/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2009 Jean-Pierre Charras, jean-pierre.charras@gipsa-lab.inpg.fr * Copyright (C) 2011 Wayne Stambaugh * Copyright (C) 1992-2011 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file dcode.cpp * @brief D_CODE class implementation */ #include #include #include #include #include #include #include #include #include #include #include #include #define DEFAULT_SIZE 100 /* Format Gerber: NOTES: * Tools and D_CODES * tool number (identification of shapes) * 1 to 999 * * D_CODES: * D01 ... D9 = command codes: * D01 = activating light (pen down) while moving * D02 = light extinction (pen up) while moving * D03 = Flash * D04 to D09 = non used * D10 ... D999 = Identification Tool (Shape id) * * For tools defining a shape): * DCode min = D10 * DCode max = 999 */ /***************/ /* Class DCODE */ /***************/ D_CODE::D_CODE( int num_dcode ) { m_Num_Dcode = num_dcode; Clear_D_CODE_Data(); } D_CODE::~D_CODE() { } void D_CODE::Clear_D_CODE_Data() { m_Size.x = DEFAULT_SIZE; m_Size.y = DEFAULT_SIZE; m_Shape = APT_CIRCLE; m_Drill.x = m_Drill.y = 0; m_DrillShape = APT_DEF_NO_HOLE; m_InUse = false; m_Defined = false; m_Macro = NULL; m_Rotation = 0.0; m_EdgesCount = 0; m_PolyCorners.clear(); } const wxChar* D_CODE::ShowApertureType( APERTURE_T aType ) { const wxChar* ret; switch( aType ) { case APT_CIRCLE: ret = wxT( "Round" ); break; case APT_RECT: ret = wxT( "Rect" ); break; case APT_OVAL: ret = wxT( "Oval" ); break; case APT_POLYGON: ret = wxT( "Poly" ); break; case APT_MACRO: ret = wxT( "Macro" ); break; default: ret = wxT( "???" ); break; } return ret; } int D_CODE::GetShapeDim( GERBER_DRAW_ITEM* aParent ) { int dim = -1; switch( m_Shape ) { case APT_CIRCLE: dim = m_Size.x; break; case APT_RECT: case APT_OVAL: dim = std::min( m_Size.x, m_Size.y ); break; case APT_POLYGON: dim = std::min( m_Size.x, m_Size.y ); break; case APT_MACRO: if( m_Macro ) dim = m_Macro->GetShapeDim( aParent ); break; default: break; } return dim; } void GERBVIEW_FRAME::CopyDCodesSizeToItems() { static D_CODE dummy( 999 ); //Used if D_CODE not found in list GERBER_DRAW_ITEM* gerb_item = GetItemsList(); for( ; gerb_item; gerb_item = gerb_item->Next() ) { D_CODE* dcode = gerb_item->GetDcodeDescr(); wxASSERT( dcode ); if( dcode == NULL ) dcode = &dummy; dcode->m_InUse = true; gerb_item->m_Size = dcode->m_Size; if( // Line Item (gerb_item->m_Shape == GBR_SEGMENT ) /* rectilinear segment */ || (gerb_item->m_Shape == GBR_ARC ) /* segment arc (rounded tips) */ || (gerb_item->m_Shape == GBR_CIRCLE ) /* segment in a circle (ring) */ ) { } else // Spots ( Flashed Items ) { switch( dcode->m_Shape ) { case APT_CIRCLE: /* spot round */ gerb_item->m_Shape = GBR_SPOT_CIRCLE; break; case APT_OVAL: /* spot oval*/ gerb_item->m_Shape = GBR_SPOT_OVAL; break; case APT_RECT: /* spot rect*/ gerb_item->m_Shape = GBR_SPOT_RECT; break; case APT_POLYGON: gerb_item->m_Shape = GBR_SPOT_POLY; break; case APT_MACRO: /* spot defined by a macro */ gerb_item->m_Shape = GBR_SPOT_MACRO; break; default: wxMessageBox( wxT( "GERBVIEW_FRAME::CopyDCodesSizeToItems() error" ) ); break; } } } } void D_CODE::DrawFlashedShape( GERBER_DRAW_ITEM* aParent, EDA_RECT* aClipBox, wxDC* aDC, EDA_COLOR_T aColor, EDA_COLOR_T aAltColor, wxPoint aShapePos, bool aFilledShape ) { int radius; switch( m_Shape ) { case APT_MACRO: GetMacro()->DrawApertureMacroShape( aParent, aClipBox, aDC, aColor, aAltColor, aShapePos, aFilledShape); break; case APT_CIRCLE: radius = m_Size.x >> 1; if( !aFilledShape ) GRCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos), radius, 0, aColor ); else if( m_DrillShape == APT_DEF_NO_HOLE ) { GRFilledCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos), radius, aColor ); } else if( APT_DEF_ROUND_HOLE == 1 ) // round hole in shape { int width = (m_Size.x - m_Drill.x ) / 2; GRCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos), radius - (width / 2), width, aColor ); } else // rectangular hole { if( m_PolyCorners.size() == 0 ) ConvertShapeToPolygon(); DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos ); } break; case APT_RECT: { wxPoint start; start.x = aShapePos.x - m_Size.x / 2; start.y = aShapePos.y - m_Size.y / 2; wxPoint end = start + m_Size; start = aParent->GetABPosition( start ); end = aParent->GetABPosition( end ); if( !aFilledShape ) { GRRect( aClipBox, aDC, start.x, start.y, end.x, end.y, 0, aColor ); } else if( m_DrillShape == APT_DEF_NO_HOLE ) { GRFilledRect( aClipBox, aDC, start.x, start.y, end.x, end.y, 0, aColor, aColor ); } else { if( m_PolyCorners.size() == 0 ) ConvertShapeToPolygon(); DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos ); } } break; case APT_OVAL: { wxPoint start = aShapePos; wxPoint end = aShapePos; if( m_Size.x > m_Size.y ) // horizontal oval { int delta = (m_Size.x - m_Size.y) / 2; start.x -= delta; end.x += delta; radius = m_Size.y; } else // horizontal oval { int delta = (m_Size.y - m_Size.x) / 2; start.y -= delta; end.y += delta; radius = m_Size.x; } start = aParent->GetABPosition( start ); end = aParent->GetABPosition( end ); if( !aFilledShape ) { GRCSegm( aClipBox, aDC, start.x, start.y, end.x, end.y, radius, aColor ); } else if( m_DrillShape == APT_DEF_NO_HOLE ) { GRFillCSegm( aClipBox, aDC, start.x, start.y, end.x, end.y, radius, aColor ); } else { if( m_PolyCorners.size() == 0 ) ConvertShapeToPolygon(); DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos ); } } break; case APT_POLYGON: if( m_PolyCorners.size() == 0 ) ConvertShapeToPolygon(); DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos ); break; } } void D_CODE::DrawFlashedPolygon( GERBER_DRAW_ITEM* aParent, EDA_RECT* aClipBox, wxDC* aDC, EDA_COLOR_T aColor, bool aFilled, const wxPoint& aPosition ) { if( m_PolyCorners.size() == 0 ) return; std::vector points; points = m_PolyCorners; for( unsigned ii = 0; ii < points.size(); ii++ ) { points[ii] += aPosition; points[ii] = aParent->GetABPosition( points[ii] ); } GRClosedPoly( aClipBox, aDC, points.size(), &points[0], aFilled, aColor, aColor ); } #define SEGS_CNT 32 // number of segments to approximate a circle // A helper function for D_CODE::ConvertShapeToPolygon(). Add a hole to a polygon static void addHoleToPolygon( std::vector& aBuffer, APERTURE_DEF_HOLETYPE aHoleShape, wxSize aSize, wxPoint aAnchorPos ); void D_CODE::ConvertShapeToPolygon() { wxPoint initialpos; wxPoint currpos; m_PolyCorners.clear(); switch( m_Shape ) { case APT_CIRCLE: // creates only a circle with rectangular hole currpos.x = m_Size.x >> 1; initialpos = currpos; for( unsigned ii = 0; ii <= SEGS_CNT; ii++ ) { currpos = initialpos; RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT ); m_PolyCorners.push_back( currpos ); } addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos ); break; case APT_RECT: currpos.x = m_Size.x / 2; currpos.y = m_Size.y / 2; initialpos = currpos; m_PolyCorners.push_back( currpos ); currpos.x -= m_Size.x; m_PolyCorners.push_back( currpos ); currpos.y -= m_Size.y; m_PolyCorners.push_back( currpos ); currpos.x += m_Size.x; m_PolyCorners.push_back( currpos ); currpos.y += m_Size.y; m_PolyCorners.push_back( currpos ); // close polygon addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos ); break; case APT_OVAL: { int delta, radius; // we create an horizontal oval shape. then rotate if needed if( m_Size.x > m_Size.y ) // horizontal oval { delta = (m_Size.x - m_Size.y) / 2; radius = m_Size.y / 2; } else // vertical oval { delta = (m_Size.y - m_Size.x) / 2; radius = m_Size.x / 2; } currpos.y = radius; initialpos = currpos; m_PolyCorners.push_back( currpos ); // build the right arc of the shape unsigned ii = 0; for( ; ii <= SEGS_CNT / 2; ii++ ) { currpos = initialpos; RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT ); currpos.x += delta; m_PolyCorners.push_back( currpos ); } // build the left arc of the shape for( ii = SEGS_CNT / 2; ii <= SEGS_CNT; ii++ ) { currpos = initialpos; RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT ); currpos.x -= delta; m_PolyCorners.push_back( currpos ); } m_PolyCorners.push_back( initialpos ); // close outline if( m_Size.y > m_Size.x ) // vertical oval, rotate polygon. { for( unsigned jj = 0; jj < m_PolyCorners.size(); jj++ ) RotatePoint( &m_PolyCorners[jj], 900 ); } addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos ); } break; case APT_POLYGON: currpos.x = m_Size.x >> 1; // first point is on X axis initialpos = currpos; // rs274x said: m_EdgesCount = 3 ... 12 if( m_EdgesCount < 3 ) m_EdgesCount = 3; if( m_EdgesCount > 12 ) m_EdgesCount = 12; for( int ii = 0; ii <= m_EdgesCount; ii++ ) { currpos = initialpos; RotatePoint( &currpos, ii * 3600.0 / m_EdgesCount ); m_PolyCorners.push_back( currpos ); } addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos ); if( m_Rotation ) // vertical oval, rotate polygon. { int angle = KiROUND( m_Rotation * 10 ); for( unsigned jj = 0; jj < m_PolyCorners.size(); jj++ ) { RotatePoint( &m_PolyCorners[jj], -angle ); } } break; case APT_MACRO: // TODO break; } } // The helper function for D_CODE::ConvertShapeToPolygon(). // Add a hole to a polygon static void addHoleToPolygon( std::vector& aBuffer, APERTURE_DEF_HOLETYPE aHoleShape, wxSize aSize, wxPoint aAnchorPos ) { wxPoint currpos; if( aHoleShape == APT_DEF_ROUND_HOLE ) // build a round hole { for( int ii = 0; ii <= SEGS_CNT; ii++ ) { currpos.x = 0; currpos.y = aSize.x / 2; // aSize.x / 2 is the radius of the hole RotatePoint( &currpos, ii * 3600.0 / SEGS_CNT ); aBuffer.push_back( currpos ); } aBuffer.push_back( aAnchorPos ); // link to outline } if( aHoleShape == APT_DEF_RECT_HOLE ) // Create rectangular hole { currpos.x = aSize.x / 2; currpos.y = aSize.y / 2; aBuffer.push_back( currpos ); // link to hole and begin hole currpos.x -= aSize.x; aBuffer.push_back( currpos ); currpos.y -= aSize.y; aBuffer.push_back( currpos ); currpos.x += aSize.x; aBuffer.push_back( currpos ); currpos.y += aSize.y; aBuffer.push_back( currpos ); // close hole aBuffer.push_back( aAnchorPos ); // link to outline } }