/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2014 KiCad Developers, see CHANGELOG.TXT for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file common_plotHPGL_functions.cpp * @brief KiCad: Common plot HPGL Routines * Filled primitive are not supported, but some could be using HPGL/2 * Since this plot engine is mostly intended for import in external programs, * sadly HPGL/2 isn't supported a lot... some of the primitives use overlapped * strokes to fill the shape */ /* Some HPGL commands: * Note: the HPGL unit is 25 micrometers * All commands MUST be terminated by a semi-colon or a linefeed. * Spaces can NOT be substituted for required commas in the syntax of a command. * * * AA (Arc Absolute): Angle is a floating point # (requires non integer value) * Draws an arc with the center at (X,Y). * A positive angle creates a counter-clockwise arc. * If the chord angle is specified, * this will be the number of degrees used for stepping around the arc. * If no value is given then a default value of five degrees is used. * AA x, y, a {,b}; * * AR (Arc Relative): * AR Dx, Dy, a {, b}; * * CA (Alternate Character Set): * CA {n}; * * CI (Circle): * CI r {,b}; * * CP (Character Plot): * CP {h, v}; * h [-127.9999 .. 127.9999] Anzahl der Zeichen horizontal * v [-127.9999 .. 127.9999] Anzahl der Zeichen vertikal * * CS (Standard Character Set): * CS {n}; * * DR (Relative Direction for Label Text): * DR s, a; * * DI (Absolute Direction for Label Text): * DI {s, a}; * * DT (Define Terminator - this character becomes unavailable except to terminate a label string. * Default is ^C control-C): * DT t; * * EA (rEctangle Absolute - Unfilled, from current position to diagonal x,y): * EA x, y; * * ER (rEctangle Relative - Unfilled, from current position to diagonal x,y): * ER x,y; * * FT (Fill Type): * FT {s {,l {a}}}; * * IM (Input Mask): * IM {f}; * * IN (Initialize): This command instructs the controller to begin processing the HPGL plot file. * Without this, the commands in the file are received but never executed. * If multiple IN s are found during execution of the file, * the controller performs a Pause/Cancel operation. * All motion from the previous job, yet to be executed, is lost, * and the new information is executed. * IN; * * IP Input P1 and P2: * IP {P1x, P1y {, P2x, P2y}}; * * IW (Input Window): * IW {XUL, YUL, XOR, YOR}; * * LB (Label): * LB c1 .. cn t; * * PA (Plot Absolute): Moves to an absolute HPGL position and sets absolute mode for * future PU and PD commands. If no arguments follow the command, * only absolute mode is set. * PA {x1, y1 {{PU|PD|,} ..., ..., xn, yn}}; * P1x, P1y, P2x, P2y [Integer in ASCII] * * PD (Pen Down): Executes pen then moves to the requested position * if one is specified. This position is dependent on whether absolute * or relative mode is set. This command performs no motion in 3-D mode, * but the outputs and feedrates are affected. * PD {x, y}; * * PR (Plot Relative): Moves to the relative position specified and sets relative mode * for future PU and PD commands. * If no arguments follow the command, only relative mode is set. * PR {Dx1, Dy1 {{PU|PD|,} ..., ..., Dxn, Dyn}}; * * PS (Paper Size): * PS {n}; * * PT (Pen Thickness): * PT {l}; * * PU (Pen Up): Executes pen then moves to the requested position * if one is specified. This position is dependent on whether absolute * or relative mode is set. * This command performs no motion in 3-D mode, but the outputs * and feedrates are affected. * PU {x, y}; * * RA (Rectangle Absolute - Filled, from current position to diagonal x,y): * RA x, y; * * RO (Rotate Coordinate System): * RO; * * RR (Rectangle Relative - Filled, from current position to diagonal x,y): * RR x, y; * * SA (Select Alternate Set): * SA; * * SC (Scale): * SC {Xmin, Xmax, Ymin, Ymax}; * * SI (Absolute Character Size): * SI b, h; * b [-127.9999 .. 127.9999, keine 0] * h [-127.9999 .. 127.9999, keine 0] * * SL (Character Slant): * SL {a}; * a [-3.5 .. -0.5, 0.5 .. 3.5] * * SP (Select Pen): Selects a new pen or tool for use. * If no pen number or a value of zero is given, * the controller performs an EOF (end of file command). * Once an EOF is performed, no motion is executed, * until a new IN command is received. * SP n; * * SR (Relative Character Size): * SR {b, h}; * b [-127.9999 .. 127.9999, keine 0] * h [-127.9999 .. 127.9999, keine 0] * * SS (Select Standard Set): * SS; * * TL (Tick Length): * TL {tp {, tm}}; * * UC (User Defined Character): * UC {i,} x1, y1, {i,} x2, y2, ... {i,} xn, yn; * * VS (Velocity Select): * VS {v {, n}}; * v [1 .. 40] * n [1 .. 8, je nach Ausstattung] * * XT (X Tick): * XT; * * YT (Y Tick): * YT; */ #include #include #include #include #include #include #include #include // HPGL scale factor (1 PLU = 1/40mm = 25 micrometers) static const double PLUsPERDECIMIL = 0.102041; HPGL_PLOTTER::HPGL_PLOTTER() { SetPenSpeed( 40 ); // Default pen speed = 40 cm/s SetPenNumber( 1 ); // Default pen num = 1 } void HPGL_PLOTTER::SetViewport( const wxPoint& aOffset, double aIusPerDecimil, double aScale, bool aMirror ) { wxASSERT( !outputFile ); plotOffset = aOffset; plotScale = aScale; m_IUsPerDecimil = aIusPerDecimil; iuPerDeviceUnit = PLUsPERDECIMIL / aIusPerDecimil; /* Compute the paper size in IUs */ paperSize = pageInfo.GetSizeMils(); paperSize.x *= 10.0 * aIusPerDecimil; paperSize.y *= 10.0 * aIusPerDecimil; SetDefaultLineWidth( 0 ); // HPGL has pen sizes instead m_plotMirror = aMirror; } /** * At the start of the HPGL plot pen speed and number are requested */ bool HPGL_PLOTTER::StartPlot() { wxASSERT( outputFile ); fprintf( outputFile, "IN;VS%d;PU;PA;SP%d;\n", penSpeed, penNumber ); return true; } /** * HPGL end of plot: pen return and release */ bool HPGL_PLOTTER::EndPlot() { wxASSERT( outputFile ); fputs( "PU;PA;SP0;\n", outputFile ); fclose( outputFile ); outputFile = NULL; return true; } /** * HPGL rectangle: fill not supported */ void HPGL_PLOTTER::Rect( const wxPoint& p1, const wxPoint& p2, FILL_T fill, int width ) { wxASSERT( outputFile ); DPOINT p2dev = userToDeviceCoordinates( p2 ); MoveTo( p1 ); fprintf( outputFile, "EA %.0f,%.0f;\n", p2dev.x, p2dev.y ); PenFinish(); } /** * HPGL circle: fill not supported */ void HPGL_PLOTTER::Circle( const wxPoint& centre, int diameter, FILL_T fill, int width ) { wxASSERT( outputFile ); double radius = userToDeviceSize( diameter / 2 ); if( radius > 0 ) { MoveTo( centre ); fprintf( outputFile, "CI %g;\n", radius ); PenFinish(); } } /** * HPGL polygon: fill not supported (but closed, at least) */ void HPGL_PLOTTER::PlotPoly( const std::vector& aCornerList, FILL_T aFill, int aWidth ) { if( aCornerList.size() <= 1 ) return; SetCurrentLineWidth( aWidth ); MoveTo( aCornerList[0] ); for( unsigned ii = 1; ii < aCornerList.size(); ii++ ) LineTo( aCornerList[ii] ); // Close polygon if filled. if( aFill ) { int ii = aCornerList.size() - 1; if( aCornerList[ii] != aCornerList[0] ) LineTo( aCornerList[0] ); } PenFinish(); } /** * Pen control logic (remove redundant pen activations) */ void HPGL_PLOTTER::penControl( char plume ) { wxASSERT( outputFile ); switch( plume ) { case 'U': if( penState != 'U' ) { fputs( "PU;", outputFile ); penState = 'U'; } break; case 'D': if( penState != 'D' ) { fputs( "PD;", outputFile ); penState = 'D'; } break; case 'Z': fputs( "PU;", outputFile ); penState = 'U'; penLastpos.x = -1; penLastpos.y = -1; break; } } void HPGL_PLOTTER::PenTo( const wxPoint& pos, char plume ) { wxASSERT( outputFile ); if( plume == 'Z' ) { penControl( 'Z' ); return; } penControl( plume ); DPOINT pos_dev = userToDeviceCoordinates( pos ); if( penLastpos != pos ) fprintf( outputFile, "PA %.0f,%.0f;\n", pos_dev.x, pos_dev.y ); penLastpos = pos; } /** * HPGL supports dashed lines */ void HPGL_PLOTTER::SetDash( bool dashed ) { wxASSERT( outputFile ); if( dashed ) fputs( "LI 2;\n", outputFile ); else fputs( "LI;\n", outputFile ); } void HPGL_PLOTTER::ThickSegment( const wxPoint& start, const wxPoint& end, int width, EDA_DRAW_MODE_T tracemode ) { wxASSERT( outputFile ); wxPoint center; wxSize size; // Suppress overlap if pen is too big or in line mode if( (penDiameter >= width) || (tracemode == LINE) ) { MoveTo( start ); FinishTo( end ); } else segmentAsOval( start, end, width, tracemode ); } /* Plot an arc: * Center = center coord * Stangl, endAngle = angle of beginning and end * Radius = radius of the arc * Command * PU PY x, y; PD start_arc_X AA, start_arc_Y, angle, NbSegm; PU; * Or PU PY x, y; PD start_arc_X AA, start_arc_Y, angle, PU; */ void HPGL_PLOTTER::Arc( const wxPoint& centre, double StAngle, double EndAngle, int radius, FILL_T fill, int width ) { wxASSERT( outputFile ); double angle; if( radius <= 0 ) return; DPOINT centre_dev = userToDeviceCoordinates( centre ); if( m_plotMirror ) angle = StAngle - EndAngle; else angle = EndAngle - StAngle; NORMALIZE_ANGLE_180( angle ); angle /= 10; // Calculate arc start point: wxPoint cmap; cmap.x = centre.x + KiROUND( cosdecideg( radius, StAngle ) ); cmap.y = centre.y - KiROUND( sindecideg( radius, StAngle ) ); DPOINT cmap_dev = userToDeviceCoordinates( cmap ); fprintf( outputFile, "PU;PA %.0f,%.0f;PD;AA %.0f,%.0f,", cmap_dev.x, cmap_dev.y, centre_dev.x, centre_dev.y ); fprintf( outputFile, "%.0f", angle ); fprintf( outputFile, ";PU;\n" ); PenFinish(); } /* Plot oval pad. */ void HPGL_PLOTTER::FlashPadOval( const wxPoint& pos, const wxSize& aSize, double orient, EDA_DRAW_MODE_T trace_mode ) { wxASSERT( outputFile ); int deltaxy, cx, cy; wxSize size( aSize ); /* The pad is reduced to an oval with size.y > size.x * (Oval vertical orientation 0) */ if( size.x > size.y ) { EXCHG( size.x, size.y ); orient = AddAngles( orient, 900 ); } deltaxy = size.y - size.x; // distance between centers of the oval if( trace_mode == FILLED ) { FlashPadRect( pos, wxSize( size.x, deltaxy + KiROUND( penDiameter ) ), orient, trace_mode ); cx = 0; cy = deltaxy / 2; RotatePoint( &cx, &cy, orient ); FlashPadCircle( wxPoint( cx + pos.x, cy + pos.y ), size.x, trace_mode ); cx = 0; cy = -deltaxy / 2; RotatePoint( &cx, &cy, orient ); FlashPadCircle( wxPoint( cx + pos.x, cy + pos.y ), size.x, trace_mode ); } else // Plot in SKETCH mode. { sketchOval( pos, size, orient, KiROUND( penDiameter ) ); } } /* Plot round pad or via. */ void HPGL_PLOTTER::FlashPadCircle( const wxPoint& pos, int diametre, EDA_DRAW_MODE_T trace_mode ) { wxASSERT( outputFile ); DPOINT pos_dev = userToDeviceCoordinates( pos ); int delta = KiROUND( penDiameter - penOverlap ); int radius = diametre / 2; if( trace_mode != LINE ) { radius = ( diametre - KiROUND( penDiameter ) ) / 2; } if( radius < 0 ) { radius = 0; } double rsize = userToDeviceSize( radius ); fprintf( outputFile, "PA %.0f,%.0f;CI %.0f;\n", pos_dev.x, pos_dev.y, rsize ); if( trace_mode == FILLED ) // Plot in filled mode. { if( delta > 0 ) { while( (radius -= delta ) >= 0 ) { rsize = userToDeviceSize( radius ); fprintf( outputFile, "PA %.0f,%.0f;CI %.0f;\n", pos_dev.x, pos_dev.y, rsize ); } } } PenFinish(); } void HPGL_PLOTTER::FlashPadRect( const wxPoint& pos, const wxSize& padsize, double orient, EDA_DRAW_MODE_T trace_mode ) { wxASSERT( outputFile ); wxSize size; int delta; int ox, oy, fx, fy; size.x = padsize.x / 2; size.y = padsize.y / 2; if( trace_mode != LINE ) { size.x = (padsize.x - (int) penDiameter) / 2; size.y = (padsize.y - (int) penDiameter) / 2; } if( size.x < 0 ) size.x = 0; if( size.y < 0 ) size.y = 0; // If a dimension is zero, the trace is reduced to 1 line. if( size.x == 0 ) { ox = pos.x; oy = pos.y - size.y; RotatePoint( &ox, &oy, pos.x, pos.y, orient ); fx = pos.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); MoveTo( wxPoint( ox, oy ) ); FinishTo( wxPoint( fx, fy ) ); return; } if( size.y == 0 ) { ox = pos.x - size.x; oy = pos.y; RotatePoint( &ox, &oy, pos.x, pos.y, orient ); fx = pos.x + size.x; fy = pos.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); MoveTo( wxPoint( ox, oy ) ); FinishTo( wxPoint( fx, fy ) ); return; } ox = pos.x - size.x; oy = pos.y - size.y; RotatePoint( &ox, &oy, pos.x, pos.y, orient ); MoveTo( wxPoint( ox, oy ) ); fx = pos.x - size.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); LineTo( wxPoint( fx, fy ) ); fx = pos.x + size.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); LineTo( wxPoint( fx, fy ) ); fx = pos.x + size.x; fy = pos.y - size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); LineTo( wxPoint( fx, fy ) ); FinishTo( wxPoint( ox, oy ) ); if( trace_mode == FILLED ) { // Plot in filled mode. delta = (int) (penDiameter - penOverlap); if( delta > 0 ) while( (size.x > 0) && (size.y > 0) ) { size.x -= delta; size.y -= delta; if( size.x < 0 ) size.x = 0; if( size.y < 0 ) size.y = 0; ox = pos.x - size.x; oy = pos.y - size.y; RotatePoint( &ox, &oy, pos.x, pos.y, orient ); MoveTo( wxPoint( ox, oy ) ); fx = pos.x - size.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); LineTo( wxPoint( fx, fy ) ); fx = pos.x + size.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); LineTo( wxPoint( fx, fy ) ); fx = pos.x + size.x; fy = pos.y - size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); LineTo( wxPoint( fx, fy ) ); FinishTo( wxPoint( ox, oy ) ); } } } void HPGL_PLOTTER::FlashPadTrapez( const wxPoint& aPadPos, const wxPoint* aCorners, double aPadOrient, EDA_DRAW_MODE_T aTrace_Mode ) { wxASSERT( outputFile ); wxPoint polygone[4]; // coordinates of corners relatives to the pad wxPoint coord[4]; // absolute coordinates of corners (coordinates in plotter space) int move; move = KiROUND( penDiameter ); for( int ii = 0; ii < 4; ii++ ) polygone[ii] = aCorners[ii]; // polygone[0] is assumed the lower left // polygone[1] is assumed the upper left // polygone[2] is assumed the upper right // polygone[3] is assumed the lower right // Plot the outline: for( int ii = 0; ii < 4; ii++ ) { coord[ii] = polygone[ii]; RotatePoint( &coord[ii], aPadOrient ); coord[ii] += aPadPos; } MoveTo( coord[0] ); LineTo( coord[1] ); LineTo( coord[2] ); LineTo( coord[3] ); FinishTo( coord[0] ); // Fill shape: if( aTrace_Mode == FILLED ) { // TODO: replace this par the HPGL plot polygon. int jj; // Fill the shape move = KiROUND( penDiameter - penOverlap ); // Calculate fill height. if( polygone[0].y == polygone[3].y ) // Horizontal { jj = polygone[3].y - (int) ( penDiameter + ( 2 * penOverlap ) ); } else // vertical { jj = polygone[3].x - (int) ( penDiameter + ( 2 * penOverlap ) ); } // Calculation of dd = number of segments was traced to fill. jj = jj / (int) ( penDiameter - penOverlap ); // Trace the outline. for( ; jj > 0; jj-- ) { polygone[0].x += move; polygone[0].y -= move; polygone[1].x += move; polygone[1].y += move; polygone[2].x -= move; polygone[2].y += move; polygone[3].x -= move; polygone[3].y -= move; // Test for crossed vertexes. if( polygone[0].x > polygone[3].x ) /* X axis intersection on * vertexes 0 and 3 */ { polygone[0].x = polygone[3].x = 0; } if( polygone[1].x > polygone[2].x ) /* X axis intersection on * vertexes 1 and 2 */ { polygone[1].x = polygone[2].x = 0; } if( polygone[1].y > polygone[0].y ) /* Y axis intersection on * vertexes 0 and 1 */ { polygone[0].y = polygone[1].y = 0; } if( polygone[2].y > polygone[3].y ) /* Y axis intersection on * vertexes 2 and 3 */ { polygone[2].y = polygone[3].y = 0; } for( int ii = 0; ii < 4; ii++ ) { coord[ii] = polygone[ii]; RotatePoint( &coord[ii], aPadOrient ); coord[ii] += aPadPos; } MoveTo( coord[0] ); LineTo( coord[1] ); LineTo( coord[2] ); LineTo( coord[3] ); FinishTo( coord[0] ); } } }