeItemDepth( *groups[aGroupNumber], aDepth ); } void OPENGL_GAL::DeleteGroup( int aGroupNumber ) { // Frees memory in the container as well groups.erase( aGroupNumber ); } void OPENGL_GAL::ClearCache() { groups.clear(); cachedManager.Clear(); } void OPENGL_GAL::SaveScreen() { wxASSERT_MSG( false, wxT( "Not implemented yet" ) ); } void OPENGL_GAL::RestoreScreen() { wxASSERT_MSG( false, wxT( "Not implemented yet" ) ); } void OPENGL_GAL::SetTarget( RENDER_TARGET aTarget ) { switch( aTarget ) { default: case TARGET_CACHED: currentManager = &cachedManager; break; case TARGET_NONCACHED: currentManager = &nonCachedManager; break; case TARGET_OVERLAY: currentManager = &overlayManager; break; } currentTarget = aTarget; } RENDER_TARGET OPENGL_GAL::GetTarget() const { return currentTarget; } void OPENGL_GAL::ClearTarget( RENDER_TARGET aTarget ) { // Save the current state unsigned int oldTarget = compositor.GetBuffer(); switch( aTarget ) { // Cached and noncached items are rendered to the same buffer default: case TARGET_CACHED: case TARGET_NONCACHED: compositor.SetBuffer( mainBuffer ); break; case TARGET_OVERLAY: compositor.SetBuffer( overlayBuffer ); break; } compositor.ClearBuffer(); // Restore the previous state compositor.SetBuffer( oldTarget ); } void OPENGL_GAL::DrawCursor( const VECTOR2D& aCursorPosition ) { // Now we should only store the position of the mouse cursor // The real drawing routines are in blitCursor() cursorPosition = VECTOR2D( aCursorPosition.x, screenSize.y - aCursorPosition.y ); // invert Y axis } void OPENGL_GAL::drawGridLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { compositor.SetBuffer( mainBuffer ); // We do not need a very precise comparison here (the lineWidth is set by GAL::DrawGrid()) if( fabs( lineWidth - 2.0 * gridLineWidth / worldScale ) < 0.1 ) { glLineWidth( 1.0 ); } else { glLineWidth( 2.0 ); } glColor4d( gridColor.r, gridColor.g, gridColor.b, gridColor.a ); glBegin( GL_LINES ); glVertex3d( aStartPoint.x, aStartPoint.y, layerDepth ); glVertex3d( aEndPoint.x, aEndPoint.y, layerDepth ); glEnd(); // Restore the default color, so textures will be drawn properly glColor4d( 1.0, 1.0, 1.0, 1.0 ); } inline void OPENGL_GAL::drawLineQuad( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint ) { VECTOR2D startEndVector = aEndPoint - aStartPoint; double lineLength = startEndVector.EuclideanNorm(); double scale = 0.5 * lineWidth / lineLength; if( lineLength <= 0.0 ) return; // The perpendicular vector also needs transformations glm::vec4 vector = currentManager->GetTransformation() * glm::vec4( -startEndVector.y * scale, startEndVector.x * scale, 0.0, 0.0 ); // Line width is maintained by the vertex shader currentManager->Shader( SHADER_LINE, vector.x, vector.y, lineWidth ); currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); // v0 currentManager->Shader( SHADER_LINE, -vector.x, -vector.y, lineWidth ); currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); // v1 currentManager->Shader( SHADER_LINE, -vector.x, -vector.y, lineWidth ); currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); // v3 currentManager->Shader( SHADER_LINE, vector.x, vector.y, lineWidth ); currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); // v0 currentManager->Shader( SHADER_LINE, -vector.x, -vector.y, lineWidth ); currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); // v3 currentManager->Shader( SHADER_LINE, vector.x, vector.y, lineWidth ); currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); // v2 } void OPENGL_GAL::drawSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle ) { if( isFillEnabled ) { currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a ); drawFilledSemiCircle( aCenterPoint, aRadius, aAngle ); } if( isStrokeEnabled ) { currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a ); drawStrokedSemiCircle( aCenterPoint, aRadius, aAngle ); } } void OPENGL_GAL::drawFilledSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle ) { Save(); currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0f ); currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f ); /* Draw a triangle that contains the semicircle, then shade it to leave only * the semicircle. Parameters given to setShader are indices of the triangle's vertices * (if you want to understand more, check the vertex shader source [shader.vert]). * Shader uses this coordinates to determine if fragments are inside the semicircle or not. * v2 * /\ * /__\ * v0 //__\\ v1 */ currentManager->Shader( SHADER_FILLED_CIRCLE, 4.0f ); currentManager->Vertex( -aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v0 currentManager->Shader( SHADER_FILLED_CIRCLE, 5.0f ); currentManager->Vertex( aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v1 currentManager->Shader( SHADER_FILLED_CIRCLE, 6.0f ); currentManager->Vertex( 0.0f, aRadius * 2.0f, layerDepth ); // v2 Restore(); } void OPENGL_GAL::drawStrokedSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle ) { double outerRadius = aRadius + ( lineWidth / 2 ); Save(); currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0f ); currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f ); /* Draw a triangle that contains the semicircle, then shade it to leave only * the semicircle. Parameters given to setShader are indices of the triangle's vertices * (if you want to understand more, check the vertex shader source [shader.vert]), the * radius and the line width. Shader uses this coordinates to determine if fragments are * inside the semicircle or not. * v2 * /\ * /__\ * v0 //__\\ v1 */ currentManager->Shader( SHADER_STROKED_CIRCLE, 4.0f, aRadius, lineWidth ); currentManager->Vertex( -outerRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v0 currentManager->Shader( SHADER_STROKED_CIRCLE, 5.0f, aRadius, lineWidth ); currentManager->Vertex( outerRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v1 currentManager->Shader( SHADER_STROKED_CIRCLE, 6.0f, aRadius, lineWidth ); currentManager->Vertex( 0.0f, outerRadius * 2.0f, layerDepth ); // v2 Restore(); } void OPENGL_GAL::onPaint( wxPaintEvent& WXUNUSED( aEvent ) ) { PostPaint(); } void OPENGL_GAL::skipMouseEvent( wxMouseEvent& aEvent ) { // Post the mouse event to the event listener registered in constructor, if any if( mouseListener ) wxPostEvent( mouseListener, aEvent ); } void OPENGL_GAL::initGlew() { // Initialize GLEW library GLenum err = glewInit(); if( GLEW_OK != err ) { DisplayError( parentWindow, wxString::FromUTF8( (char*) glewGetErrorString( err ) ) ); exit( 1 ); } else { wxLogDebug( wxString( wxT( "Status: Using GLEW " ) ) + FROM_UTF8( (char*) glewGetString( GLEW_VERSION ) ) ); } // Check the OpenGL version (minimum 2.1 is required) if( GLEW_VERSION_2_1 ) { wxLogInfo( wxT( "OpenGL Version 2.1 supported." ) ); } else { DisplayError( parentWindow, wxT( "OpenGL Version 2.1 is not supported!" ) ); exit( 1 ); } // Framebuffers have to be supported if( !GLEW_EXT_framebuffer_object ) { DisplayError( parentWindow, wxT( "Framebuffer objects are not supported!" ) ); exit( 1 ); } // Vertex buffer have to be supported if( !GLEW_ARB_vertex_buffer_object ) { DisplayError( parentWindow, wxT( "Vertex buffer objects are not supported!" ) ); exit( 1 ); } isGlewInitialized = true; } void OPENGL_GAL::initCursor( int aCursorSize ) { cursorSize = aCursorSize; } void OPENGL_GAL::blitCursor() { if( !isCursorEnabled ) return; compositor.SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING ); VECTOR2D cursorBegin = ToWorld( cursorPosition - VECTOR2D( cursorSize / 2, cursorSize / 2 ) ); VECTOR2D cursorEnd = ToWorld( cursorPosition + VECTOR2D( cursorSize / 2, cursorSize / 2 ) ); VECTOR2D cursorCenter = ( cursorBegin + cursorEnd ) / 2.0; glDisable( GL_TEXTURE_2D ); glLineWidth( 1.0 ); glColor4d( cursorColor.r, cursorColor.g, cursorColor.b, cursorColor.a ); glBegin( GL_LINES ); glVertex2d( cursorCenter.x, cursorBegin.y ); glVertex2d( cursorCenter.x, cursorEnd.y ); glVertex2d( cursorBegin.x, cursorCenter.y ); glVertex2d( cursorEnd.x, cursorCenter.y ); glEnd(); } unsigned int OPENGL_GAL::getNewGroupNumber() { wxASSERT_MSG( groups.size() < std::numeric_limits::max(), wxT( "There are no free slots to store a group" ) ); while( groups.find( groupCounter ) != groups.end() ) { groupCounter++; } return groupCounter++; } // ------------------------------------- // Callback functions for the tesselator // ------------------------------------- // Compare Redbook Chapter 11 void CALLBACK VertexCallback( GLvoid* aVertexPtr, void* aData ) { GLdouble* vertex = static_cast( aVertexPtr ); OPENGL_GAL::TessParams* param = static_cast( aData ); VERTEX_MANAGER* vboManager = param->vboManager; if( vboManager ) vboManager->Vertex( vertex[0], vertex[1], vertex[2] ); } void CALLBACK CombineCallback( GLdouble coords[3], GLdouble* vertex_data[4], GLfloat weight[4], GLdouble** dataOut, void* aData ) { GLdouble* vertex = new GLdouble[3]; OPENGL_GAL::TessParams* param = static_cast( aData ); // Save the pointer so we can delete it later param->intersectPoints.push_back( boost::shared_array( vertex ) ); memcpy( vertex, coords, 3 * sizeof(GLdouble) ); *dataOut = vertex; } void CALLBACK EdgeCallback( GLboolean aEdgeFlag ) { // This callback is needed to force GLU tesselator to use triangles only } void CALLBACK ErrorCallback( GLenum aErrorCode ) { const GLubyte* eString = gluErrorString( aErrorCode ); DisplayError( NULL, wxT( "Tessellation error: " ) + wxString( (const char*)( eString ), wxConvUTF8 ) ); exit( 1 ); } void InitTesselatorCallbacks( GLUtesselator* aTesselator ) { gluTessCallback( aTesselator, GLU_TESS_VERTEX_DATA, ( void (CALLBACK*)() )VertexCallback ); gluTessCallback( aTesselator, GLU_TESS_COMBINE_DATA, ( void (CALLBACK*)() )CombineCallback ); gluTessCallback( aTesselator, GLU_TESS_EDGE_FLAG, ( void (CALLBACK*)() )EdgeCallback ); gluTessCallback( aTesselator, GLU_TESS_ERROR, ( void (CALLBACK*)() )ErrorCallback ); }