/** * @file zones_convert_brd_items_to_polygons_with_Boost.cpp */ /* Functions to convert some board items to polygons * (pads, tracks ..) * This is used to calculate filled areas in copper zones. * Filled areas are areas remainder of the full zone area after removed all polygons * calculated from these items shapes and the clearance area * * Important note: * Because filled areas must have a minimum thickness to match with Design rule, they are * draw in 2 step: * 1 - filled polygons are drawn * 2 - polygon outlines are drawn with a "minimum thickness width" ( or with a minimum * thickness pen ) * So outlines of filled polygons are calculated with the constraint they match with clearance, * taking in account outlines have thickness * This ensures: * - areas meet the minimum thickness requirement. * - shapes are smoothed. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void BuildUnconnectedThermalStubsPolygonList( std::vector& aCornerBuffer, BOARD* aPcb, ZONE_CONTAINER* aZone, double aArcCorrection, int aRoundPadThermalRotation); extern void Test_For_Copper_Island_And_Remove( BOARD* aPcb, ZONE_CONTAINER* aZone_container ); extern void CreateThermalReliefPadPolygon( std::vector& aCornerBuffer, D_PAD& aPad, int aThermalGap, int aCopperThickness, int aMinThicknessValue, int aCircleToSegmentsCount, double aCorrectionFactor, int aThermalRot ); // Local Functions: helper function to calculate solid areas static void AddPolygonCornersToKPolygonList( std::vector & aCornersBuffer, KPolygonSet& aKPolyList ); static int CopyPolygonsFromKPolygonListToFilledPolysList( ZONE_CONTAINER* aZone, KPolygonSet& aKPolyList ); static int CopyPolygonsFromFilledPolysListTotKPolygonList( ZONE_CONTAINER* aZone, KPolygonSet& aKPolyList ); // Local Variables: static int s_thermalRot = 450; // angle of stubs in thermal reliefs for round pads /* how many segments are used to create a polygon from a circle: */ static int s_CircleToSegmentsCount = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF; /* default value. the real value will be changed to * ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF * if m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF */ double s_Correction; /* mult coeff used to enlarge rounded and oval pads (and vias) * because the segment approximation for arcs and circles * create a smaller gap than a true circle */ /** * Function AddClearanceAreasPolygonsToPolysList * Supports a min thickness area constraint. * Add non copper areas polygons (pads and tracks with clearence) * to the filled copper area found * in BuildFilledPolysListData after calculating filled areas in a zone * Non filled copper areas are pads and track and their clearance areas * The filled copper area must be computed just before. * BuildFilledPolysListData() call this function just after creating the * filled copper area polygon (without clearence areas * to do that this function: * 1 - Creates the main outline (zone outline) using a correction to shrink the resulting area * with m_ZoneMinThickness/2 value. * The result is areas with a margin of m_ZoneMinThickness/2 * When drawing outline with segments having a thickness of m_ZoneMinThickness, the * outlines will match exactly the initial outlines * 3 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance + * m_ZoneMinThickness/2 * in a buffer * - If Thermal shapes are wanted, add non filled area, in order to create these thermal shapes * 4 - calculates the polygon A - B * 5 - put resulting list of polygons (filled areas) in m_FilledPolysList * This zone contains pads with the same net. * 6 - Remove insulated copper islands * 7 - If Thermal shapes are wanted, remove unconnected stubs in thermal shapes: * creates a buffer of polygons corresponding to stubs to remove * sub them to the filled areas. * Remove new insulated copper islands */ void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList( BOARD* aPcb ) { // Set the number of segments in arc approximations if( m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF ) s_CircleToSegmentsCount = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF; else s_CircleToSegmentsCount = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF; /* calculates the coeff to compensate radius reduction of holes clearance * due to the segment approx. * For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2) * s_Correction is 1 /cos( PI/s_CircleToSegmentsCount ) */ s_Correction = 1.0 / cos( 3.14159265 / s_CircleToSegmentsCount ); // This KPolygonSet is the area(s) to fill, with m_ZoneMinThickness/2 KPolygonSet polyset_zone_solid_areas; int margin = m_ZoneMinThickness / 2; /* First, creates the main polygon (i.e. the filled area using only one outline) * to reserve a m_ZoneMinThickness/2 margin around the outlines and holes * this margin is the room to redraw outlines with segments having a width set to * m_ZoneMinThickness * so m_ZoneMinThickness is the min thickness of the filled zones areas * the main polygon is stored in polyset_zone_solid_areas */ CopyPolygonsFromFilledPolysListTotKPolygonList( this, polyset_zone_solid_areas ); polyset_zone_solid_areas -= margin; if( polyset_zone_solid_areas.size() == 0 ) return; /* Calculates the clearance value that meet DRC requirements * from m_ZoneClearance and clearance from the corresponding netclass * We have a "local" clearance in zones because most of time * clearance between a zone and others items is bigger than the netclass clearance * this is more true for small clearance values * Note also the "local" clearance is used for clearance between non copper items * or items like texts on copper layers */ int zone_clearance = max( m_ZoneClearance, GetClearance() ); zone_clearance += margin; /* store holes (i.e. tracks and pads areas as polygons outlines) * in a polygon list */ /* items ouside the zone bounding box are skipped * the bounding box is the zone bounding box + the biggest clearance found in Netclass list */ EDA_RECT item_boundingbox; EDA_RECT zone_boundingbox = GetBoundingBox(); int biggest_clearance = aPcb->GetBiggestClearanceValue(); biggest_clearance = max( biggest_clearance, zone_clearance ); zone_boundingbox.Inflate( biggest_clearance ); /* * First : Add pads. Note: pads having the same net as zone are left in zone. * Thermal shapes will be created later if necessary */ int item_clearance; // static to avoid unnecessary memory allocation when filling many zones. static std::vector cornerBufferPolysToSubstract; cornerBufferPolysToSubstract.clear(); /* Use a dummy pad to calculate hole clerance when a pad is not on all copper layers * and this pad has a hole * This dummy pad has the size and shape of the hole * Therefore, this dummy pad is a circle or an oval. * A pad must have a parent because some functions expect a non null parent * to find the parent board, and some other data */ MODULE dummymodule( aPcb ); // Creates a dummy parent D_PAD dummypad( &dummymodule ); D_PAD* nextpad; for( MODULE* module = aPcb->m_Modules; module; module = module->Next() ) { for( D_PAD* pad = module->m_Pads; pad != NULL; pad = nextpad ) { nextpad = pad->Next(); // pad pointer can be modified by next code, so // calculate the next pad here if( !pad->IsOnLayer( GetLayer() ) ) { /* Test for pads that are on top or bottom only and have a hole. * There are curious pads but they can be used for some components that are * inside the board (in fact inside the hole. Some photo diodes and Leds are * like this) */ if( (pad->m_Drill.x == 0) && (pad->m_Drill.y == 0) ) continue; // Use a dummy pad to calculate a hole shape that have the same dimension as // the pad hole dummypad.m_Size = pad->m_Drill; dummypad.m_Orient = pad->m_Orient; dummypad.m_PadShape = pad->m_DrillShape; dummypad.m_Pos = pad->m_Pos; pad = &dummypad; } if( pad->GetNet() != GetNet() ) { item_clearance = pad->GetClearance() + margin; item_boundingbox = pad->GetBoundingBox(); if( item_boundingbox.Intersects( zone_boundingbox ) ) { int clearance = max( zone_clearance, item_clearance ); pad->TransformShapeWithClearanceToPolygon( cornerBufferPolysToSubstract, clearance, s_CircleToSegmentsCount, s_Correction ); } continue; } int gap = zone_clearance; if( (m_PadOption == PAD_NOT_IN_ZONE) || (GetNet() == 0) || pad->m_PadShape == PAD_TRAPEZOID ) // PAD_TRAPEZOID shapes are not in zones because they are used in microwave apps // and i think it is good that shapes are not changed by thermal pads or others { item_boundingbox = pad->GetBoundingBox(); if( item_boundingbox.Intersects( zone_boundingbox ) ) { pad->TransformShapeWithClearanceToPolygon( cornerBufferPolysToSubstract, gap, s_CircleToSegmentsCount, s_Correction ); } } } } /* Add holes (i.e. tracks and vias areas as polygons outlines) * in cornerBufferPolysToSubstract */ for( TRACK* track = aPcb->m_Track; track; track = track->Next() ) { if( !track->IsOnLayer( GetLayer() ) ) continue; if( track->GetNet() == GetNet() && (GetNet() != 0) ) continue; item_clearance = track->GetClearance() + margin; item_boundingbox = track->GetBoundingBox(); if( item_boundingbox.Intersects( zone_boundingbox ) ) { int clearance = max( zone_clearance, item_clearance ); track->TransformShapeWithClearanceToPolygon( cornerBufferPolysToSubstract, clearance, s_CircleToSegmentsCount, s_Correction ); } } /* Add module edge items that are on copper layers * Pcbnew allows these items to be on copper layers in microwave applictions * This is a bad thing, but must be handle here, until a better way is found */ for( MODULE* module = aPcb->m_Modules; module; module = module->Next() ) { for( BOARD_ITEM* item = module->m_Drawings; item; item = item->Next() ) { if( !item->IsOnLayer( GetLayer() ) ) continue; if( item->Type() != PCB_MODULE_EDGE_T ) continue; item_boundingbox = item->GetBoundingBox(); if( item_boundingbox.Intersects( zone_boundingbox ) ) { ( (EDGE_MODULE*) item )->TransformShapeWithClearanceToPolygon( cornerBufferPolysToSubstract, zone_clearance, s_CircleToSegmentsCount, s_Correction ); } } } // Add graphic items (copper texts) and board edges for( BOARD_ITEM* item = aPcb->m_Drawings; item; item = item->Next() ) { if( item->GetLayer() != GetLayer() && item->GetLayer() != EDGE_N ) continue; switch( item->Type() ) { case PCB_LINE_T: ( (DRAWSEGMENT*) item )->TransformShapeWithClearanceToPolygon( cornerBufferPolysToSubstract, zone_clearance, s_CircleToSegmentsCount, s_Correction ); break; case PCB_TEXT_T: ( (TEXTE_PCB*) item )->TransformShapeWithClearanceToPolygon( cornerBufferPolysToSubstract, zone_clearance, s_CircleToSegmentsCount, s_Correction ); break; default: break; } } // Remove thermal symbols if( m_PadOption == THERMAL_PAD ) { for( MODULE* module = aPcb->m_Modules; module; module = module->Next() ) { for( D_PAD* pad = module->m_Pads; pad != NULL; pad = pad->Next() ) { if( !pad->IsOnLayer( GetLayer() ) ) continue; if( pad->GetNet() != GetNet() ) continue; item_boundingbox = pad->GetBoundingBox(); item_boundingbox.Inflate( m_ThermalReliefGap, m_ThermalReliefGap ); if( item_boundingbox.Intersects( zone_boundingbox ) ) { CreateThermalReliefPadPolygon( cornerBufferPolysToSubstract, *pad, m_ThermalReliefGap, m_ThermalReliefCopperBridge, m_ZoneMinThickness, s_CircleToSegmentsCount, s_Correction, s_thermalRot ); } } } } // cornerBufferPolysToSubstract contains polygons to substract. // polyset_zone_solid_areas contains the main filled area // Calculate now actual solid areas if( cornerBufferPolysToSubstract.size() > 0 ) { KPolygonSet polyset_holes; AddPolygonCornersToKPolygonList( cornerBufferPolysToSubstract, polyset_holes ); // Remove holes from initial area.: polyset_zone_solid_areas -= polyset_holes; } // put solid areas in m_FilledPolysList: m_FilledPolysList.clear(); CopyPolygonsFromKPolygonListToFilledPolysList( this, polyset_zone_solid_areas ); // Remove insulated islands: if( GetNet() > 0 ) Test_For_Copper_Island_And_Remove_Insulated_Islands( aPcb ); // Now we remove all unused thermal stubs. if( m_PadOption == THERMAL_PAD ) { cornerBufferPolysToSubstract.clear(); // Test thermal stubs connections and add polygons to remove unconnected stubs. BuildUnconnectedThermalStubsPolygonList( cornerBufferPolysToSubstract, aPcb, this, s_Correction, s_thermalRot ); /* remove copper areas */ if( cornerBufferPolysToSubstract.size() ) { KPolygonSet polyset_holes; AddPolygonCornersToKPolygonList( cornerBufferPolysToSubstract, polyset_holes ); polyset_zone_solid_areas -= polyset_holes; /* put these areas in m_FilledPolysList */ m_FilledPolysList.clear(); CopyPolygonsFromKPolygonListToFilledPolysList( this, polyset_zone_solid_areas ); if( GetNet() > 0 ) Test_For_Copper_Island_And_Remove_Insulated_Islands( aPcb ); } } cornerBufferPolysToSubstract.clear(); } void AddPolygonCornersToKPolygonList( std::vector & aCornersBuffer, KPolygonSet& aKPolyList ) { unsigned ii; std::vector cornerslist; int polycount = 0; for( unsigned ii = 0; ii < aCornersBuffer.size(); ii++ ) { if( aCornersBuffer[ii].end_contour ) polycount++; } aKPolyList.reserve( polycount ); for( unsigned icnt = 0; icnt < aCornersBuffer.size(); ) { KPolygon poly; cornerslist.clear(); for( ii = icnt; ii < aCornersBuffer.size(); ii++ ) { cornerslist.push_back( KPolyPoint( aCornersBuffer[ii].x, aCornersBuffer[ii].y ) ); if( aCornersBuffer[ii].end_contour ) break; } bpl::set_points( poly, cornerslist.begin(), cornerslist.end() ); aKPolyList.push_back( poly ); icnt = ii + 1; } } int CopyPolygonsFromKPolygonListToFilledPolysList( ZONE_CONTAINER* aZone, KPolygonSet& aKPolyList ) { int count = 0; for( unsigned ii = 0; ii < aKPolyList.size(); ii++ ) { KPolygon& poly = aKPolyList[ii]; CPolyPt corner( 0, 0, false ); for( unsigned jj = 0; jj < poly.size(); jj++ ) { KPolyPoint point = *(poly.begin() + jj); corner.x = point.x(); corner.y = point.y(); corner.end_contour = false; // Flag this corner if starting a hole connection segment: // This is used by draw functions to draw only useful segments (and not extra segments) // corner.utility = (aBoolengine->GetPolygonPointEdgeType() == KB_FALSE_EDGE) ? 1 : 0; aZone->m_FilledPolysList.push_back( corner ); count++; } corner.end_contour = true; aZone->m_FilledPolysList.pop_back(); aZone->m_FilledPolysList.push_back( corner ); } return count; } int CopyPolygonsFromFilledPolysListTotKPolygonList( ZONE_CONTAINER* aZone, KPolygonSet& aKPolyList ) { unsigned corners_count = aZone->m_FilledPolysList.size(); int count = 0; unsigned ic = 0; int polycount = 0; for( unsigned ii = 0; ii < corners_count; ii++ ) { CPolyPt* corner = &aZone->m_FilledPolysList[ic]; if( corner->end_contour ) polycount++; } aKPolyList.reserve( polycount ); std::vector cornerslist; while( ic < corners_count ) { cornerslist.clear(); KPolygon poly; { for( ; ic < corners_count; ic++ ) { CPolyPt* corner = &aZone->m_FilledPolysList[ic]; cornerslist.push_back( KPolyPoint( corner->x, corner->y ) ); count++; if( corner->end_contour ) { ic++; break; } } bpl::set_points( poly, cornerslist.begin(), cornerslist.end() ); aKPolyList.push_back( poly ); } } return count; }