/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file bbox_2d.cpp * @brief 2D bounding box class definition. */ #include "3d_fastmath.h" #include "bbox_2d.h" #include BBOX_2D::BBOX_2D() { Reset(); } BBOX_2D::BBOX_2D( const SFVEC2F& aPbInit ) { m_min = aPbInit; m_max = aPbInit; } BBOX_2D::BBOX_2D( const SFVEC2F& aPbMin, const SFVEC2F& aPbMax ) { Set( aPbMin, aPbMax ); } BBOX_2D::~BBOX_2D() { } void BBOX_2D::Set( const SFVEC2F& aPbMin, const SFVEC2F& aPbMax ) { m_min.x = fminf( aPbMin.x, aPbMax.x ); m_min.y = fminf( aPbMin.y, aPbMax.y ); m_max.x = fmaxf( aPbMin.x, aPbMax.x ); m_max.y = fmaxf( aPbMin.y, aPbMax.y ); } void BBOX_2D::Set( const BBOX_2D& aBBox ) { wxASSERT( aBBox.IsInitialized() ); Set( aBBox.Min(), aBBox.Max() ); } bool BBOX_2D::IsInitialized() const { return !( ( FLT_MAX == m_min.x ) || ( FLT_MAX == m_min.y ) || ( -FLT_MAX == m_max.x ) || ( -FLT_MAX == m_max.y ) ); } void BBOX_2D::Reset() { m_min = SFVEC2F( FLT_MAX, FLT_MAX ); m_max = SFVEC2F( -FLT_MAX,-FLT_MAX ); } void BBOX_2D::Union( const SFVEC2F& aPoint ) { // get the minimum value between the added point and the existent bounding box m_min.x = fminf( m_min.x, aPoint.x ); m_min.y = fminf( m_min.y, aPoint.y ); // get the maximum value between the added point and the existent bounding box m_max.x = fmaxf( m_max.x, aPoint.x ); m_max.y = fmaxf( m_max.y, aPoint.y ); } void BBOX_2D::Union( const BBOX_2D& aBBox ) { // get the minimum value between the added bounding box and // the existent bounding box m_min.x = fminf( m_min.x, aBBox.m_min.x ); m_min.y = fminf( m_min.y, aBBox.m_min.y ); // get the maximum value between the added bounding box and // the existent bounding box m_max.x = fmaxf( m_max.x, aBBox.m_max.x ); m_max.y = fmaxf( m_max.y, aBBox.m_max.y ); } SFVEC2F BBOX_2D::GetCenter() const { return (m_max + m_min) * 0.5f; } SFVEC2F BBOX_2D::GetExtent() const { return m_max - m_min; } unsigned int BBOX_2D::MaxDimension() const { unsigned int result = 0; const SFVEC2F extent = GetExtent(); if( extent.y > extent.x ) result = 1; return result; } float BBOX_2D::Perimeter() const { const SFVEC2F extent = GetExtent(); return 2.0f * ( extent.x + extent.y ); } void BBOX_2D::Scale( float aScale ) { wxASSERT( IsInitialized() ); const SFVEC2F scaleV( aScale, aScale ); const SFVEC2F centerV = GetCenter(); m_min = (m_min - centerV) * scaleV + centerV; m_max = (m_max - centerV) * scaleV + centerV; } void BBOX_2D::ScaleNextUp() { m_min.x = NextFloatDown( m_min.x ); m_min.y = NextFloatDown( m_min.y ); m_max.x = NextFloatUp( m_max.x ); m_max.y = NextFloatUp( m_max.y ); } void BBOX_2D::ScaleNextDown() { m_min.x = NextFloatUp( m_min.x ); m_min.y = NextFloatUp( m_min.y ); m_max.x = NextFloatDown( m_max.x ); m_max.y = NextFloatDown( m_max.y ); } // http://goanna.cs.rmit.edu.au/~gl/teaching/rtr&3dgp/notes/intersection.pdf // http://www.mrtc.mdh.se/projects/3Dgraphics/paperF.pdf bool BBOX_2D::Intersects( const SFVEC2F& aCenter, float aRadiusSquared ) const { float fDistSq = 0.0f; for( unsigned int i = 0; i < 2; i++ ) { if( aCenter[i] < m_min[i] ) { const float fDist = aCenter[i] - m_min[i]; fDistSq += fDist * fDist; } else { if( aCenter[i] > m_max[i] ) { const float fDist = aCenter[i] - m_max[i]; fDistSq += fDist * fDist; } } } return ( fDistSq <= aRadiusSquared ); } bool BBOX_2D::Intersects( const BBOX_2D& aBBox ) const { wxASSERT( IsInitialized() ); wxASSERT( aBBox.IsInitialized() ); const bool x = ( m_max.x >= aBBox.m_min.x ) && ( m_min.x <= aBBox.m_max.x ); const bool y = ( m_max.y >= aBBox.m_min.y ) && ( m_min.y <= aBBox.m_max.y ); return ( x && y ); } bool BBOX_2D::Inside( const SFVEC2F& aPoint ) const { wxASSERT( IsInitialized() ); return ( ( aPoint.x >= m_min.x ) && ( aPoint.x <= m_max.x ) && ( aPoint.y >= m_min.y ) && ( aPoint.y <= m_max.y ) ); } float BBOX_2D::Area() const { SFVEC2F extent = GetExtent(); return extent.x * extent.y; } // http://tavianator.com/fast-branchless-raybounding-box-intersections/ bool BBOX_2D::Intersect( const RAY2D& aRay, float* t ) const { wxASSERT( t ); const float tx1 = (m_min.x - aRay.m_Origin.x) * aRay.m_InvDir.x; const float tx2 = (m_max.x - aRay.m_Origin.x) * aRay.m_InvDir.x; float tmin = glm::min( tx1, tx2 ); float tmax = glm::max( tx1, tx2 ); const float ty1 = (m_min.y - aRay.m_Origin.y) * aRay.m_InvDir.y; const float ty2 = (m_max.y - aRay.m_Origin.y) * aRay.m_InvDir.y; tmin = glm::max( tmin, glm::min( ty1, ty2 ) ); tmax = glm::min( tmax, glm::max( ty1, ty2 ) ); if( tmin > 0.0f ) *t = tmin; else *t = tmax; return (tmax >= 0.0f) && (tmax >= tmin); } bool BBOX_2D::Intersect( const RAYSEG2D& aRaySeg ) const { const float tx1 = (m_min.x - aRaySeg.m_Start.x) * aRaySeg.m_InvDir.x; const float tx2 = (m_max.x - aRaySeg.m_Start.x) * aRaySeg.m_InvDir.x; float tmin = glm::min( tx1, tx2 ); float tmax = glm::max( tx1, tx2 ); const float ty1 = (m_min.y - aRaySeg.m_Start.y) * aRaySeg.m_InvDir.y; const float ty2 = (m_max.y - aRaySeg.m_Start.y) * aRaySeg.m_InvDir.y; tmin = glm::max( tmin, glm::min( ty1, ty2 ) ); tmax = glm::min( tmax, glm::max( ty1, ty2 ) ); if( (tmax >= 0.0f) && (tmax >= tmin) ) { const float t = (tmin > 0.0f)?tmin:tmax; return ( t < aRaySeg.m_Length ); } return false; } bool BBOX_2D::Intersect( const RAY2D& aRay, float* aOutHitT0, float* aOutHitT1 ) const { wxASSERT( aOutHitT0 ); wxASSERT( aOutHitT1 ); const float tx1 = ( m_min.x - aRay.m_Origin.x ) * aRay.m_InvDir.x; const float tx2 = ( m_max.x - aRay.m_Origin.x ) * aRay.m_InvDir.x; float tmin = glm::min( tx1, tx2 ); float tmax = glm::max( tx1, tx2 ); const float ty1 = ( m_min.y - aRay.m_Origin.y ) * aRay.m_InvDir.y; const float ty2 = ( m_max.y - aRay.m_Origin.y ) * aRay.m_InvDir.y; tmin = glm::max( tmin, glm::min( ty1, ty2 ) ); tmax = glm::min( tmax, glm::max( ty1, ty2 ) ); *aOutHitT0 = (tmin > 0.0f)?tmin:0.0f; *aOutHitT1 = tmax; return (tmax >= 0.0f) && (tmax >= tmin); }