
Rob ust pol ygo n model ling
Victor Milenkovic

The paper provides a set of algorithms for performing set
operations on polygonal regions in the plane using standard
floating-point arithmetc. The algorithms are robust, guaranteeing
both topological consistency and numerical accuracy. Each
polygon edge is modelled as an implicit or explicit polygonal
curve which stays within some distance fl of the original line
segment. If the curve is implicit, fl is bounded by a small multiple
of the rounding unit. If the curves are explicit, the bound on fl
may grow with the number of curves. One can mix implicit
and explicit representations to suit the application.

Keywords: algorithms, polygons, geometric modelling

The practical difficulties of implementing geometric
algorithms are well known to experienced developers.
Geometric algorithms rely on the field axioms of
real arithmetic, and they behave unpredictably when
implemented in a naive fashion using rounded floating-
point arithmetic. Developers spend much time carefully
choosing epsilons, adding fuzzy comparisons, and so
forth, as the need arises, to improve the reliability of
geometric programs. These modifications are made in an
ad hoc fashion, and there is no general procedure for
reliably implementing geometric algorithms. In the future,
as geometric programs grow in number and complexity,
the time and expertise required to fix numerical problems
will become unsupportable. For some tasks, no amount
of engineering can improve the reliability to the levels
now needed. The conclusion is that, if we are to increase
the reliability of programs, increase the productivity of
our developers, and decrease the cost of implementing
geometric algorithms, we must develop a theory of robust
geometry whose aim is the creation of robust alforithms,
geometric algorithms which can be proven correct even
when implemented using rounded arithmetic.

There are two reasons for the fact that the current
theory of computational geometry does not ordinarily
address the issue of robustness. First, current theory is
based on an analysis of asymptotic cost, and, for any

Center for Research in Computing Technology, Harvard University,
Cambridge, MA 02138, USA
Paper received: 17 August 1992. Revised: 25 February 1993

specific geometric construction, the cost of using unlimited-
precision rational arithmetic (or whatever is necessary to
implement the algorithm without rounding) is only a
constant factor greater than using rounded floating-point
arithmetic. Second, it is assumed (presumably by those
who have never implemented a geometric algorithm), that
rourid-off error poses only minor, easiiy surmountable
difficulties. Experience teaches us that this is a false
assumption. As far as the constant factors are concerned,
there are at least three reasons why their size matters a
great deal and should be addressed by theory. First, if
operations are cascaded (rotations and translations are
alternated with other operations on geometric objects),
the 'constant' factor for exact arithmetic can grow
exponentially with the number of operations. In contrast,
the extra cost of cascading rounded operations is only
logarithmic. Second, constructions involving curved
surfaces, which are often required in industry, entail very
large constant factors. Sugihara i estimates a factor of 80
for the intersection of quadratic surfaces. In order to
intersect bicubic surface patches, Farouki e has determined
that we would need to solve equations of degree 1000 or
higher. The difference in cost between an approximate
and an exact solution to such an equation* is at least a
factor of 1000. Finally, the third reason is that a
theoretically correct algorithm must compete with 'near
misses'. Given a program with a certain residual (although
unacceptable) amount of unreliability, a developer would
be extremely reluctant to eliminate the unreliability by
slowing down the program by a large factor. He/she
would probably prefer to whittle away at the numerical
problems by engineering, even though that wastes his/her
expertise and time.

The author has devised a strict robustness t approach
to the creation of robust algorithms, and has created
strictly robust algorithms for a number of geometric
constructions. These algorithms depend on the use of
implicit monotonic curves called MASCS ~, which we believe
to be the key to achieving robustness for a large variety

* By an exact solution, we refer to the construction of rational intervals
which contain isolated roots.
t Originally, the term was simply robust 8, but people now commonly
use this to mean very reliable.

Monotonic Adaptive Straight Curve Segments.

0010-4485/931090546-21 © 1993 Butterworth-Heinemann Ltd
546 Computer-Aided Design Volume 25 Number 9 September 1993

of constructions. We describe here a strictly robust
algorithm for performing set operations on polygonal
regions in the plane. This algorithm will acquaint the
reader with a number of definitions and techniques in
the area of robust geometry. We hope that this exposition
will help readers to understand other accounts of robust
algorithms and to devise algorithms of their own.

The first section of the paper discusses the philosophy
behind strict robustness. The second section discusses the
types of numerical problems caused by a naive application
of rounded arithmetic in geometric programs, and it
describes current techniques for addressing these problems,
including strict robustness. The third, fourth and fifth
sections give strictly robust algorithms for performing set
operations on polygonal regions bounded by MASC
segments. The third section gives low-level primitives for
robust operations on line segments. The fourth section
defines MASCS and gives an algorithm for finding all
intersections among a set of MASC segments. This
algorithm is strictly robust through the use of implicit
curves. If one desires, one can alter the algorithm to
generate an explicit representation of the curves, but only
at the cost of decreasing the overall accuracy. The fifth
section gives an algorithm for performing set operations
on polycurves based on the robust intersection algorithm.
Finally, the sixth section discusses how the same
techniques might be applied to other domains.

Strict robustness

We propose a classical approach to robust geometry.
First, define a task to be performed. Second, devise an
algorithm that performs the task. Third, seek the optimal
algorithm for that task. For strict robust geometry, the
task is the accurate construction of a feasible representation
of some geometric object using rounded arithmetic. We
do not accept any unreliability: an unreliable algorithm
is not an algorithm.

It is an explicit assumption of the task that rounded
B-bit floating-point arithmetic is a primitive operation,
and the algorithm must perform all its arithmetic
computations using this arithmetic. It is not permitted
to look into the internals of the floating-point representation
in order to simulate higher-precision arithmetic. The
algorithm is accurate if it introduces only a small constant
number C of bits of error, where C is independent of B
and the input size n. The output is feasible if it is of the
correct type. That is, if the task is to construct the
intersection of a set of polygonal regions, then the
algorithm constructs the intersection of some set of
polygonal regions. Accuracy and feasibility are discussed
in more detail below, and some of the current results in
the area of robust geometry are summarized.

The output of a strictly robust algorithm is permitted
to be implicit, where we use this term in the traditional
sense. For example, the curve y(x) = (x, (1 - x2) 1/2) is
an explicit representation for (part of) the unit circle,

Robust polygon modelling: V Milenkovic

because it tells us, for each coordinate x, what the
corresponding coordinate y should be. The equation
x 2 + y2 = 1 is an implicit representation, because it only
allows us to test whether a given point (x, y) lies on
the curve or not. The output of a strictly robust algorithm
is implicit in the same sense, with two extra properties:

• Using B-bit arithmetic, for each coordinate x, one
can compute a coordinate y such that (x, y) lies very
near to the implicit curve (error is a constant
multiplied by 2-n).

• Using sufficient precision, the coordinate y can be
computed to any accuracy desired.

SOURCES OF ERROR

This section describes the four types of numerical problem
that arise when geometric algorithms are implemented
naively: unexpected singularities, gross infeasibility,
subtle infeasibility, and inaccuracy. These problems must
be addressed in the design of robust algorithms. The
section below discusses the numerical operations required
to intersect line segments and construct polygons. The
succeeding four sections illustrate the four numerical
problems for this domain.

Polygons and line segments

Constructions of polygons and other operations involving
line segments in the plane rely on a number of numerical
tests: (a) determine whether a point lies inside or outside
a polygon, (b) determine whether two segments intersect,
(c) determine the order of two intersection points
on the same segment (the intersection-order test), and so
on. In each case, the outcome of the test depends on the
sign of an arithmetic expression. In other geometric
domains, also, the behaviour of a geometric program is
determined by the signs of expressions, and this partially
accounts for the observed sensitivity to round-off error:
the value of an expression may be stable, but the sign of
the value is not. If the expression is nearly zero, even a
very small numerical error can change its sign.

The outcome of the third, intersection-order test above
depends on the sign of a 4th-degree polynomial 3 in the
vertex coordinates. If the coordinates are N-bit integers
(in the range [-2N, 2N]), registers of 4N + 3 bits suffice
to compute the value of this polynomial exactly. For
CAD/CAM applications, N = 20 (one part per million
accuracy) and thus at least 83 bit arithmetic is needed.
Since the exact arithmetic of this precision is usually not
available (in hardware), it is necessary to use rounded
arithmetic to achieve practical efficiency.

We see, even for the simplest example, that a 4-fold
inflation in precision is required in order to avoid
rounding. Naturally, for more complex domains involving
curves, planes in 3D, or curved surfaces, much more

Computer-Aided Design Volume 25 Number 9 September 1993 547

Robust polygon modelling: V Milenkovic

precision is needed. If we do not sacrifice efficiency, we
must allow rounding, and therefore we need robust
geometry. The next three sections will describe the types
of problem that robust geometry must address.

Unexpected singularities

A singularity occurs when the sign of an arithmetic
expression is zero. The singularity manifests itself as an
unexpected coincidence. For example, a zero value for
the intersection-order test above implies that three
segments are coincident at a single point. Other singular
cases are overlapping line segments (segments which
intersect in a segment instead of in a point), vertices with
equal x or y coordinates, and parallel line segments. If
there are no singularities, the set of segments is simple or
in general position. A common source of unreliability in
geometric programs is an unexpected singularity, a
singular case for which the algorithm has no logic.

In general, published algorithms assume simplicity
because there exist, in principle, general techniques for
transforming these algorithms into ones which do
correctly treat singularities. These techniques, called the
simulation of simplicity 4 or symbolic perturbation 5'6,
remove these special cases by symbolically perturbing the
input. These perturbation techniques cannot be applied
in the case of rounded arithmetic. This is not a great loss,
because this investigator has not found the technique to
be particularly practical. The expansion of the 4th-degree
polynomial for the intersection-order test has 1152 terms
for the perturbed input, and we must treat this polynomial
differently, depending on the order in which the vertices
A, B, C, D, E, F are given to the algorithm, for which
there are 720 possibilities. It is not clear how to overcome
the combinatorial complexities of the technique. Further,
it is usually unreasonable to remove singularities, because
they are a meaningful aspect of geometric models. Any
sort of physical contact or common boundary implies a
singularity in the model. Thus, robust algorithms must
include a methodical treatment of singular cases. For the
algorithms listed further below in the second section, the
treatment is not particularly difficult. The fifth section of
the paper shows how singular cases for the domain of
polygonal regions should be treated.

Gross infeasibility

The combinatorial structure or order type of a set of
geometric objects is the collection of properties that
depends only on the signs of arithmetic expressions of
the coordinates of the objects. For example, the fact that
three lines are coincident at a single point is part of their
combinatorial structure. The values of the angles they
form is not. A combinatorial structure is feasible if there
exists some set of values for the coordinates which give
rise to that structure.

The structure generated by a set of lines must be
pseudolinear (no two lines intersect more than once) and
planar (lines cannot cross without a represented point of
intersection). A nonpseudolinear or nonplanar structure
is clearly infeasible. We refer to these two types of
infeasibility as gross, because they can be detected by a
polynomial-time test.

Figure 1 shows a grossly infeasible structure which
might arise from a single incorrect intersection-order test.
Vertex I12 lies before 113 and after 114 along the line
segment A1B 1. This creates a duplicate 112 as shown,
and allows A1B 1 and A2B 2 to cross without an
intersection. Tracing out the boundary of the quadrilateral
A3 A4124123 generates the following sequence of segments:
A3, A4, 124, 123,113,114 (9, B4, B3,123,124, 114, 113, and
(finally) back to A 3. If we think of segments A1B1 and
A2B 2 as straight-line cuts through region A3A4B4B3, the
nonpseudolinearity and nonplanarity lead to the erroneous
conclusion that two cuts have failed to separate the region
into more than one piece. The program may crash, and
it certainly fails to model reality.

Avoiding gross infeasibility is a major goal of robust
geometry. The general principle in all work to date has
been the maintenance of consistency. If a relationship can
be deduced from previous calculations, it should be. Once
we have calculated that 112 lies to the left of 113, we can
deduce that it must also lie to the left 0fi14, and therefore
we should not perform a computation that might generate
a result that is inconsistent with this deduction. This
technique has the limitation that it can only tractably
avoid gross infeasibilities, ones which can be detected in
polynomial time. The next section considers other types
of infeasibility.

Subtle infeasibility

Figure 2 shows a pseudolinear and planar structure which
is, nonetheless, infeasible for the domain of lines because

B 3 - _ B 4

 ,23 \
A,.

1 L - - ~ : - _ ~ - - - ~ ,

/
A2 ~'~ A3~ ~A,

Figure 1 Nonplanar and nonpseudolinear structure

Figure 2 Violation of Pappus theorem

548 Computer-Aided Design Volume 25 Number 9 September 1993

it violates Pappus's theorem, a standard theorem of
projective geometry. (One of the 'lines' is subtly
curved.) Mnev 7 has shown that determining whether a
combinatorial structure is generated by some set of lines
is as hard as solving the existential theory of the reals,
and it therefore requires exponential time. Thus a
polynomial-time algorithm will fail to detect some
infeasible structures, and we refer to these as the subtly
infeasible structures for this algorithm.

When we design a robust algorithm, we must show
that the subtly infeasible structures for that algorithm
are feasible for some broader domain. For the case of
lines, we allow the algorithm to implicitly replace each
line with a simple curve. Assuming that these curves are
straight enough, the algorithm should be sufficient for
modelling physical objects, because, after all, there are
no true straight lines in the physical world.

such that

Robust polygon modelling: V Milenkovic

yi(O) = A~

7i(1) = Bi i = 1, 2 n

Suppose that ~i never strays farther than k# from its
corresponding line segment AiBi. Then we say that the
algorithm has a maximum error of log k bits, and a
guaranteed accuracy of N = B - log k bits.

We will say that a robust algorithm is accurate if log k
is a small constant. Typical values for B are 21 (IEEE
single-precision floating-point) and 53 (double-precision).
For practical purposes, N/> 20, which implies an
accuracy of one part per million, is sufficient. Hence, for
practical purposes, log k ~< 53 - 20 = 23 is sufficient. For
the robust algorithm given in this paper, log k < 7.

Inaccuracy

Actually, it is trivial to describe a perfectly rehable and
feasible algorithm: generate the null output on all inputs.
Unfortunately, the null algorithm has 100% inaccuracy.
Thus it is essential to specify the accuracy of a robust
algorithm. If the output structure of an algorithm is
feasible (for some domain), then it is generated by some
set of inputs I ' which are generally not the same as the
actual set of inputs I. The accuracy of the algorithm is
a measure of the similarity of I and I'. Conversely, the
numerical error of an algorithm is the distance between
I and I'.

The measure of error is related to the architecture of
rounded floating-point arithmetic. A computer provides
a floating-point representation with a B-bit mantissa. The
result of each binary operation on two numbers is
rounded to B bits, thus introducing a maximum relative
error of e = 2-n

I(a op b)e - (a op b)l ~< ela op bl

where op represents any of the four basic arithmetic
operations, and the subscript B indicates the use of
rounded B-bit arithmetic. It is usually convenient to
assume that the constructed object lies in some region
of radius M about the origin. In this case, we can express
absolute errors in terms of # = eM. For example, if
lal, Ibl ~ M,

I(a + b)B -- (a + b)l ~< 2#

In the case of intersecting line segments, the input is a
set of line segments {AIB 1, A2B2 A,B,}. A robust
intersection algorithm may not generate an output
structure corresponding to these or any set of line
segments; instead, it may correspond to a set of simple
curves

{~x(t), 72(t),..., ~,.(t)lt ~ [0, 1]}

Current results

The author first focused on the task of constructing line
arrangements: the set of vertices, line segments, and
polygons generated by a set of lines in the plane. In order
to attain feasibility, it was necessary to assume that lines
were very straight simple curves. Why this was necessary
is explained above. Strictly robust algorithms were
devised for the construction of arrangements of lines s,
line segments 9, planes 8, and algebraic curves 1°. With
Li 11, the author also devised a strictly robust convex-hull
algorithm for points in 2D. Fortune 12 has also given a
strictly robust algorithm for constructing convex hulls.

Hoffman and Hopcroft 13 show how to prove a strong
form of feasibility for the intersection of no more than
two polygonal regions. For this construction, the Pappus
configuration (discussed above) cannot arise, and thus it
is not necessary to 'bend' the line segments to prove
feasibility. Hopcroft and Kahn ta do the same for
intersections of convex polyhedra, another situation in
which there is no subtle infeasibility.

A number of algorithms set aside strict accuracy in
favour of good error bounds in all but pathological cases.
The author 15 gives such an algorithm for constructing
unions and intersections of polygonal regions. Segal and
Sequin 16 give a similar result. Fortune 12 gives a robust
algorithm for maintaining point-set triangulations which
has optimal time in all cases, and good error bounds
in nonpathological cases. Fortune and the author 17
give optimal running-time algorithms for constructing
arrangements of lines, and prove an error bound linear
in the number of input lines.

Some algorithms are based on a notion of consis tency
instead of feasibility. Karasick 18 gives an algorithm for
computing set operations on polyhedral objects, and
Sugihara and Iri t9 show how to compute Voronoi
diagrams using rounded arithmetic. More recently,
Fortune and Van Wyk 2° have contributed to the
research.

Computer-Aided Design Volume 25 Number 9 September 1993 549

Robust polygon modelling: V Milenkovic

Guibas, Stolfi, and Salesin 21 and Segal and Sequin 22
have given techniques for automating error analysis.
These guarantee robustness, but it is difficult to prove
good error bounds, even in typical cases.

Finally, Karasick, Lieber and Nackman 23 demonstrate
an exact arithmetic technique that uses only as much
precision as is needed. They show that, for the task of
constructing Delaunay triangulations, the average cost
of using exact arithmetic can be much smaller than in
the worst case.

N U M E R I C A L O P E R A T I O N S O N S E G M E N T S

This section describes a number of low-level operations
on line segments in the plane. The first two operations
act on points and line segments: measuring the distance
from a point to a line segment and classifying the point
with respect to the line segment as lying above, on, or
below the segment. The remaining operations determine
the intersection of a line segment with different types of
object: horizontal or vertical line segments (parallel to
the x or y axis), axis-parallel rectangles (see below), and
other line segments. For each operation, we indicate
explicit error bounds. The error analyses are given in
Appendix A.

Point-segment distance and classification

This section gives a definition for the bounding rectangle
of a line segment AB and the classification of a point C
with respect to a line segment All. These definitions are
followed by algorithms for computing the distance from
C to AB and classifying C with respect to AB.

Definitions

Definition 1: An axis-parallel rectangle is a rectangle
whose sides are aligned with the coordinate axes. Let AB
be a line segment in the plane (with floating-point
endpoints). Define R(AB), the bounding rectangle of AB,
to be the axis-parallel rectangle which has AB as one of
its diagonals. In interval notation,

R(AB) = [A~, B j x lAy, By]

Definition 2 (classification: above, below, on): If AB is a
nonvertical line segment (A~ # B~), and if C is any point
such that C~ e [A~, B~], then C has a classification with
respect to AB: above, below or on. Let P be the point of
AB such that P~ = Cx.

. . ab°ve f!t Point C lies ~below~AB if and only if Cy Pr

k o n)

Algorithm 1 (distance from point to line segment)

Input: Point C and line segment AB.

Precondition." C e R(AB). It is possible to compute the
distance when C is outside the bounding rectangle, but
this is never required for the algorithms in this paper.

Output." The signed distance 5(C, AB) from C to AB.

Algorithm."

5(C, AB) -
circ(A, B, C)

IB - AI

where

circ(A, B, C) = (A - C) x (B - C)

= (A x - C x) (B r - C y)

- (A ~ - C ,) (B ~ - C x)

This quantity is called the circulation of A, B and C.
There are other ways to calculate the circulation, but this
is the most accurate.

Error bounds: If we assume that all reasoning occurs
inside some bounding square I - M , M] × l--M, M],
where M is the maximum magnitude of any coordinate,
then the error in calculating 5(C, All) using B-bit
arithmetic is bounded by ct = 6(21/2)eM, where e = 2 -B.
In other words,

IS(C, AB)n - 5(C, AB)I ~< 0~

where &(C, AB)a is the value of/i(C, AB) calculated using
B-bit arithmetic. The proofs of this and all the other error
bounds in the third section are given in Appendix A.

The ultimate error bound on the robust polygon union
Algorithms 14 and 15 in the fifth section is llct. This is
the small multiple fl of the rounding unit # discussed in
the abstract of this paper. Since log 2 11.6(21/2) < 7, the
ultimate error is about 7 bit.

Algorithm 2 (classification algorithm)

Input." Point C and line segment AB.

Precondition." min(Ax, B~) ~< Cx ~< max(Ax, B~).

Output." Classification of C with respect to AB.

Algorithm: If C lies in the bounding r e c t a a ~ of All, then
the classification of C depends on the sign of 6(C, All)
(which is the same as the sign of circ(A, B, C)). However,
if rounded arithmetic is used to compute &(C, All), the
classification is ambiguous when Jr(C, All)l ~ =. The
following algorithm is based on the assumption that
A x < Bx. If A, > B=, the sign of 6(C, All) is reversed.

550 Computer-Aided Design Volume 25 Number 9 September 1993

/* special cases */
if C = A or C = B then return on
if Ay = By = Cy then return on
if Cy >1 max(Ap By) then return above
if Cy ~< min(Ay, By) then return below

/* C e R(AB) */
if 16(C, AB)nI ~< ct (alternatively Icirc(A, B, C)al ~< ~IA - BI)
then Print("Warning: answer is ambiguous.")
if circ(A, B, C)s = 0 then return on
if sgn(B~ - A~)circ(A, B, C)a > 0 then return above
if sgn(Bx - A~)circ(A, B, C)e < 0 then return below

Error bounds: Since this algorithm takes into account the
error bounds for the distance computation, it correctly
emits an 'ambiguous' warning when the classification is
uncertain.

Intersections

This section describes how to compute the intersection
of a line segment AB with a variety of geometric objects.
If these computations are performed using rounded
arithmetic, they are inaccurate. We establish bounds on
the error. We know a priori that the actual intersection
of AB with any object must lie in the bounding rectangle
R(AB). The intersection algorithms of this section are
designed to assure that the approximate intersection also
satisfies this property. This property is essential for
establishing the correctness of the higher-level algorithms
in the fourth and fifth sections.

Algorithm 3 (intersection with horizontal or vertical line)

Input: Line segment AB, and horizontal line y = c or a
vertical line x = c.

Precondition: Line intersects bounding box R(AB).

Output: Intersection point (X, Y).

Algorithm: For a horizontal line y = c , ce[Ay, By],
compute

BX o AX
X = A~ + - - - - - -7- (c - Ay)

- A y B y
Y = c

(A vertical line is analogous.) If Xa (X calculated using
B-bit arithmetic) lies outside the interval [A~, Bx], then
move it to the nearest endpoint.

Error bounds: Clearly, (XB, YB~ lies on the line Y = c.
Also, 16(<X~, Ye>, AB)I < 20c

Algorithm 4 (intersection with horizontal or vertical line
segment)

Input: Line segments AB and CD, where CD is horizontal
(Cy = Dy) or vertical (C~ = D~).

Precondition: Segment CD must intersect the bounding
box R(AB) (C and D may or may not lie inside the box).

Robust polygon modelling: V Milenkovic

Output: Intersection I of CD with AB or the nearest
endpoint of CD to AB if they do not intersect.

Algorithm: Using Algorithm 3, compute the intersection
of AB with the line y = Cy (if Cy = Dy) or with the line
x = Cx (if Cx = D~). If the resulting point does not lie on
segment CD, move it to the nearest endpoint. Call the
resulting point I (In when calculated using rounded
arithmetic).

Error bounds: If I is not C or D, then [6(la, AB)I ~< 2~c If
I equals C or D, then either 6(1 e,AB)I ~< 2~ and I
maximizes 6(P, AB) for P e CD, or 6(In, AB)I t> - 2 ~ and
I minimizes 6(P, AB) for P ~ C D . These error bounds
follows directly from those of the previous section.

Algorithm 5 (intersection with an axis-parallel rectangle)

Input: R, an axis-parallel rectangle I-X 1, X2] x [}'1, Y2]
where X 1 < X2 and Y1 < }'2. This rectangle has vertices

Pij = (X i , Yj) i -- 1, 2; j = 1, 2

For simplicity, we treat only the case in which A x < B x
and A r < By. The other case (Ay > By) is analogous.

Precondition: R _ R(AB).

Output: An entry point I~P11P12 w Pl lP21 and an exit
point O ~ P~2P22 w P21P22. If there is no intersection,
then output I = O, and both are equal to the point of R
that is closest to AB.

Algorithm:

set I equal to the intersection of AB with the line y = }'1
if I x > X2 then set I = O = P21

else if Ix < XI then
set I equal to the intersection of AB with the line x = XI
if Iy > Y2 then set I = O = P t 2

else ifly < }'1 then set I = P11
if O has been calculated then return

set O equal to the intersection of AB with the line y = Y2
if Ox < X1 then set I = O = P12

else if Ox > X2 then
set O equal to the intersection of AB with the line x = X2
if Oy < Y1 then set I = O = P21

else if Or > }'2 then set I = P22

Error bounds: If I ~ O, then

I~(I, AB)I, 16(O, AB)I ~< 2~

If I = O, then both equal either P12 or P2t. If they equal
P12, then 6(P12, AB) ~< 2~ and P12 maximizes bOP, All)
for P e R . If they equal P21, then 6(P2t, All) >I - 2 r , and
P21 minimizes 3(P, All) for P e R . These error bounds
follow directly from those of the previous section.

Algorithm 6 (intersection with line segment)

Input: Line segments AB and CD.

Computer-Aided Design Volume 25 Number 9 September 1993 551

Robust polygon modelling: V Milenkovic

Precondition." AB and CD intersect. (At the end of this
section, one way of proving this precondition is given.)

Algorithm." Compute t by solving the linear equation

t (B - A) x (D - C) - (C - A) x (D - C) = O

Set I = A + t(B - A). The value of I computed using
rounded arithmetic is called In. If In lies outside
R(AB) m R(CD), move it to the nearest point on the
boundary of R(AB) c~ R(CD).

Error bounds." If(In, AB)I < 6~ and tr(In, CD)I < 9~t.

This procedure depends on our a priori knowledge that
segments AB and CD and actually intersect. One way in
which we might know this is if the points A, B, C and
D happen to lie on the boundary of some axis-parallel
rectangle in a particular order. If, for example, we walk
around the rectangle and encounter these points in the
order A, C, B, D, then we know that the segments must
intersect. Testing the order can be done by performing
comparisons on the x and y coordinates of the points.
These comparisons are not subject to round-off error.
This technique is used further below.

M A S C S E G M E N T S

To perform operations on polygons it is necessary to
calculate intersections among a set of line segments.
However, because of problems of reliability in floating-
point, we cannot do this directly. Instead, we replace each
input line segment with a close approximation called a
MASC segment. This section defines MASC segments, and
gives an algorithm for computing all the intersections
among a set of MASC segments. This algorithm is an
integral part of the robust polygon intersection algorithm
in the fifth section.

The following section defines MASC segments. The first
part of the section gives a high-level description of
Algorithm 7 for computing intersections of MASC segments.
The second and third parts of the sections provide the
working parts of the algorithm: updating MASC segments,
detecting intersections, and computing potential inter-
section points.

Definition

Instead of working with line segments, we will work with
MAsc (Monotonic Adaptive Straight Curve) segments.
Like all good acronyms, MASC is descriptive of the nature
of MASCS (or masks), namely, they hide details from our
view. For each MASC, we know certain combinatorial
information, but we can never see the curve itself unless
we use exact arithmetic to calculate it. Strictly speaking,
the following defines a MASC seament with accuracy ft. As
shown below, fl = l l~t is the accuracy that can be

maintained when intersecting MASC segments (see further
above for the definition of ~). Specifically, 11~ is the sum
of the error 2c~ arising from the intersection of a line
segment with a rectangle, and the error 9c~ arising from
the intersection of a line segment with another segment.

Definition 3 (MASC seoment): A MASC consists of five parts:

• a line segment basis c ° r i g c dest,
• endpoints D °rig, D dest E R(C°rigcdest),

• a set A of sites (distinguished points in the
plane), called the above set, such that VA~A,
D°rig x < A x < DdeStx,

• a set B of sites, called the below set, such that VB ~ B,
D°rig x < B x < DdeStx,

• a continuous monotonic (increasing or decreasing)
function f(x):

f : [D°rigx, DdeStx] ~ [D°rigy, DdeSty]

The curve part of a MASC, 7 (x) = / , x , f (x)) for x~
[D°rigx, DdeStx] , is defined to have certain properties:

• It joins D °rig to Dde*t: f(D°rig~)= D°rigy and
f(Dd==tx) = Dainty.

• It lies below its above set A: VA e A, f(Ax) < A r
• It lies above its below set B, VB e B, f(B~) > By.
• It lies within fl of line segment c°rigc dest,

Vx E [D°rigx, Da=Stx]: I6((x, f (x)) , c°rigcd©stl < fl

(This is what is meant by a straioht curve.) Two degenerate
cases are permitted in which D°'igDaest is a horizontal or
vertical line segment (parallel to the x or y axis).

A MASC has certain properties; for example, as Fiflure 3
shows, if f (x) is an increasing function and if A ~ above
set, then every point of (x, f (x)) is excluded from the
set {(x,y)[x ~< A~ and y/> Ay} (crosshatched area).
Observations such as these are summed up in Lemma 1.

Lemma l: Let (C°'isC de=t, D °rig, D d"t, A, B, f) be a MAsc
segment.

• Monotonicity." If f (x) is

increasing

decreasing)

C ~

Figure 3 Properties of MASC segment

552 Computer-Aided Design Volume 25 Number 9 September 1993

then VA~A and VBeB and the following three
conditions hold:

O Ay > min(Dorisy, Ddesty),
O By < max(D°risy, Ddesty),
o either Ay > By or

Bx Ax >

• Accuracy: The following three bounds hold:

o VA e A: 6(A, c°rigc dest) > - - fl,
o VIi ~ B: 6(B, c°rigc dear) < fl,
O I¢~(D °rig, c°riscdest)l, I~(D dest, c°riscdest)l < ft.

The proof of this lemma and the other lemmas and
theorems of this section are given in Appendix B.

Now we note that the conclusions of Lemma 1, the
properties we call monotonicity and accuracy, are
properties of A, B, corisc dest, D °ris and D dest, but not f (x)
explicitly. These properties are a necessary consequence
of the existence of f. The following theorem shows that
these properties are sufficient to ensure that f exists. We
call this the hidden-variable theorem, because it shows
that certain observable properties, the monotonicity and
accuracy of A, B, c°rigc dest, D °rig and D d©st, imply the
existence of an unobservable quantity, the shape of f.

Theorem 1 (first hidden-variable theorem): If A, B,
C°~isC d¢~t, D °~8 and D d°'t satisfy the conclusions of
Lemma 1, there exists a monotonic function f (x) such
that (c°r igc dest, D °ris, D dest, A, B, f) is a MASC.

Theorem 1 also expresses what is mean by f being
adaptive: whenever the combinatorial information satisfies
a few simple rules, a function f exists. If we add another
site to the above set or below set, the function f can
change shape to accommodate the new site. The proofs
of this and all the other theorems of the fourth section
are given in Appendix B.

Algorithm 7 (intersection algorithm)

Our robust intersection algorithm for a set of line
segments consists of two parts. First, we convert the line
segments into MASC segments. Then, we compute the
intersections along these MASC segments.

Converting
Let us suppose that we have a list of line segments

corig/'~dest t'~origt"~ dest ([" o r i s ([~ d e s t

Put all the endpoints into a universe of sites U = [C.°rig
• d e s t ' - - - - C: [z = 1, 2 , . . . , n}_ For i = 1, 2 , n, tO create a MASC
segment g'c°riscdest rll°ris D dest, D~ ris \--i --i ' --i , Ai, Bi, fi) , set and

C °ris and C~ "t, respectively. Initialize A~ D d',t equal to - i

Robust polygon modelling: V Milenkovic

and Bi to ~ . Step through the sites P ~ U sequentially.
IfD°ris~ < Px < Diaestx, add P to A i or Bi using the update
Algorithm 8 further below.

Computing intersections
An effective procedure for determining whether two
MASCS yy = (X, f (x)) and 7g = (x, g(x)) intersect is given
further below. One simply runs through the current
universe of sites looking for sites P and Q such that P
is evidence that f(Px) > g(Px) and Q ~ U is evidence that
f(Qx) < g(Q~). Of course, if one does this search naively,
it costs n (n - 1)IUI(IUI- 1)/4, since we have to look at
all the pairs of segments and all the pairs of points in U.
However, we expect that, apart from rare pathological
cases, one could find all the intersections by a sweepline
algorithm using O(n log n + k log n) time, where k is the
number of intersect points. The pathological cases may
increase the running time, but they do not spoil the
correctness of the algorithm. Deciding on the most
efficient intersection algorithm* is beyond the scope of
this paper.

Each time we uncover evidence of an intersection
between curves yy and ~9, Algorithms 11-13 further below
provide an approximate intersection point I "ppr°x. We
first attempt to split 7y and yg at I "ppr°x using the algorithm
given below. If some already existing site pblock prevents
either curve from being split at I =vp~°x, we throw away
I app~°x and split that curve at pblo=k. In this way, we always
make progress: either we split both curves at a new site
pppro~, or we split one curve at a previously existing site
withoUt increasing the number of sites. If we successfully
split both curves at ppp~o~, then we add ppp~o~ to U and
update all the above sets or below sets accordingly using
Algorithm 8 below.

Termination
A MASC segment is nearly a straight line segment.
Nominally, two MASC segments intersect at most once.
In pathological cases in which many segments are nearly
parallel, it may happen that two MASC segments intersect
more than once. In any case, each time we attempt to
compute the intersection of two segments, either we
successfully split both segments, or we split one of the
segments at an already existing site. Thus the number of
splits is bounded by nk, and thus the algorithm terminates.
Except in pathological cases, the number of splits should
be in O(k)

Correctness
In the output, each input MASC segment 7 has been split
at each point at which it intersects some other MASC
segment. Thus, the curve is split into a sequence of curves
~1, ~2 7,,. As shown in Fioure 4, each of these is a
monotonic curve or a horizontal or vertical line segment.
These curves all stay within 11~ of the original segment

* Another possibility is bucketing of regions of the plane.

Computer-Aided Design Volume 25 Number g September 1993 553

Robust polygon modelling: V Milenkovic

llcx

C"~

Figure 4 Result of intersection algorithm

c°rigcdest, and therefore they are MASC segments with an
accuracy o f / / = l lg.

It is not possible using rounded arithmetic to convert
each MASC segment back into a sequence of straight line
segments. However, for the purposes of graphical display,
the calculation of area, or some other type of calculation,
the line segment D°riSD d-st is a good approximation to
a MASC segment (Coriscdest, --irj°ris, O f est, Af, B f, f) . Since
Doris I-}.dest and the MASC segment all stay within 11~< of

I ' ~I '

the line segment corigc dest, the line segment D°'~SD d~'t
therefore stays within 22e of the MASC segment.

If we choose to use explicit updating and splitting
Algorithm 10 below, we can explicitly calculate the shapes
of the MASC segments. However, the output of the explicit
version is not necessarily accurate, because it allows
segments to drift farther than l le from their original
positions; in fact, the accuracy bound/? may grow with
the number of input curves.

UpdIt iRg alld spHtti~lg MASC segments

A MASC segment is shaped only by the sites in its above
and below sets. It changes its shape (adapts) as new sites
are added to these sets, if these new sites satisfy the
premises of the first hidden-variable theorem. Sometimes,
these premises, monotonicity and accuracy, constrain our
actions, and prevent us from adding a site to either the
above or below set. This section gives algorithms for
updating MASC segments which maintain the validity of
the above and below sets. The update algorithm in the
next section describes how a MASC segment adapts to a
new site, assuming that we have the freedom to put the
new site into either the above or the below set. Sometimes,
we do not have this freedom. In particular, if I is an
intersection point that we have calculated for two MASC
segments, we desire to split each of these segments at the
point I. Splitting a MASC involves partitioning the
above and below sets, each into two parts. A complete
Algorithm 9 for splitting is given below.

If we prefer that our MASC segments be explicit, true
line segments, we can perform operations called explicit
updating and explicit splitting. These operations are not
strictly robust, in the sense that they do not have the
accuracy bounds that the implicit version does. The
explicit operations are given below.

Algorithm 8 (updating the above and below sets)
This section describes a set of rules which can be used
to update MASC segments correctly. These rules are for
the case of an increasing MASC segment. The decreasing
case is the same, except that comparisons of y coordinates
are reversed.

Let (c°rigcdest, D °ris, D dest, A, B, f) be a MASC, and
let P be a point such that DOris x < Px < DdeStx.

Rule 1: If 3AeA such that P~ ~< A~ and Py f> Ay (see
Figure 5), then P must be added to the above set A.

Rule 2: If 3B ~ B such that P~ t> B x and Pr < By, then P
must be added to the below set B.

Rule 3: Otherwise, if we can show that 6(P, C°'igCa¢*t) >
-11~, we may add P to A, if we choose. Similarly, if we
can show that cS(P, C°'igC a¢~t) < 11~, we may add P to B.

In general, if Rules 1 or 2 do not hoM, we use the
classification Algorithm 2 to classify P with respect to
c°rigc rest using rounded arithmetic. This algorithm
can return an incorrect classification only when 43(P,
c°rigcdest)[< 0~, which is well within the llce of Rule 3.

Definition 4: Let U be a set of sites in the plane. A MASC
segment (c°risc dcst, D °ris, D dest, A, B, f) is adapted to U if

A u B L) {C °rig, C dest, D °ris, D dest} ~ U

and

A u B = {P ~ UID°"S x < Px < DdeStx}

In our algorithm, all MASC segments are adapted to the
same universe U of sites, and, therefore, every time we
create a new site, we must update each segment with
respect to that site.

Algorithm 9 (splitting)
Let <c°rigc dest, D °ris, D dest, A, B, f) be a MASC segment.
The detection of when this segment intersects some other
segment, and an algorithm for computing an approximate
point of intersection, are given below. This intersection
point I is guaranteed to lie in the rectangle R(D °ris, Ddest),
and it lies within 1 la of C°'isC de't, 16(I, C°"*Ca")I < 11~.
This section gives an algorithm for splitting the MASC
segment ?(x) = (x, f (x)) at the point I. Nominally, this
is a simple task; however, sometimes it is not possible to
split 7 at I. In this case, we split ~, at some already existing
site in U. As in the previous section, we consider only
the case in which f is an increasing function of x. As

Figure 5

o > j - -
Rule 1: forced to put P in above set

554 Computer-Aided Design Volume 25 Number 9 September 1993

before, the decreasing case is the same, except that
comparisons of y coordinates are reversed.

Nominal case: Splitting is very similar to updating, as
described in the previous section, and we start by
updating ~ with I. If Rules 1 and 2 do not force us to
put I in A or B, then we simply replace (c°rigc dest, D°ris,
D dest, A, B, f) by (c°rigcdest, D~ rig, Ddl est, A1, B1, f l)
and (c° r igc dest, D~ rig, D d©st, A2, B2, f2) , where

D~ rig = Doris

D~ rig = I

D d~,~ = I

Dd©st

A I =

A 2 =

B 1 =

B 2 =

= D dest

{AeAlD~rlg~ < A~ < Ddlestx}

{A ~ AID~is~ < Ax < Dd©Stx}

{B E BlD~rigx < B x < D~=*t~}
{B E BID;"~ < B= < DdeStx}

Note that Yl = (x, f l (x)) and ~2 = (x, f2(x)) are still
approximations to (subsegments of) segment c ° r i g c d e s t .

It can happen that, after performing a nominal split,
Dorigr~dest nerigl~dest ends up being parallel to the x 1 *~'1 o r L,, 2 L,, 2
or y axis. For this reason, the definition of a MASC segment
(Definition 3) permitted horizontal or vertical line
segments as degenerate cases.

The following two cases are the nonnominal cases.

Special Case 1: If Rule 1 applies to the point I, then it
is not possible for ~ to adapt itself to pass through I. We
say that the site A e A whose existence is implied by Rule
1 blocks I from splitting ~. Of course, A might not be the
only site which blocks I. We choose the site Abl°ek6A
that blocks I from splitting V and that has the largest
x coordinate Abt°~k~. If more than one site has the same x
coordinate, then choose the one with the minimum
y coordinate.

Special Case 2: In an analogous fashion, if Rule 2 applies,
we say that the site B E B whose existence is implied by
this rule blocks I. We choose the site B bl°ek ~ B that blocks
I and that has the smallest x coordinate Bb~°¢k~. If more
than one site has the same x coordinate, then choose the
one with the maximum y coordinate.

If either of the special cases apply, we cannot split f at
I, but we can split it at A bl°ek or B bl°ck, whichever the
case may be, and this is what we do.

Lemma 2: If Special Case 1 holds, splitting f at A bl°¢k
generates two valid MASC segments. Similarly, if Special
Case 2 holds, splitting f at B bl°¢k generates two valid
MASC segments.

Algorithm 10 (explicit updating and splitting)
This section gives explicit versions of the updating and

Robust polygon modelling: V Milenkovic

splitting operations described in the previous two
sections. These explicit versions have poorer accuracy
bounds than the implicit versions, but they are useful if
it is necessary to have explicit representations for the
segments.

We first describe explicit splitting. This is the same as
implicit splitting, with the following change. When we
split a MASC segment (c° r igc dest, D °rig, D dest, A, B, f)
into two, we also split the basis segment c ° r i g c dest. Thus
the output consists of two MASC segments, ("°rigl"~dest I'~°rig ~'I ~'1 ,L'I

DdeSt, At, Bx, f l) and \~'..'2/K'~°rig/"Idest~'-'2 , D'~ rig, Ddest, A2, B2,
f2), where D~ rig, D dest, A1, B1, n ~ rig, n dest, A 2 and B 2
are computed as before, and C] ris = D~ rig, C~ rig = D~ ~ig,
Cdest = D d=~t and cd**t = O dest.

Explicit updating is a modification of implicit updating.
If we have a point P that does not satisfy Rules 1 or 2,
and if IJ(P, c°r~gcd=~t)nl ~< ~ (the subscript B implies the
use of B-bit rounded arithmetic), we explicitly split the
MASC segment which we are updating at the site P.

If we use explicit operations in all cases, then each
MASC segment (c° r igc dest, D °rig, D dest, A, B, f) is explicitly
equal to its basis line segment c ° r i g c dest.

Computing intersections

This section gives algorithms for effectively detecting
the fact that two MASC segments intersect, and for
approximately calculating this point of intersection. A
second hidden-variable theorem is given below that
shows that we can effectively detect when two MASC
segments intersect using only set operations on their
above and below sets, and comparisons of coordinates
(which are not subject to round-off error). However, we
cannot, without incurring round-off error, explicitly
calculate the exact intersection point I exact. Instead, we
must settle for an approximate intersection point I "ppr°'.
This point lies within the bounding rectangles of both
curves, and it lies within 11~ of the basis segments of the
curves (see Definition 3). Algorithms for computing I approx
in all cases are given below.

Evidence
By looking at the above sets and below sets of MASC
segments, we can learn some information about how their
shapes are related. This section shows how to determine
whether two MASC segments intersect.

L,~t / f'~orig/",dest ' (/~'~orig~'~.dest ~,t k~. , f ~...f , D T l g , r~dest A ~.f , ~ f , Bf, f) a n d , _ g _g ,
Dorig] ')dest Ag, Bg, [~ be MASC segments such that g , - - g ,

• D d e s t ~ (l~orig r}dest (D~r'g~, f x ! ("3 , _ _ g x ' - - g xy ~ f~J

Definition 5 (evidence): Let P ~ U be a site such that

Px E (D~riSx, Ddestf xY't f~ "--g(D°rigx' --gndest x/~

If P ~ Af and if P ~ B v then we say that P is evidence that
f(Px) < g(Px). I f D~rig x ~ [D~-rigx, Ddestf x..I-I ~ LUgl'D°rigx' ugl~deStx.i "]

Computer-Aided Design Volume 25 Number 9 September 1993 555

Robust polygon modelling: V Milenkovic

and

fA'} DT'g~ B~

o r

(o r, .or,,__,

then D~ 't~ is evidence that

f(D~rig~){ > }g(DTig~)

and similarly for D~ ©st.

Lemma 3." If P ~ U is evidence that f(P~) > g(P~), and if
Q e U is evidence that f(Q~) < #(Q~), the curves ~f(x) =
(x, f(x)) and 7o(x)= (x, g(x)~ must intersect at some
point I such that Ixe(D~rigx, l 'xdest X r~/ l 'xori8][~dest]

a,, , f x ! ~ ~ q,=J g x , - - g x,,"

Proof." This is a fundamental property of continuous
functions. []

Lemma 3 gives a testable condition that suffices to show
that two MASC segments intersect. Theorem 2 shows that
the condition is also necessary.

Theorem 2 (second hidden-variable theorem): If yf(x) and
y0(x) intersect in their interiors, in the range x ~(D~t~,
D~eStx) ~ ",--g(D°ri'x, --@l'~deStx,, ~ then there exist sites P, Q e u
that are evidence that f(P~) > g(P~) and f(Q~) < g(Q~).

Algorithm 11 (competing intersections: opposite slope sign)
This section describes how to compute an approximate
intersection I "pr~°" for two MASC segments ~f /t-,ortll-,dest = N,,.~f ,L.f ,

• = (('~orig('~dest r~orig]['~dest D~ ns, D~ est, A f, Bf, f) and 7g - - o -g , --~ , --9 ,
Ag, Bq, g) such that f is increasing and g is decreasing.
Obviously the same algorithm will work if f is decreasing
and g is increasing. The following section treats the cases
in which both are increasing or both decreasing.

The second hidden-variable theorem tells us that, if two
MASC segments intersect, there must be sites P, Q ~ U that
are evidence that f(Px) < g(Px) and f(Q~) > o(Q~). Since
f is increasing, and 0 is decreasing, they can have at most
one intersection. Therefore, D 7 ig and D~ "t lie on opposite
side of the MASC segment 7o and vice versa. We can assume
that P and Q are endpoints of the two MASC segments,
in particular, P ~ {D~ ~i~, D°ri*g0 , and Q e {D~ ~'t, D0d"t}.

Let R = R(D~rtsD~ "t) ~ Rtl~orilgl~d¢$t~ The intersection
lies somewhere within this rectangle R. Using Algorithm
5, we compute the intersections I f and Of of line segment
CO~i~¢,d,t with rectangle R. Similarly, we compute the f - - , f
intersections I~ and O0 of line segment _~c°rt'c ~¢'t_o with
rectangle R.

Claim 1: If If :f: Of, then

I~(If, -.,fporigt"~destll-.-.f 11, 16(Of, ,,~ft"~oriit"~dest'tll.,f 11 ~ 2 g

If If = O f , then

t~origc~dest)l 16(I s, l..f .,~f 1, Ice(Of, c~r'gc~est)l < lls

Analogous bounds hold for I o and Og.

Proof." The first bound is proved further above. The
second case only occurs when the segment c)rigc) "t fails
to intersect rectangle R. In this case, I f and O I are set

Foriglf'~dest equal to the point of R closest to ,~f ,~f . However, we
know that ~y(X)= (x, f(x)) and 79(x)= (x, g(x)) inter-
sect inside R at some point I t. Since I =xaCt lies on
~f, it lies within l l s ,,r r'origrdest "" "~Y "~f " Therefore, If and Of
also lie within 1 l s ,-¢ ¢'o~isrd*~t

v a ~ _ , f , , _ . f . []

Continuing the algorithm, in order to compute an
approximate intersection I appr°x between ~)f and yg,
we temporarily replace 7y with the polygonal path
D}~glfOfD~ ¢'t, and we replace ?g with the polygonal path
D°ri~l Cb D ~est Like ~f and 7g, these paths intersect g - g ~ g ~ g •

somewhere inside or on the boundary of R, and we know
from Claim 1 that these polygonal paths stay within 1 l s
of the corresponding basis segments r, ori=r,d=st and
C °rigCdest respectively. We will compute the intersection g v g ,

of these two paths, approximately, and then show that
this approximate intersection PP~" is sufficiently accurate.

Nominal case: In the nominal case, the two paths intersect
in the interior of R at the intersection of segments If Of
and IgOg. We can determine that this nominal case holds
by looking at the positions of If, Of, lg and Og along
the boundary of R. If these two segments form an ×
topologically, we compute their intersection I~ inside the
rectangle R using Algorithm 6. The nominal case clearly
holds only if I I ¢ O I and Ig ¢Og. Therefore, we have

('~ origl'~ dest'll (~origlf'~dest/i
16(If, , ,~f x . . f]I, 16(Of, ~ f ~-~f 11,

]6(Ig, --oc°rigl~dest~[vg li, 1 6 (O 0, ~gC°rig['~dest]lvg /, ~< 2s

The intersection section and Appendix A prove the
bounds

16(I8, I f Of)l, 16(In, IgO0)l < 9s

Combining these bounds,

16(Ia, ~°rig("destll ~.~f l.~f]l, [6(IB, c ° r i g c d e s t ' l l < l l s

Thus, we can set I appr°x equal to In.

Special case." We know that the two paths DO'iq O D dcst f f f f
and otis dest D o loOoD o must intersect on the boundary of R
In this case, we can find a point I =ppr°x which is common
to both paths by examining the vertices of the rectangle,
the vertices of the paths, and at most two horizontal or
vertical line segments. This can be done using no
arithmetic operations other than comparisons. Figure 6
shows an example in which I f is the vertex common to
both paths. By the claim above, the point I "~'°~ that we

556 Computer-Aided Design Volume 25 Number 9 September 1993

/
/ 97' f [

Figure 6 Special case: intersection lies on boundary

generate in this manner lies within 11~ of segments
C °rilgt~dest and C~°rigl["~dest

f ~"~f --ff --O "

Algorithm 12 (computing intersections: same s l o p e sign)
This section describes how to compute an approximate
intersection epprox for two MASC segments N-..-f/lf'~°rigg'~destl.,f , D~ ~g,
V ~ est, A f , B y , f) and \~O(l[~°rigl["~dcst~g ' --or}°rig, --ffl'~dest' Av B0, g)
such that both f and g are increasing. Obviously, the
same algorithm will work if both functions are decreasing.

As we reasoned in the previous section, if two MASC
segments intersect, there must be sites P, Q ~ U that are
evidence that f (P~)< g(P~) and f (Q ,) > g(Qx). In the
case of two increasing functions, we cannot assume that
P and Q are endpoints of the MASC segments. However,

- - D(Dorigl '~destX t-,, R(l[~origI'}dest'~ and it is true that R(PQ) c .. f JL~f I ' ' ' - x - - O - -O . "

therefore the intersection of ~f and ~g lies in R(PQ).
As in the previous section, we temporarily replace 7f

with a polygonal path f r o m D) ri~ t o D~ est. We compute
the intersection I f and O f of line segment ~.~ff~°rigf~dest~..,f ,,vz,,;.th

the rectangle R(PQ), using the algorithm in the intersection
section. Then, we replace ~f with the path D) r i g l f O f D ~ est.

However, if If.~ = P~ (and thus Is,y >t Py), we replace the
segment D~iq I with the path D)"SPlf. Similarly, if
O$.~ = Q~, we replace OfD~ "t with OfQD~ "t. We denote
the resulting path by D)ri*(P)IyOy(Q)D~ ¢~t, where the
parentheses indicate that the points P and Q may or may
not be vertices of the path.

Claim 2: Let P' = (P~, Q~) and Q' = (Q~, Py). The path
D ~ - r i s (p) l f O f (Q) D ~ e't e n t e r s R(PQ) through segment PQ'
and leaves through segment Q'P. It stays with 11~ of
segment/-~orig/~dest

-~ f ,.~f .

Proof." The claim about entering and leaving are clear
from the construction. In particular, we add P to the
path when If lies on segment PP' instead of segment PQ',
its nominal location. The previous section showed that
the distance constraint holds for the -'o*~ r ~ o ~ n r~d,t p, f af'~.F f L r f .
We have to show that, when we add P, [6(P, ~.~flf'~°riglf~destXl~...,f 71 <
1 1~. First, we know that P c Af (Definition 5), and thus
6(P, t"~°rig I[~ dest~ • ~f ,~f , /> -- 1 1~ (Lemma 1). We add P to the path
when I f .~=P~ and If., f>Pr For fixed x, 6 is a
monotonic function of y, and thus

6(p, t "~Orig#" d e s t ' t corigcdest)

Similarly, we can show that, when Q is part of the path,

Robust polygon modelling: V Milenkovic

Ir(Q, lr °rigl"~ destxI ~.~f '~'f II < llu. By switching the roles of x and
y, we construct a path o.g dest by D o (P)IoOo(Q)Do that stays
within 11~ of segment o,is dest C o C o and that enters rectangle
R(PQ) through segment PP' and leaves through segment
Q'Q. The two paths we created must intersect either
inside or on the outside of rectangle R(PQ), because one
enters through segment PQ' and leaves through segment
Q'P, and the other enters through PP' and leaves through
segment Q'Q. The construction of point ppprox is as in
the previous section. []

Algorithm 13 (curve-segment intersection)
We expanded above the notion of MASC segments to
include horizontal find vertical line segments. Therefore,
for the sake of completeness, we must consider the
possibility that one or both of the MASC segments we are
intersecting may be a horizontal or vertical line segment.
This section shows how to detect and compute intersections
in these cases.

The case in which both are line segments is very simple.
Let no~i~r~d~,t be a horizontal MASC segment (D)ri~y ~ f ~ , f =

I)origr}dest D~"t,), and let --0 --0 be a vertical MASC segment
(n °rig = D d~t ~ These two segments intersect if

~ 0 x ~ g x J"

Dorig < D~rigy <]l-]dest
g Y u g y

and

Dor ig I~orig D d e s t
f x < - - O x < f x

Their intersection is the point __fft/]['}°rigx, D)"gy) "
The case in which only one MASC is a horizontal or

vertical line segment is almost as simple. Suppose that
(jl~origlf'~dest l'~orig l'~dest Af, By, f) is a true MASC segment, ~.Jf ~.,f , L i f , a J f ,

I'~ origl~ dest and --9 --g is a horizontal or vertical line segment.
The line segment intersects the MASC segment if and only
if orig dest D o ~ (or vice versa). Dg ~ Af and B I

To compute the intersection, first compute the
intersection between the line segment][]jorig][']dest and the u 0 u g
axis-parallel rectangle R(CO'isC de't) The intersection is a f f •
line segment PQ. To compute I appr°x, USe Algorithm 6 to
compute the intersection between segment If'~°rigl"cdcst and • .~f , ~ f
segment PQ using rounded arithmetic. It is easy to show
that this segment lies within 11~ of t"'°rillK'~dest '~.., f ~-,f .

At this point, we have described all the operations
necessary to implement the MASC-segrnent intersection
Algorithm 7.

SET O P E R A T I O N S O N P O L Y G O N S

This section gives a strictly robust algorithm for
performing set operations on planar regions bounded by
line segments. As we know, it is not possible to apply
rounded arithmetic to this problem directly. Therefore,
we approximate the line segments by MIneS. Fortunately,
all the tricky numerical calculations involved in performing
robust calculations on MASCS have been carried out in

Computer-Aided Design Volume 25 Number 9 September 1993 557

Robust polygon modelling: V Milenkovic

B 3

14

A~

A 3

| B ~ ~

B~

Figure 7 Union of rectangular and triangular planar regions

the previous two sections. The algorithm described in
this section has no numerical operations; it is purely
symbolic.

It is easy to apply the operations of the previous section
to the problem of modelling planar regions. In Figure 7,
we see a rectangle A1A2AsA 4 and a triangle B1B2B3 . By
approximating the line segments by MASC segments and
applying the MASC segment intersection algorithm, we
obtain the four intersection points I~, 12, I3 and 14. Using
information generated by the intersection algorithm,
namely the above sets and below sets of the MASC
segments, it is possible to determine that the MASC
segments* I112, I213, I314 and I4I~ should be removed to
generate the set union of the polygonal regions as shown
on the right. This section gives an algorithm for
determining which segments to remove.

P o l y g o n definit ions

This section defines polygons and polygonal regions.
These can be bounded by any continuous simple curve
segments, but, for the purposes of this paper, they are
bounded by MASC segments. We disallow the regions such
as that on the left of Figure 8, in which two segments
are intersecting other than at an endpoint. However, we
do allow regions such as that shown on the right of
Figure 8, in which vertices have degrees of higher than
two.

Definition 6 (graph of segment set): Let M be a set of
MASC segments adapted to a common universe U of sites
(Definition 4). Define Graph(M) to be the graph whose
vertices are the sites in U and whose edges are the
segments in M.

Theorem 3: Let M be a set of MASC segments adapted to
a common universe U of sites. If Graph(M) is the planar
embedding of a planar graph (meaning that segments in
M intersect only at their endpoints), and if each vertex
in Graph(M) has an even degree, then the union of the
segments in M is the boundary of a closed region of the
plane.

Proof." It is a standard result of graph theory that the set
of faces of an embedding of a planar graph is 2-colourable

*In the following discussion, we denote MASC segments by their
er~lpoints.

if every vertex has an even degree. The union of the set
of faces with one colour is a region of the plane whose
boundary is M. []

Corollary 1." If M is the boundary of one closed planar
region, then it is also the boundary of exactly two closed
regions, one bounded, and the other unbounded.

Definition 7. A set M of MASC segments is a polygon if it
satisfies the conditions of Theorem 3. In this case, M is
the boundary of two polygonal regions, one unbounded,
and one bounded.

One can represent a polygonal region by a set P of MASCS
which bounds it plus a single bit to indicate whether the
region is bounded or unbounded.

U n i o n s o f bounded polygonal regions

Let P and Q be polygons. The following two sections
give an algorithm for computing the union of the bounded
polygonal regions defined by P and Q. The algorithm is
extended to perform any set operation on any two of the
polygonal regions defined by P and Q.

Algorithm 14A (comparing MASC segllll~ngS)
The concept of evidence introduced above allows us to
determine information about the relative positions of two
MASC segments merely by examining their above and
below sets. This fact is formalized in the following
definitions.

/corigcdest Definition 8 (comparing MASC segments): Let x f f ,
D~ rig, D~ est, A f, Bf, f) and __gffc°rigcdest__g ' --3D°ri', --.Dd=st, A3,

B 0, g) be MASC segments adapted to the same universe
such that 7y = (x, f (x)) and ~3 = (x, g(x)) either have
disjoint interiors or are identical (they intersect only at
their endpoints), and such that

(o)rigx, rtdcst "~ ,-., inorig ll'}dest
~ f xJ' ' ~ 3 x,--3 x,=/=

There are three possibilities:

• D~ ris = __gD °'is, D~ cs' = __g]nldcst, A I = A 3, and Bf = B 3,
in which case we say that ~y = 73"

• 3P e U that is evidence (Definition 5) that f(Px) >
g(Px), in which case we say that yy > Y3'

• 3Pc U that is evidence that f(Px) < g(Px), in which
case we say that yf <)'3"

Definition 9: Let P be a polygon with universe U. We
say a value X is in general position if it does not equal
the x coordinate of any site in U. For each X in general

A, A2 A4 A2
Figure 8 Invalid and valid polygons

558 Computer-Aided Design Volume 25 Number g September 1993

position, define P(X) to be the set of MASC segments
(t~orig~dest " A/, B/, f) E P such that '~f '~f , D 7 aS, D~ e't,
X ~(D~*~, D~'t~) (X is in the x interval of the segment).

Definition 10: Let P be a polygon with universe U, and
let y be a MASC segment with the same universe that does
not cross any ?y E P (7 may or may not be an element of
P). Let X be a real value in general position in the x
interval of ?. The index of ? in P(X), denoted Index(y,
P(X)), is the number of curves ?I ~ P(X) such that ? < Yl
under Definition 8.

One can think of the index as follows. Take the point on
? with x coordinate X, and cast a ray in the vertical
(positive y) direction. The number of segments of P that
this ray crosses is Index(y, P(X)). However, as Definition 8
indicates, the index can be computed using purely
symbolic operations, and we consider it to be a function
available to the union algorithm below.

For any MASC y, the value of Index(y, P(X)) varies with
X. However, if y crosses no segment of P, the parity
(evenness or oddness) of Index(y, P(X)) is independent of
X. This is easy to show from the fact that every vertex
in Graph(P) has an even degree.

Algorithm 14B (union algorithm)
This section gives the algorithm for taking the union of
bounded polygonal regions defined by polygons P and
Q. This consists of several steps. First, use the intersection
algorithm of the fourth section to compute all the
intersections among the MASC segments in P u Q. This
results in new sets P' and Q' of MASC segments. Second,
'dean up' P' and Q' by eliminating multiple occurrences
of MASC segments in each of these sets. Finally, eliminate
more segments from R = P' w Q' to generate the boundary
of the union of the bounded polygonal regions defined
by P and Q.

Intersection
During the intersection stage, each segment in P is split
at the points of intersection with segments in Q using
Algorithms 11 and 12. The resulting sets of segments P'
and Q' are adapted to the same universe.

Cleaning
All or part of two distinct segments in P may
be 'pinched' together to result in multiple identical
segments appearing in P'. Fortunately, as Definition 8
indicates, we can detect identical segments by comparing
endpoints, above sets, and below sets. For each class of
equal segments in P', the algorithm cleans the class by
deleting the largest possible even number of segments
from the class; the result is zero or one segment depending
on whether the class had an even or odd number of
identical segments, respectively. The same procedure is
applied to Q'. Once P' and Q' have been cleaned in this
manner, they satisfy Definition 7.

Marking embedded segments
Now, for each yg e Q' which is not a vertical line segment
and which is not identical to a segment in P', choose

Robust polygon modelling: V Milenkovic

X g: (l"}¢rig ndest ~ in general position. If Index(? v P'(X))
is odd, mark ?g for deletion. Do the same for each yf e P'
with respect to Q'.

Marking identical segments
For each Yl ~ P' and Tg ~ Q' such that 7 / = ?g, choose
X ~ (D)rigx, D~='tx) (which equals D~rigx, D~='tx)) in general
position. If Index(y/, P'(X)) and Index(? v Q'(X)) have
opposite parity (one odd and the other even), mark both
for deletion; otherwise, mark one of them for deletion.

Putting in vertical segments
Delete all marked segments from R = P' u Q'. The set R
is almost a polygon. We just have to deal with vertical
line segments. Remove all vertical line segments from R.
For each X that is not in general position, let D~,
D2 D,(x) be the list of vertices with x coordinate X,
sorted by y coordinate:

Dl.y < D2,y < .-- < Dn(x).y

Apply the following algorithm to R:

for i = 1 to d - 1
if D~ has odd degree in Graph(R) then

add segment DiDi+ 1 to R.

This completes the algorithm for the union of two
bounded polygonal regions.

Algorithm 15 (general set operations)
The algorithm in the previous section only works for
taking the union of bounded polygonal regions. The
general algorithm is based on the following observation.
Define special values - o v and + ~ which are less than
and greater than every other value, respectively. If P is
a polygon, then the unbounded region defined by P is
the bounded region defined by

pu {<-~,-~><+ ~,-oo>,<+~,-~> <+~, +~>,~
<+~,+~)<-oo,+~), <-~ ,+~)(-~ , -oo) J

which is the union of P with the 'square at infinity'. We
can use this observation to take the complement of any
region, and to take the union of any two unbounded
regions. All set operations can be reduced to set
complement and union. Adding or removing the square
at infinity requires only constant cost, and thus any binary
set operation, such as intersection or difference, can be
computed as fast as the union.

Algorithm 16 (cleaning up)
The algorithm of the previous section is strictly robust,
but it may generate unexpected answers in certain
pathological cases. This section describes a more complex
dean-up algorithm than the one described above.
That clean-up algorithm removed multiple occurrences

Computer-Aided Design Volume 25 Number 9 September 1993 559

Robust polygon modelling: V Milenkovic

U 3

A 14,t ~
A~

[1~ 3

A2

B~

Figure 9 Union algorithm in pathological case

of MASC segments in P' and Q', where P' and Q' are the
result of finding all the intersections among the segments
of two polygons P and Q. The clean-up algorithm in this
section removes or alters other MASC segments which
correspond to 'nonphysical' situations*.

Figure 7 shows the nominal intersection of a rectangle
AIA2A3A 4 and a triangle B1B2B 3. In pathological cases,
which can only occur if segments A1A2 and A3A 4 lie
within a small multiple of ~, segments AxA2 and A3A 4

might intersect. In Figure 9, the MASC-Segment intersection
algorithm has generated two intersection points 15 and
16 for these segments. Algorithm 14B generates the union
of these two regions, as shown on the right.

This union is somewhat nonphysical in appearance. If
the original segments A1A 2 and A3A 4 meet, they should
'cancel' each other, as shown on the left of Figure 10.
This corresponds more closely to a notion of a rectangle
of physical material which is drying up like a puddle. We
describe here an algorithm for this type of physical
cleaning. The resulting union is shown on the right of
Figure 10. In the above notation,

We presume that the records for segments 1116 and I aA 3

in P' contain pointers back to the original segments A1 A2
and A3A4, respectively, which spawned them. For each
value X in general position (Definition 10) such that
X ~ (l l , x , I6,x), we define Oldlndex(IlI6, P(X)) to be the
index of segment AxA2 in P(X). For the example shown,
Oldlndex(Ixl 6, P(X))= 1 (independent of X). Note,
however, that the index of lf16 in P'(X) is 2. By looking
at the old and new indices, we can determine which curves
should be removed from P'.

Here is the general algorithm applied to P and P'. It
should also be applied to Q and Q', in both cases as a
substitute for the original cleaning algorithm.

For each X in general position t, do the following. First,
assign indices to the curves in P'(X) in a manner that is

* This is the author's opinion. Others who have viewed Figures 9-12
have perceived the output of the previous algorithm to be more
'physical'.
* It suffices to look at a set of X values which covers the set of segments. Figure 11 Cleaning algorithm applied to doubly misplaced curve

consistent with the < relation:

P ' (X) .-~ {~)1, ~2 Yn(X)}

such that V 1 <~ i < j <. n(X), Yi < Yj or ~i ----- ~j'
Next, assign each ?ieP'(X) a reference count of zero.

For each i = 1, 2,.. . , n(X), do the following: let j >/i be
the largest index such that OldIndex(? i, P(X))<<.
OldIndex(y~, P(X)). Increment the reference count of ~j.
If j # i, mark Yi for deletion. After performing this
operation for each i, mark for deletion every curve with
an even reference count. After performing this operation
for all X, remove all the marked curves from P'. Finally,
apply the original clean-up function above to P' to
eliminate multiple identical segments.

Thus, in Figure 10, segment I2I 6 is removed, because
its index is less than that of IlI6, and its old index is
greater. Segment I l I 6 is removed, because it ends up
having a reference count equal to 2. Figures 11 and 12
show the result of the cleaning algorithm on other
pathological cases.

C O N C L U S I O N S

In this paper, we have considered the problem of
constructing unions and intersections of polygonal
regions in the plane using rounded finite-precision
arithmetic. The second section determined that the best
that we can hope to accomplish is to perform set
operations on regions bounded by curves, not necessarily

A3A2

Ax

Figure 10

P = {AIA2, A2A3, A3A,,, A4Aa}

p' = {AtI5,1511, I l I 6 , I613,13A2, A2A3, A3I,,, 1416, I612,

I215, 15A4, A,tA1}

Physical cleaning of polygon before umon

560 Computer-Aided Design Volume 25 Number g September 1993

Figure 12 Cleaning algorithm applied to triply misplaced curve

straight line segments, because straightness is a property
that is not detectable by a polynomial-time rounded-
arithmetic algorithm. The third, fourth and fifth sections
give a strictly robust algorithm for performing the desired
set operations, and this algorithm generates the best
output possible: regions bounded by monotonic curves
which are straight to within a small multiple of the
rounding unit of the machine arithmetic.

This final section summarizes our robust polygon
set-operation algorithm. The first part of the section gives
reasons for the output of the robust algorithm being
practically applicable, even though it replaces straight
line segments with curves. The second part of the section
describes techniques which might be used to implement
the robust algorithm efficiently. Finally, the third and
fourth parts of the section discuss the comparison principle
and the hidden variable method, techniques used by our
algorithm, and how they might be applied in other
geometric domains.

Robust polygon modelling: V Milenkovic

If the output becomes the input to another set operation,
no additional error is added.

The 'thought construction' shows that the output of
the robust algorithm is indeed practically applicable. Let
us suppose that the input polygons are known only to a
certain accuracy ff representing B' bits of precision
(if= 2-B'M), as is generally the case in any physical
application (B' = 20 corresponds to an accuracy of one
part per million). In other words, the actual shapes of
the input polygons may differ by as much as fl' from the
shapes that we perceive them to have. If B is sufficiently
large, B > B' + 7, so that fl < if, then the first step in
our 'thought construction' above may introduce no error
at all; it is possible the ft. perturbation of the input is in
fact the actual shape of the input, and therefore the output
of the robust algorithm is the correct polygon. Of course,
it is also possible that the robust algorithm generates an
incorrect solution, but the same holds true for an exact
algorithm using infinite-precision arithmetic: it too may
or may not generate the correct polygon. The important
observation is that the robust solution and the exact
solution arc equally valid from the point of view of
practical applications.

Since the robust solution requires less precision to
compute, we should use it instead of the exact solution,
which requires arithmetic with more than 4B' bits of
precision. In particular, the robust algorithm requires
only 27 bit arithmetic, which is easily provided by
standard 53 bit floating-point arithmetic. The exact
algorithm requires more than 80 bit arithmetic, which
would generally have to be implemented in software.

Practical applicability of robust algorithm

The robust algorithm in the third, fourth and fifth sections
can be used by applications which require set operations
on polygonal regions. The fifth section uses the example
of the union of a rectangle and a triangle. The robust
algorithm generates a good approximation to the correct
polygon, an approximate polygon bounded by MASC
segments, and this approximate polygon can be used as
input to the same algorithm. All numerical calculations
used by the robust algorithm are performed using
rounded B-bit arithmetic, and, no matter how many
operations are performed, the error bound depends only
on B, and not on the number of operations.

We can describe the accuracy of the robust algorithm
in terms of backward error analysis. The approximate
polygon that it generates can be thought of as being
generated by two steps:

• Replace each line segment of the input polygons by
monotonic curves which do not stray farther than
fl = 66(21/2)# distant from the segments they replace
(p = 2-aM is the absolute rounding unit).

• Perform the desired set operation on the altered
inputs exactly.

Implementation of robust polygon set operations

The third, fourth and fifth sections do not immediately
lead to a computer program for performing set operations
on polygonal regions. Instead, they reduce the difficult
problem of reasoning about round-off error to a few basic
operations on sets of points in the plane. There are well
understood techniques for implementing these operations,
and it remains to be discovered which one leads to the
most practically efficient program. One can only briefly
summarize here one technique, a sweepline construction,
and discuss ways in which it can. be made efficient.

We need a method for maintaining the sets and lists
necessary for implementing the robust segment-intersection
algorithm. We describe a modification of the Bentley-
Ottman 24 swccpline technique to demonstrate how the
robustness techniques can be added to a commonly used
algorithm. Similar adaptations can be made to other
techniques, such as bucketing.

Algorithm 7 (sweepline algorithm)
In the sweepline algorithm, we sweep a vertical line from
left to right, putting anticipated intersections into a
priority queue. Above and below lists arc represented
implicitly in the current state.

Computer-Aided Design Volume 25 Number g September 1993 561

Robust polygon modelling: V Milenkovic

For each segment c°rigc dest with positive slope, we
must save a hiohest below site B, the site in the below set
with the greatest y value. (Analogously, we save the lowest
above site for each segment with negative slope.) This is
the only extra information needed over that provided by
the Bentley-Ottmann algorithm. Maintaining the highest
below site for each C°'igC d=st is potentially expensive,
because every time we add a new site, it may become the
highest below site for a large number of segments.
However, we can use the following efficiency technique.
If 6(B, c°rigcdeSt)B < --12ct (recall that the subscript B
refers to the use of rounded B-bit arithmetic), then 6(B,
C°rigC d~'t) < -11~ = fl (see Definition 3), and thus it
cannot affect the shape of the r~ASC segment C°'igCd~'t.
Therefore, we can safely leave B out of the below set of
C°rigC d~st, considerably reducing the cost of maintaining
the below set.

This efficiency technique works well unless many sites
are near segments, a case which generally causes
nonrobust algorithms to fail. Difficult or pathological
cases may increase the running time of the author's robust
algorithm, but they do not affect its reliability.

N e w techniques

The robust polygon intersection algorithm is based on a
number of new techniques, in particular a comparison
principle and a hidden-variable method. The comparison
principle is the observation that comparisons of
representable floating-point numbers can be carried out
without round-off error. The hidden-variable method is
based on the observation that, by keeping certain portions
of a geometric representation implicit or hidden, it is
generally possible to greatly improve the error bounds.

We use the comparison principle heavily in the design
of the low-level numerical operations on points and line
segments in the third section. Definition 2, classifying a
point with respect to a line segment, is based on the
assumption that we can classify a point with respect to
an axis-parallel rectangle. Algorithms 3 and 4 for
intersecting a segment with a horizontal or vertical line
or line segment require us to move a point to the nearest
endpoint of a line segment. This operation can be
performed using comparisons alone if the segment is
parallel to a coordinate axis. The general Algorithm 5
for intersecting two line segments requires us to move a
point to the nearest point on the boundary of an
axis-parallel rectangle. This operation can also be
performed using comparisons alone.

A number of the operations in the higher-level segment
intersection in the fourth section also depend on the
comparison principle. In particular, the update procedure
for MASC segments and the technique for detecting the
intersections of MASC segments depend on comparisons
of floating-point numbers. When we compute an
intersection point (Algorithms 11 and 12), we use
comparisons to determine whether it lies on the boundary

of an axis-parallel rectangle, and we use additional
comparisons to compute its location if it does.

The hidden-variable method is closely related to the
comparison principle. Theorem 1, the first hidden-
variable theorem, implies the existence of a MASC function
if certain premises are satisfied. Most of these premises
are based on comparisons of floating-point numbers, and
all of these premises are testable using rounded B-bit
arithmetic. Actually, constructing the curve explicitly
would require much higher precision. In a similar fashion,
Theorem 2, the second hidden-variable theorem, implies
the existence of an intersection point based on testable
premises, again without requiring that it be computed
explicitly. These two theorems make it possible to work
with implicit curves, which in turn makes it possible to
bound the maximum error of the intersection algorithm
by a constant multiple of the rounding unit. Explicit
representation of the curves, as described in the fourth
section, is possible, but it does not have a good provable
accuracy bound.

Future work

It has already been shown that the hidden-variable
method leads to strictly robust algorithms for computing
the intersections of algebraic curves in 2D 1° and planes
in 3D 8. The author 1 t and Fortune 12 have devised strictly
robust algorithms for constructing convex hulls of points
in the plane. These algorithms rely heavily on the
comparison principle.

In the immediate future, we plan to extend our work
to the intersection of spline curves in the plane and to
the construction of convex hulls in higher dimensions.
In the case of spline curves, we plan to develop a
hidden-variable theory that allows us to work with curves
with unspecified control points. By doing this, we hope
to obtain the same high accuracy that we have obtained
for the intersection of line segments.

Beyond that point, we plan to work on developing
robust algorithms for the domains of potyhedra and
objects bounded by curved surfaces, These pose difficult
problems, but we hope that the techniques we have
devised for the 2D domain will generalize to 3D.

A C K N O W L E D G E M E N T S

This research was funded by US National Science
Foundation grants CCR-90-09272 and CCR-91-157993.

R E F E R E N C E S

1 Sugihara, K 'An approach to error-free solid modeling' 1MA
Summer Prog. Robotics Institute for Mathematics and Applications,
University of Minnesota, USA (1987)

2 Farouki, R T 'The characterization of parametric surface sections'
Comput. Vision, Graph. & Image Proc. Vo133 (1986)lap 209-236

562 Computer-Aided Design Volume 25 Number 9 September 1993

3 Milenkovic, V J 'Double precision geometry: a general technique
for calculating line and segment intersections using rounded
arithmetic' 30th Ann. Syrup. Foundations of Computer Science
IEEE (1989)

4 Edelsbrunner, H and Mucke, E P 'Simulation of simplicity: a
technique to cope with degenerate cases in geometric algorithms'
Technical Report UIUCDCS-R-87-1393 Dep. Computer Science,
University of Illinois at Urbana-Champalgn, USA (1987)

5 Yap, C 'A geometric consistency theorem for a symbolic
perturbation theorem' Proc. Symp. Computational Geometry ACM
(1988)

6 Emiris, I and Canny, J 'An efficient approach to removing
geometric degeneracies' Proc. 8th Ann. Symp. Computational
Geometry ACM Press (1992) pp 74-82

7 Mnev, N E 'The universality theorems on the classification
problem of configuration varieties and convex polytopes varieties'
in Viro, O Y (Ed.) Topology and Geometry Springer-Veflag, USA
(1988)

8 Milenkovic, V J 'Verifiable implementations of geometric
algorithms using finite precision arithmetic' Technical Report
CMU-CS-88-168 Dcp. Computer Science, Carnegie Mellon
University, USA (Jul 1988)

9 Milenkovic, V J 'Robust geometric computations for vision and
robotics' Proc. DARPA IUS Wkshp. DARPA (1989) pp 764-773

10 Milenkovic, V J Calculating approximate curve arrangements
using rounded arithmetic' Proc. Symp. Computational Geometry
ACM (1989)

11 Milenkovic, V J and Li, Z 'Constructing strongly convex hulls
using exact or rounded arithmetic' Algorithmica Voi 8 (1992) pp
345-364

12 Fortune, S 'Stable maintenance and point-set triangulations in
two dimensions' Proc. 30th Ann. Symp. Foundations of Computer
Science IEEE (1989)

13 Hoffman, C and Hopcroft, J 'Towards implementing robust
geometric computations' Proc. Symp. Computational Geometry
ACM (1988)

14 Hoperoft, J E and Kahn, P J 'A paradigm for robust geometric
algorithms' Report TR 89-1044 Dep. Computer Science, Cornell
University, USA (Oct 1989)

15 Milenkovic, V J 'Verifiable implementations of geometric
algorithms using finite precision arithmetic' Artif. Intell. Vol 37
(1988) pp 377-401

16 Segal, M and Sequin, C H 'Consistent calculations for solids
modeling' Proc. Syrup. Computational Geometry ACM (1985)
pp 29-37

17 Fortune, S and Milenkovic, V J 'Numerical stability of algorithms
for line arrangements' Proc. 7th Ann. ACM Symp. Computational
Geometry ACM, USA (1991) pp 334-341

18 Karasick, M 'On the representation and manipulation of rigid
solids' PhD Thesis McGill University, Canada (Aug 1988)

19 Sugihara, K and Iri, M 'Construction of the Voronoi diagram
for over l0 s generators in single-precision arithmetic' Pres. 1st
Canadian Conf. Computational Geometry McGill University,
Canada (Aug 1989)

20 Fortune, S and Van Wyk, C 'Efficient exact arithmetic for
computational geometry' 9th Ann. ACM Symp. Computational
Geometry (1993) (to be presented)

21 Salesin, D, Stolfi, J and Guibas, L 'Epsilon geometry: building
robust algorithms from imprecise computations' Proc. Syrup.
Computational Geometry ACM (1989)

22 Segal, M and Sequin, C H 'Partitioning polyhedral objects into
non-intersecting parts' IEEE Comput. Graph. & Applic. Vol 8 No 1
(1988)

23 Karasick, M, Lieber, D and Nackman, L R 'Efficient Delaunay
triangulation using rational arithmetic' ACM Trans. Graph.
Vol 10 (Jan 1991) pp 71-91

24 Bentley, I L and Ottmann, T 'Algorithms for reporting and
counting geometric intersections' IEEE Trans. Comput. Vol C-28
(1979) pp 643-647

A P P E N D I X A

Error analysis: numerical operations on segments

Appendix A proves error bounds for the operations given

Robust polygon modelling: V Milenkovic

in the third section when they are implemented using
arithmetic with B bits of precision (see the second section).

Point--segment distance and classification
The third section gives a formula (see Algorithm 1) for
6(C, AB), the signed distance from a point C to a line
segment AB. As a precondition, C lies inside the bounding
box R(AB). The claimed error bound is [6(C, AB)a - 6(C,
AB)I <~ ~t, where 6(C, AB)s is the value of 6(C, AB)
computed using rounded B-bit arithmetic. The error
arising from the circulation computation dominates.
Using elementary error analysis and the Cauchy inequality,
one can show that

Icirc(A, B, C)B -- ¢irc(A, 13, C)I

= I((A - C) x (B - C))a - (A - C) x (B - C)l (1)

~< 3elA - CIIB - CI + el(A - C) × (B - C)I (2)

where e = 2 -~. For C close to AB, the second term can
be neglected, and thus

I~(C, AB)B - ~(C, AB)I ~< 3e IA CIIB CI l 1

[A - B[

For C E R(AB),

[A - CI, IB - C[~< IC - AI

and, therefore,

16(C, AB)B - 6(C, AB)I ~< 3eIC - AI ~< 6(21/2)~M

where M is an upper bound on the magnitude of any
coordinate. []

Intersections
Intersection with horizontal or vertical line
The third section gives a formula (see Algorithm 3) for the
intersection of a line segment AB with a horizontal line
Y = c. Error analysis* shows that, if we use rounded
arithmetic to compute X,

IX~ - xI ~< ~lXl + 5~ n~ - A ~ (c _ A ,)
By - Ay

If Xa lies outside the interval lAx, Bx], we move it to the
nearest endpoint. This will always decrease the error. For
a fixed y coordinate, a unit change in x changes the
distance to line AB by (By - Ay)/IB - AI, which is always

less than unity. Therefore,

16((XB, Ya), AB)I ~< 81Xl I~ - AIAyl

+ 5elc -- Ayl I ? B - AXIAl

<~ l l e M < 2ct []

* For example, the factor of 58 arises from the three subtractions, one
division and one multiplication.

Computer-Aided Design Volume 25 Number 9.September 1993 563

Robust polygon modelling: V Milenkovic

Intersection with line segment
Let AB and CD be line segments such that we know, a
priori, that they intersect. The third section gives a
procedure (see Algorithm 6) for computing this intersection
I approximately using rounded arithmetic. The resulting
approximate intersection point I s lies in R(AB) c~ R(CD).
We have

t n = ((C - A) x (D - C))

(B - A) x (D - C) n

A single division introduces at most a relative error of
size e:

tn _ ((C - A) x (D - C))~ ~< e ((C - A) x (D - C)) m
((B A) x (D C))n ((13 A) x 0 D C))n

and, hence,

It,((B - A) x (D - C)) n - ((C - A) x (D - C))nl

~< el((C - A) x (D - C))nl ~< tIC - AIID - C[

We can write this as 3el e l - e , el, such that

t~((B - A) x (D - C))n - ((C - A) x (D - C)) n

= ~llC - AIID - CI (3)

From Equation 2, it follows that 3e2, e3 e I - e , el, such
that

(B - A) x (D - C) - ((B - A) x (D - C)) n

= 4e21B - AIID - CI (4)

(C - A) x (D - C) - ((C - A) x (D - C)) n

= 4e31C - AIID - CI (5)

Combining Equations 3, 4, and 5,

6(A + ta(B - A), CD)

tn(B-A) x (D - C) - (C - A) x (D - C)
la - cl

eltC - AIID - CI + ta(4~zlB - AIID - CI) - 4ealC - AIID - CI
ID-C1

= ellC-AI + 4tae21B-At-4ealC-AI (6)

Thus

16(A + tB(B -- A), CD)I

~< e(IC - AI + 4In - AI + 4 I t - AI) ~< 9e(2(2~/2)M)

= 3~

The previous paragraph derived a bound on the distance
f rom A + t n (B - A) to CD. However , Is equals
(A + t a (B - A))n, which has the additional round-off
error introduced by a subtraction, a multiplication and

an addition for each coordinate. We have

[IB - (A + tn(B - A))I ~< e(lln[+ 2ltn(B - A)I)

<~ e(M(21/2) + (4(21/2)M) < ot

Combining this bound with the bound in the previous
paragraph,

[6(In, AB)[< ~t

and

16(In, CD)I < 4~

As stated above, even though IB lies close to each line
segment AB and CD, it may not lie in the bounding
boxes of these segments. In this case, we simply move it
to the nearest point on the boundary of R(AB) r~ R(CD).
We claim that we move I B at most 5¢. To prove this
claim, we need the following lemma.

Lemma 4: Let R 1 and R 2 be two axis-parallel rectangles
such that R1 c~ R 2 # O. Let P be any point outside R 1.
Moving P directly towards R 1 (see Figure 13) does not
increase its distance from R 2.

Proof." There are several cases to consider, but, basically,
if moving P directly towards R t increases its distance
from R 2, then either the line x = Px or the line y = Py
separates Rz from R 2, contradicting the premise that
their intersection is nonempty. Incidentally, this lemma
is not true for arbitrary (non-axis-parallel) rectangles. []

Now we can establish the claim made above. Since I B is
at most = from AB and 4¢ from BC, it is at most ¢ distant
from R(AB) and 4¢ from R(BC). These two axis-parallel
rectangles have a nonempty intersection because of the
premise that AB and CD intersect. Therefore, we can
move I B to R(AB) without increasing its distance from
R(BC). Then we can move I s to R(CD) without increasing
its distance from R(AB) (which is zero). The total distance
moved is at most 5a. After we have altered the position
of I B, it satisfies

Jr(In, AB)I < 6~x

and

16(In, CD)I < 9~ []

Figure 13 Moving point towards rectangle

P

564 Computer-Aided Design Volume 25 Number 9 September 1993

A P P E N D I X B

MASC segments

Appendix B gives proofs of the theorems in the fourth
section.

Proof of I.emma 1
The properties listed in Lemma 1 are easy to establish.
The first is a consequence of the monotonicity of f, and
Figure 14 shows what happens when sites A and B violate
the monotonicity property. The second property is a
consequence of the bound on the distance from <x,
f(x)> to corigc dest. []

Proof of Theorem 1
This section gives an informal proof of Theorem 1. Let
A > 0 be less than the minimum nonzero difference
between dements of the set of x coordinates and y
coordinates of sites in the above set A and in the below
set B. If necessary, diminish A so that it is smaller than
both

/3 + min 6(A, c°rigc deSt)
AeA

and

/3 - max 6(B, c°rigc dest)
BeB

Imagine a tiny test driver who must drive a course from
D °~ to D d~'t. At each site A~A and BeB, we place a
traffic cone of radius A/3. The driver must drive a course
that keeps every A cone to his left and every B cone to
his right. Suppose that the driver takes the shortest course
which satisfies these conditions. We notice that he will
only turn left at A cones and right at B cones. Figure 15
shows that a course that turns left at a B cone can be
made shorter. We claim that the course, (x, f(x)), has
exactly the properties we need. We first show that the y
coordinate of the course is monotonic. Assume without

° ' A
D

Figure 14 Violation of monotonicity property

Figure 15 Nonshortest course

Robust polygon modelling: V Milenkovic

D ~

Figure 16 Proof of monotonicity

Cd,=

C ~

Figure 17 Proof of accuracy

loss of generality that D°rigy < Dd©sty (f(x) should be an
increasing function), and that the course has a segment
that is nonincreasing in y. Figure 16 shows a string of
such segments. Eventually, the course must turn left to
get to D aest. There is, therefore, a nonincreasing segment
starting from a right turn at some B e B, and ending with
a left turn at some A e A. Thus, Ax I> Bx and Ay ~< By.
However, this contradicts the assumption that A and B
satisfy the conclusion of Lemma 1. Now we have to show
that every point of the course lies within fl of cor~sc d='t.
Let T be a point on the course which is the maximum
distance to the left of segment c°rigcdest (such that 6(T,
C°r~sC d*'t) is maximal). Let us assume the contrary of the
error bound, that a(T, C°risC d='t) I>/3. Because D °el= and
D dest satisfy the conclusion of Lemma 1, T cannot equal
either of these sites. Therefore, T must be a right turn in
the course, and therefore it must lie on the boundary of
a B cone, as shown in Figure 17. However, this implies
that

~(T, c°rigcdest) = A/3 --I- ~(A, c°rigcdest) <

where B e B is the centre of the cone. This contradicts
our assumption. Therefore, the course does not stray
farther than /3 to the left of line segment C*'IsC d''t.
Similarly, the course does not stray farther than/3 to the
right either. []

Proof of Lemma 2
This section proves Lemma 2 of the fourth section. The
proof for Special Case 1 is as follows. There are two
conditions that A b~°~k must satisfy to permit the successful
splitting ofy = <c° r tgc dest, D °ris, D dest, A, B, f > at A bl°ck.
First, a(A bl°ck, c°rigCdest) must be bounded by 11~.
Second, no site may block A b~*=k splitting ~ in the way
that A b~°ck prevented I from splitting this MASC segment.
The distance bound, I6(A bio=lt, corlgcdest)] < 11= follows
from the inequalities

la(I, c°rigCdest)] < 11~

Computer-Aided Design Volume 25 Number 9 September 1993 565

Robust polygon modelling: V Milenkovic

~(A bl°ck, c° r igc dest) > -- 11~

(~(I, c ° r igc dest) ~ ~(A hI°ok, c ° r igc dest)

The first is a premise of the splitting algorithm. The
second is a property of MASC segments (Lemma I). The
third follows from the fact that the distance to c°r~gcd~t
is a monotone function of x and y, and that

I x ~< Abl°ck x

and

Iy ~ Abl°Cky

We prove by contradiction that A b~°¢k is not blocked
from splitting y. Suppose that it is blocked by some site
A~A:

Abl°ck x ~ A~

and

Abl°Cky i> Ay

However, A bl°ck blocks I:

I~ ~< Abl°ck x

and

Iy f> Abl°cky

Therefore,

Ix ~< Ax

and

Iy/> Ay

This is a contradiction, since A bl°ck is with the site with
the largest x and smallest y which satisfied these
conditions. Special Case 2 is proved analogously. []

Proof of Theorem 2
This section gives an informal proof of Theorem 2, the
second hidden-variable theorem. If the curve s ~y(x) and
~a(x) intersect once, the proof is simple. Unfortunately,
we cannot guarantee pseudol ineari ty (see the second

Figure 18

A

Proof of second hidden-variable theorem

section); the curves may intersect more than once. This
will probably only happen very rarely, and only when
corig('~aest and (~orig(~dest are parallel or nearly parallel. It f ~"f --g --g
can only happen if f and g are both increasing or both
decreasing. We give the single-intersection proof first, and
then consider the more difficult case. Let Ex °rig, xde't] =

xOrig erf,,,Jlo I~orig [o~riSx, D~eStx"] . , t ~ L--gl-][~origx, --gr~deStxj" q Thus "~""°~ : x
or D~rig= or both, if they are equal, and x dcst equals D~C~t=

[~dest or _g x or both. It is clear that, if the curves ~f(x) and
),g(x) intersect exactly once, then f (x °ris) ~ g(x °rig) and
f (x d~t) - g (x d"t) have opposite signs. Thus, we can
satisfy the theorem by setting P equal to the element of
{D~ig~, --gl~°'tgx, ~ with the largest x coordinate, and by
setting Q equal to the element of YD dest 11 dest ~ with
the smallest x coordinate. To prove the harder multi-
intersection case, we return to our test-car driver analogy.
Suppose, without loss of generality, that ~g starts above
~I (so that D~lge B f, for example); it crosses ~s, and then
it crosses back again. Between these two crossings, either
),g turns left or Yy turns right; otherwise, once they cross
and part the first time, they never meet again (see Figure

18). Without loss of generality, it is 7g which turns.
Therefore, 2:g makes a left turn at an A~ cone centred at
some site A ~ Ag. Since ~g is below ~f at this cone, A is
below ~¢, and thus A e B I. Therefore, we can satisfy
Theorem 2 by setting P equal to D °ris and setting Q ~ g ,
equal to A. []

'~'"~- - ' ~ ' ~ Victor Milenkovic graduated in mathe-
matics from Harvard University, USA,
in 1981, and he received a PhD in
computer science from Carnegie Mellon
University, USA, in 1988. He is now an
assistant professor of computer science.
His interests include computational
geometry, CAD~CAM, vision and robotics.
He is currently focusing on two research
projects; on robust geometry, the
development and analysis of geometric

. algorithms which have provable stability
in the presence of round-off error, and on the automatic layout of
polygonal pieces on cutting stock for the clothing industry.

566 Computer-Aided Design Volume 25 Number 9 September 1993

