/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file class_pad.cpp * D_PAD class implementation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include // ID_TRACK_BUTT #include #include #include #include int D_PAD::m_PadSketchModePenSize = 0; // Pen size used to draw pads in sketch mode D_PAD::D_PAD( MODULE* parent ) : BOARD_CONNECTED_ITEM( parent, PCB_PAD_T ) { m_NumPadName = 0; m_Size.x = m_Size.y = DMils2iu( 600 ); // Default pad size 60 mils. m_Drill.x = m_Drill.y = DMils2iu( 300 ); // Default drill size 30 mils. m_Orient = 0; // Pad rotation in 1/10 degrees. m_LengthPadToDie = 0; if( m_Parent && m_Parent->Type() == PCB_MODULE_T ) { m_Pos = GetParent()->GetPosition(); } SetShape( PAD_CIRCLE ); // Default pad shape is PAD_CIRCLE. SetDrillShape( PAD_DRILL_CIRCLE ); // Default pad drill shape is a circle. m_Attribute = PAD_STANDARD; // Default pad type is NORMAL (thru hole) m_LocalClearance = 0; m_LocalSolderMaskMargin = 0; m_LocalSolderPasteMargin = 0; m_LocalSolderPasteMarginRatio = 0.0; m_ZoneConnection = UNDEFINED_CONNECTION; // Use parent setting by default m_ThermalWidth = 0; // Use parent setting by default m_ThermalGap = 0; // Use parent setting by default // Set layers mask to default for a standard thru hole pad. m_layerMask = PAD_STANDARD_DEFAULT_LAYERS; SetSubRatsnest( 0 ); // used in ratsnest calculations m_boundingRadius = -1; } int D_PAD::boundingRadius() const { int x, y; int radius; switch( GetShape() ) { case PAD_CIRCLE: radius = m_Size.x / 2; break; case PAD_OVAL: radius = std::max( m_Size.x, m_Size.y ) / 2; break; case PAD_RECT: radius = 1 + KiROUND( EuclideanNorm( m_Size ) / 2 ); break; case PAD_TRAPEZOID: x = m_Size.x + std::abs( m_DeltaSize.y ); // Remember: m_DeltaSize.y is the m_Size.x change y = m_Size.y + std::abs( m_DeltaSize.x ); // Remember: m_DeltaSize.x is the m_Size.y change radius = 1 + KiROUND( hypot( x, y ) / 2 ); break; default: radius = 0; } return radius; } const EDA_RECT D_PAD::GetBoundingBox() const { EDA_RECT area; wxPoint quadrant1, quadrant2, quadrant3, quadrant4; int x, y, dx, dy; switch( GetShape() ) { case PAD_CIRCLE: area.SetOrigin( m_Pos ); area.Inflate( m_Size.x / 2 ); break; case PAD_OVAL: //Use the maximal two most distant points and track their rotation // (utilise symmetry to avoid four points) quadrant1.x = m_Size.x/2; quadrant1.y = 0; quadrant2.x = 0; quadrant2.y = m_Size.y/2; RotatePoint( &quadrant1, m_Orient ); RotatePoint( &quadrant2, m_Orient ); dx = std::max( std::abs( quadrant1.x ) , std::abs( quadrant2.x ) ); dy = std::max( std::abs( quadrant1.y ) , std::abs( quadrant2.y ) ); area.SetOrigin( m_Pos.x-dx, m_Pos.y-dy ); area.SetSize( 2*dx, 2*dy ); break; break; case PAD_RECT: //Use two corners and track their rotation // (utilise symmetry to avoid four points) quadrant1.x = m_Size.x/2; quadrant1.y = m_Size.y/2; quadrant2.x = -m_Size.x/2; quadrant2.y = m_Size.y/2; RotatePoint( &quadrant1, m_Orient ); RotatePoint( &quadrant2, m_Orient ); dx = std::max( std::abs( quadrant1.x ) , std::abs( quadrant2.x ) ); dy = std::max( std::abs( quadrant1.y ) , std::abs( quadrant2.y ) ); area.SetOrigin( m_Pos.x-dx, m_Pos.y-dy ); area.SetSize( 2*dx, 2*dy ); break; case PAD_TRAPEZOID: //Use the four corners and track their rotation // (Trapezoids will not be symmetric) quadrant1.x = (m_Size.x + m_DeltaSize.y)/2; quadrant1.y = (m_Size.y - m_DeltaSize.x)/2; quadrant2.x = -(m_Size.x + m_DeltaSize.y)/2; quadrant2.y = (m_Size.y + m_DeltaSize.x)/2; quadrant3.x = -(m_Size.x - m_DeltaSize.y)/2; quadrant3.y = -(m_Size.y + m_DeltaSize.x)/2; quadrant4.x = (m_Size.x - m_DeltaSize.y)/2; quadrant4.y = -(m_Size.y - m_DeltaSize.x)/2; RotatePoint( &quadrant1, m_Orient ); RotatePoint( &quadrant2, m_Orient ); RotatePoint( &quadrant3, m_Orient ); RotatePoint( &quadrant4, m_Orient ); x = std::min( quadrant1.x, std::min( quadrant2.x, std::min( quadrant3.x, quadrant4.x) ) ); y = std::min( quadrant1.y, std::min( quadrant2.y, std::min( quadrant3.y, quadrant4.y) ) ); dx = std::max( quadrant1.x, std::max( quadrant2.x, std::max( quadrant3.x, quadrant4.x) ) ); dy = std::max( quadrant1.y, std::max( quadrant2.y, std::max( quadrant3.y, quadrant4.y) ) ); area.SetOrigin( m_Pos.x+x, m_Pos.y+y ); area.SetSize( dx-x, dy-y ); break; default: break; } return area; } void D_PAD::SetAttribute( PAD_ATTR_T aAttribute ) { m_Attribute = aAttribute; if( aAttribute == PAD_SMD ) m_Drill = wxSize( 0, 0 ); } void D_PAD::SetOrientation( double aAngle ) { NORMALIZE_ANGLE_POS( aAngle ); m_Orient = aAngle; } void D_PAD::Flip( const wxPoint& aCentre ) { int y = GetPosition().y - aCentre.y; y = -y; // invert about x axis. y += aCentre.y; SetY( y ); NEGATE( m_Pos0.y ); NEGATE( m_Offset.y ); NEGATE( m_DeltaSize.y ); SetOrientation( -GetOrientation() ); // flip pads layers SetLayerMask( FlipLayerMask( m_layerMask ) ); // m_boundingRadius = -1; the shape has not been changed } void D_PAD::AppendConfigs( PARAM_CFG_ARRAY* aResult ) { // Parameters stored in config are only significant parameters // for a template. // So not all parameters are stored, just few. aResult->push_back( new PARAM_CFG_INT_WITH_SCALE( wxT( "PadDrill" ), &m_Drill.x, Millimeter2iu( 0.6 ), Millimeter2iu( 0.1 ), Millimeter2iu( 10.0 ), NULL, MM_PER_IU ) ); aResult->push_back( new PARAM_CFG_INT_WITH_SCALE( wxT( "PadDrillOvalY" ), &m_Drill.y, Millimeter2iu( 0.6 ), Millimeter2iu( 0.1 ), Millimeter2iu( 10.0 ), NULL, MM_PER_IU ) ); aResult->push_back( new PARAM_CFG_INT_WITH_SCALE( wxT( "PadSizeH" ), &m_Size.x, Millimeter2iu( 1.4 ), Millimeter2iu( 0.1 ), Millimeter2iu( 20.0 ), NULL, MM_PER_IU ) ); aResult->push_back( new PARAM_CFG_INT_WITH_SCALE( wxT( "PadSizeV" ), &m_Size.y, Millimeter2iu( 1.4 ), Millimeter2iu( 0.1 ), Millimeter2iu( 20.0 ), NULL, MM_PER_IU ) ); } // Returns the position of the pad. const wxPoint D_PAD::ShapePos() const { if( m_Offset.x == 0 && m_Offset.y == 0 ) return m_Pos; wxPoint shape_pos; int dX, dY; dX = m_Offset.x; dY = m_Offset.y; RotatePoint( &dX, &dY, m_Orient ); shape_pos.x = m_Pos.x + dX; shape_pos.y = m_Pos.y + dY; return shape_pos; } const wxString D_PAD::GetPadName() const { #if 0 // m_Padname is not ASCII and not UTF8, it is LATIN1 basically, whatever // 8 bit font is supported in KiCad plotting and drawing. // Return pad name as wxString, assume it starts as a non-terminated // utf8 character sequence char temp[sizeof(m_Padname)+1]; // a place to terminate with '\0' strncpy( temp, m_Padname, sizeof(m_Padname) ); temp[sizeof(m_Padname)] = 0; return FROM_UTF8( temp ); #else wxString name; StringPadName( name ); return name; #endif } void D_PAD::StringPadName( wxString& text ) const { #if 0 // m_Padname is not ASCII and not UTF8, it is LATIN1 basically, whatever // 8 bit font is supported in KiCad plotting and drawing. // Return pad name as wxString, assume it starts as a non-terminated // utf8 character sequence char temp[sizeof(m_Padname)+1]; // a place to terminate with '\0' strncpy( temp, m_Padname, sizeof(m_Padname) ); temp[sizeof(m_Padname)] = 0; text = FROM_UTF8( temp ); #else text.Empty(); for( int ii = 0; ii < PADNAMEZ && m_Padname[ii]; ii++ ) { // m_Padname is 8 bit KiCad font junk, do not sign extend text.Append( (unsigned char) m_Padname[ii] ); } #endif } // Change pad name void D_PAD::SetPadName( const wxString& name ) { int ii, len; len = name.Length(); if( len > PADNAMEZ ) len = PADNAMEZ; // m_Padname[] is not UTF8, it is an 8 bit character that matches the KiCad font, // so only copy the lower 8 bits of each character. for( ii = 0; ii < len; ii++ ) m_Padname[ii] = (char) name.GetChar( ii ); for( ii = len; ii < PADNAMEZ; ii++ ) m_Padname[ii] = '\0'; } void D_PAD::Copy( D_PAD* source ) { if( source == NULL ) return; m_Pos = source->m_Pos; m_layerMask = source->m_layerMask; m_NumPadName = source->m_NumPadName; m_netinfo = source->m_netinfo; m_Drill = source->m_Drill; m_drillShape = source->m_drillShape; m_Offset = source->m_Offset; m_Size = source->m_Size; m_DeltaSize = source->m_DeltaSize; m_Pos0 = source->m_Pos0; m_boundingRadius = source->m_boundingRadius; m_padShape = source->m_padShape; m_Attribute = source->m_Attribute; m_Orient = source->m_Orient; m_LengthPadToDie = source->m_LengthPadToDie; m_LocalClearance = source->m_LocalClearance; m_LocalSolderMaskMargin = source->m_LocalSolderMaskMargin; m_LocalSolderPasteMargin = source->m_LocalSolderPasteMargin; m_LocalSolderPasteMarginRatio = source->m_LocalSolderPasteMarginRatio; m_ZoneConnection = source->m_ZoneConnection; m_ThermalWidth = source->m_ThermalWidth; m_ThermalGap = source->m_ThermalGap; SetSubRatsnest( 0 ); SetSubNet( 0 ); } void D_PAD::CopyNetlistSettings( D_PAD* aPad ) { // Don't do anything foolish like trying to copy to yourself. wxCHECK_RET( aPad != NULL && aPad != this, wxT( "Cannot copy to NULL or yourself." ) ); aPad->SetNetCode( GetNetCode() ); aPad->SetLocalClearance( m_LocalClearance ); aPad->SetLocalSolderMaskMargin( m_LocalSolderMaskMargin ); aPad->SetLocalSolderPasteMargin( m_LocalSolderPasteMargin ); aPad->SetLocalSolderPasteMarginRatio( m_LocalSolderPasteMarginRatio ); aPad->SetZoneConnection( m_ZoneConnection ); aPad->SetThermalWidth( m_ThermalWidth ); aPad->SetThermalGap( m_ThermalGap ); } int D_PAD::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const { // A pad can have specific clearance parameters that // overrides its NETCLASS clearance value int clearance = m_LocalClearance; if( clearance == 0 ) { // If local clearance is 0, use the parent footprint clearance value if( GetParent() && GetParent()->GetLocalClearance() ) clearance = GetParent()->GetLocalClearance(); } if( clearance == 0 ) // If the parent footprint clearance value = 0, use NETCLASS value return BOARD_CONNECTED_ITEM::GetClearance( aItem ); // We have a specific clearance. // if aItem, return the biggest clearance if( aItem ) { int hisClearance = aItem->GetClearance(); return std::max( hisClearance, clearance ); } // Return the specific clearance. return clearance; } // Mask margins handling: int D_PAD::GetSolderMaskMargin() const { int margin = m_LocalSolderMaskMargin; MODULE* module = GetParent(); if( module ) { if( margin == 0 ) { if( module->GetLocalSolderMaskMargin() ) margin = module->GetLocalSolderMaskMargin(); } if( margin == 0 ) { BOARD* brd = GetBoard(); margin = brd->GetDesignSettings().m_SolderMaskMargin; } } // ensure mask have a size always >= 0 if( margin < 0 ) { int minsize = -std::min( m_Size.x, m_Size.y ) / 2; if( margin < minsize ) margin = minsize; } return margin; } wxSize D_PAD::GetSolderPasteMargin() const { int margin = m_LocalSolderPasteMargin; double mratio = m_LocalSolderPasteMarginRatio; MODULE* module = GetParent(); if( module ) { if( margin == 0 ) margin = module->GetLocalSolderPasteMargin(); BOARD * brd = GetBoard(); if( margin == 0 ) margin = brd->GetDesignSettings().m_SolderPasteMargin; if( mratio == 0.0 ) mratio = module->GetLocalSolderPasteMarginRatio(); if( mratio == 0.0 ) { mratio = brd->GetDesignSettings().m_SolderPasteMarginRatio; } } wxSize pad_margin; pad_margin.x = margin + KiROUND( m_Size.x * mratio ); pad_margin.y = margin + KiROUND( m_Size.y * mratio ); // ensure mask have a size always >= 0 if( pad_margin.x < -m_Size.x / 2 ) pad_margin.x = -m_Size.x / 2; if( pad_margin.y < -m_Size.y / 2 ) pad_margin.y = -m_Size.y / 2; return pad_margin; } ZoneConnection D_PAD::GetZoneConnection() const { MODULE* module = (MODULE*) GetParent(); if( m_ZoneConnection == UNDEFINED_CONNECTION && module ) return module->GetZoneConnection(); else return m_ZoneConnection; } int D_PAD::GetThermalWidth() const { MODULE* module = (MODULE*) GetParent(); if( m_ThermalWidth == 0 && module ) return module->GetThermalWidth(); else return m_ThermalWidth; } int D_PAD::GetThermalGap() const { MODULE* module = (MODULE*) GetParent(); if( m_ThermalGap == 0 && module ) return module->GetThermalGap(); else return m_ThermalGap; } void D_PAD::GetMsgPanelInfo( std::vector< MSG_PANEL_ITEM>& aList ) { MODULE* module; wxString Line; BOARD* board; module = (MODULE*) m_Parent; if( module ) { wxString msg = module->GetReference(); aList.push_back( MSG_PANEL_ITEM( _( "Module" ), msg, DARKCYAN ) ); StringPadName( Line ); aList.push_back( MSG_PANEL_ITEM( _( "Pad" ), Line, BROWN ) ); } aList.push_back( MSG_PANEL_ITEM( _( "Net" ), GetNetname(), DARKCYAN ) ); /* For test and debug only: display m_physical_connexion and * m_logical_connexion */ #if 1 // Used only to debug connectivity calculations Line.Printf( wxT( "%d-%d-%d " ), GetSubRatsnest(), GetSubNet(), GetZoneSubNet() ); aList.push_back( MSG_PANEL_ITEM( wxT( "L-P-Z" ), Line, DARKGREEN ) ); #endif board = GetBoard(); aList.push_back( MSG_PANEL_ITEM( _( "Layer" ), LayerMaskDescribe( board, m_layerMask ), DARKGREEN ) ); aList.push_back( MSG_PANEL_ITEM( ShowPadShape(), ShowPadAttr(), DARKGREEN ) ); Line = ::CoordinateToString( m_Size.x ); aList.push_back( MSG_PANEL_ITEM( _( "H Size" ), Line, RED ) ); Line = ::CoordinateToString( m_Size.y ); aList.push_back( MSG_PANEL_ITEM( _( "V Size" ), Line, RED ) ); Line = ::CoordinateToString( (unsigned) m_Drill.x ); if( GetDrillShape() == PAD_DRILL_CIRCLE ) { aList.push_back( MSG_PANEL_ITEM( _( "Drill" ), Line, RED ) ); } else { Line = ::CoordinateToString( (unsigned) m_Drill.x ); wxString msg; msg = ::CoordinateToString( (unsigned) m_Drill.y ); Line += wxT( "/" ) + msg; aList.push_back( MSG_PANEL_ITEM( _( "Drill X / Y" ), Line, RED ) ); } double module_orient = module ? module->GetOrientation() : 0; if( module_orient ) Line.Printf( wxT( "%3.1f(+%3.1f)" ), ( m_Orient - module_orient ) / 10.0, module_orient / 10.0 ); else Line.Printf( wxT( "%3.1f" ), m_Orient / 10.0 ); aList.push_back( MSG_PANEL_ITEM( _( "Orient" ), Line, LIGHTBLUE ) ); Line = ::CoordinateToString( m_Pos.x ); aList.push_back( MSG_PANEL_ITEM( _( "X Pos" ), Line, LIGHTBLUE ) ); Line = ::CoordinateToString( m_Pos.y ); aList.push_back( MSG_PANEL_ITEM( _( "Y pos" ), Line, LIGHTBLUE ) ); if( GetPadToDieLength() ) { Line = ::CoordinateToString( GetPadToDieLength() ); aList.push_back( MSG_PANEL_ITEM( _( "Length in package" ), Line, CYAN ) ); } } // see class_pad.h bool D_PAD::IsOnLayer( LAYER_NUM aLayer ) const { return ::GetLayerMask( aLayer ) & m_layerMask; } bool D_PAD::HitTest( const wxPoint& aPosition ) { int dx, dy; wxPoint shape_pos = ShapePos(); wxPoint delta = aPosition - shape_pos; // first test: a test point must be inside a minimum sized bounding circle. int radius = GetBoundingRadius(); if( ( abs( delta.x ) > radius ) || ( abs( delta.y ) > radius ) ) return false; dx = m_Size.x >> 1; // dx also is the radius for rounded pads dy = m_Size.y >> 1; switch( GetShape() ) { case PAD_CIRCLE: if( KiROUND( EuclideanNorm( delta ) ) <= dx ) return true; break; case PAD_TRAPEZOID: { wxPoint poly[4]; BuildPadPolygon( poly, wxSize(0,0), 0 ); RotatePoint( &delta, -m_Orient ); return TestPointInsidePolygon( poly, 4, delta ); } case PAD_OVAL: { RotatePoint( &delta, -m_Orient ); // An oval pad has the same shape as a segment with rounded ends // After rotation, the test point is relative to an horizontal pad int dist; wxPoint offset; if( dy > dx ) // shape is a vertical oval { offset.y = dy - dx; dist = dx; } else //if( dy <= dx ) shape is an horizontal oval { offset.x = dy - dx; dist = dy; } return TestSegmentHit( delta, - offset, offset, dist ); } break; case PAD_RECT: RotatePoint( &delta, -m_Orient ); if( (abs( delta.x ) <= dx ) && (abs( delta.y ) <= dy) ) return true; break; } return false; } int D_PAD::Compare( const D_PAD* padref, const D_PAD* padcmp ) { int diff; if( ( diff = padref->GetShape() - padcmp->GetShape() ) != 0 ) return diff; if( ( diff = padref->GetDrillShape() - padcmp->GetDrillShape() ) != 0) return diff; if( ( diff = padref->m_Drill.x - padcmp->m_Drill.x ) != 0 ) return diff; if( ( diff = padref->m_Drill.y - padcmp->m_Drill.y ) != 0 ) return diff; if( ( diff = padref->m_Size.x - padcmp->m_Size.x ) != 0 ) return diff; if( ( diff = padref->m_Size.y - padcmp->m_Size.y ) != 0 ) return diff; if( ( diff = padref->m_Offset.x - padcmp->m_Offset.x ) != 0 ) return diff; if( ( diff = padref->m_Offset.y - padcmp->m_Offset.y ) != 0 ) return diff; if( ( diff = padref->m_DeltaSize.x - padcmp->m_DeltaSize.x ) != 0 ) return diff; if( ( diff = padref->m_DeltaSize.y - padcmp->m_DeltaSize.y ) != 0 ) return diff; // Dick: specctra_export needs this // Lorenzo: gencad also needs it to implement padstacks! if( ( diff = padref->m_layerMask - padcmp->m_layerMask ) != 0 ) return diff; return 0; } wxString D_PAD::ShowPadShape() const { switch( GetShape() ) { case PAD_CIRCLE: return _( "Circle" ); case PAD_OVAL: return _( "Oval" ); case PAD_RECT: return _( "Rect" ); case PAD_TRAPEZOID: return _( "Trap" ); default: return wxT( "???" ); } } wxString D_PAD::ShowPadAttr() const { switch( GetAttribute() ) { case PAD_STANDARD: return _( "Std" ); case PAD_SMD: return _( "SMD" ); case PAD_CONN: return _( "Conn" ); case PAD_HOLE_NOT_PLATED: return _( "Not Plated" ); default: return wxT( "???" ); } } wxString D_PAD::GetSelectMenuText() const { wxString text; wxString padlayers( LayerMaskDescribe( GetBoard(), m_layerMask ) ); wxString padname( GetPadName() ); if( padname.IsEmpty() ) { text.Printf( _( "Pad on %s of %s" ), GetChars( padlayers ), GetChars(( (MODULE*) GetParent() )->GetReference() ) ); } else { text.Printf( _( "Pad %s on %s of %s" ), GetChars(GetPadName() ), GetChars( padlayers ), GetChars(( (MODULE*) GetParent() )->GetReference() ) ); } return text; } EDA_ITEM* D_PAD::Clone() const { return new D_PAD( *this ); } void D_PAD::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 0; // These types of pads contain a hole if( m_Attribute == PAD_STANDARD || m_Attribute == PAD_HOLE_NOT_PLATED ) aLayers[aCount++] = ITEM_GAL_LAYER( PADS_HOLES_VISIBLE ); if( IsOnLayer( LAYER_N_FRONT ) && IsOnLayer( LAYER_N_BACK ) ) { // Multi layer pad aLayers[aCount++] = ITEM_GAL_LAYER( PADS_VISIBLE ); aLayers[aCount++] = NETNAMES_GAL_LAYER( PADS_NETNAMES_VISIBLE ); } else if( IsOnLayer( LAYER_N_FRONT ) ) { aLayers[aCount++] = ITEM_GAL_LAYER( PAD_FR_VISIBLE ); aLayers[aCount++] = NETNAMES_GAL_LAYER( PAD_FR_NETNAMES_VISIBLE ); } else if( IsOnLayer( LAYER_N_BACK ) ) { aLayers[aCount++] = ITEM_GAL_LAYER( PAD_BK_VISIBLE ); aLayers[aCount++] = NETNAMES_GAL_LAYER( PAD_BK_NETNAMES_VISIBLE ); } if( IsOnLayer( SOLDERMASK_N_FRONT ) ) aLayers[aCount++] = SOLDERMASK_N_FRONT; if( IsOnLayer( SOLDERMASK_N_BACK ) ) aLayers[aCount++] = SOLDERMASK_N_BACK; if( IsOnLayer( SOLDERPASTE_N_FRONT ) ) aLayers[aCount++] = SOLDERPASTE_N_FRONT; if( IsOnLayer( SOLDERPASTE_N_BACK ) ) aLayers[aCount++] = SOLDERPASTE_N_BACK; if( IsOnLayer( ADHESIVE_N_BACK ) ) aLayers[aCount++] = ADHESIVE_N_BACK; if( IsOnLayer( ADHESIVE_N_FRONT ) ) aLayers[aCount++] = ADHESIVE_N_FRONT; #ifdef __WXDEBUG__ if( aCount == 0 ) // Should not occur { wxLogWarning( wxT("D_PAD::ViewGetLayers():PAD has no layer") ); } #endif } unsigned int D_PAD::ViewGetLOD( int aLayer ) const { // Netnames and soldermasks will be shown only if zoom is appropriate if( IsNetnameLayer( aLayer ) ) { return ( 100000000 / std::max( m_Size.x, m_Size.y ) ); } // Other layers are shown without any conditions return 0; } const BOX2I D_PAD::ViewBBox() const { // Bounding box includes soldermask too int solderMaskMargin = GetSolderMaskMargin(); VECTOR2I solderPasteMargin = VECTOR2D( GetSolderPasteMargin() ); EDA_RECT bbox = GetBoundingBox(); // Look for the biggest possible bounding box int xMargin = std::max( solderMaskMargin, solderPasteMargin.x ); int yMargin = std::max( solderMaskMargin, solderPasteMargin.y ); return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ), VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) ); }