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Background

I built my first “electronic” device over 40 years ago. (I was really young at the time!) Over the
intervening years, there have been dramatic changes in technology. Some of these changes include the
shift from designing circuits with components to designing systems with IC’s, the shift from high voltage
vacuum tube requirements (say 250 volts, or so) to (mostly) low voltage requirements, and the subsequent
decline in the relative number of designs where high voltage and high current requirements are an issue.

In the 60’s almost all designers had to worry about the current carrying capacity of PCB traces on at least
some of their designs. Now, some designers can go through an entire career without having to address this
issue at all. As I looked at this I began to understand why the significant investigations into PCB trace
temperature-vs-current (T-C) relationships are mostly over 25 years old!

The current T-C bible for most of us is the set of charts in IPC-D-275. (IPC) (Footnote 1) Yet there is a
nagging concern about them when we use them: Are they current? Are we sure where they came from and
can they be trusted? Some people say they were generated with only three or four points and then “French
Curves” were used to create smooth lines between the points. Others say they have been redrawn so many
times by so many artists that they only somewhat resemble the original data. And you only have to look at
the incongruous result from some of them that up to 125 ma of current can flow through a conductor with
zero cross-sectional area! (You know, the curves really should go through the origin!)

Then I ran across another set of data in an old (1968) copy of “Design News” (DN) (Footnote 2).
McHardy and Gandi recently reported on an analysis where they tried to test a theoretical, mathematical
model on the IPC and the DN data (Footnote 3) with some limited success. That was when I decided to do
the same thing using a different, more analytical (I believe) approach. This paper is a report of that
analysis.

Defining the Model

We can think of a model as a representation of reality. In the context of this paper I will use an equation to
“model” the relationship between current and the temperature of a trace. If the model is realistic, then
when I substitute variables into the equation, the result will (within reason) reflect the actual result that
would be obtained in the physical world. We can “test” a model by looking at actual results, and see if the
model would give similar results under the same conditions.

It is intuitive that the flow of current through a trace (power) will cause the temperature of the trace to
increase. The formula for power is I2*R, so the relationship is probably not simply linear. The resistance
of a trace (per unit length) is a function of its cross-sectional area (width times thickness). So the
relationship between temperature and current, therefore, is probably a non-linear function of current, trace
width, and trace thickness. But the ability of a trace to “shed”, or dissipate, heat is a function of its surface
area, or width (per unit length). At the same time the current is heating the trace, the trace is cooling
through the combined effects or radiation, convection and conduction through its surface. Therefore, the
relative effect of width in the overall model is probably different than thickness.



A common model in thermodynamics for this type of situation is:

I = k * T A1 2∆ β β Eq. 1

where: I = current in amps,

∆T = change in Temperature above ambient, in degrees C,
A = cross sectional area in square mils, and
k, β1 and β2 are constants.

Indeed, this is the starting point for McHardy and Gandi. Substituting Width*Thickness (W*Th) for area,
we obtain a slightly more general model:

I = k * T W Th1 2 3∆ β β β Eq. 2

So far, so good. But how do we determine those coefficients?

Developing the model

Least-squares-fit and multiple regression are techniques that can be used to estimate a set of constants in a
situation like this. Assume we have a set of actual data for current, temperature change, and the width and
thickness of traces. Least squares fit is a technique that will generate the constants and therefore give us
an estimate for the equation (model) from that actual data. If we then use the estimated equation to
calculate what the result would be, for any individual observation, and then look at the DIFFERENCE
between the estimated value and the actual value, that DIFFERENCE is called an error term or a residual.
The least squares fit is a technique that finds the set of coefficients that minimizes (“least”) the variance of
the error terms. (Footnote 4).

The difference between least-squares-fit and regression analysis is the set of assumptions we make about
the error terms. Most importantly, we assume that they are randomly distributed. If this is true, then we
can make statistically valid statements about probabilities related to the coefficients of a model and the
resulting estimates from the model. If the randomness assumption is not valid, then we can still estimate
the coefficients, but we cannot make any legitimate statistical inferences abut them. (This is not
necessarily bad; useful predictive equations can often be obtained even when the randomness assumption
is not met.)

To estimate the coefficients for Eq. 1 or Eq. 2, it is convenient first to convert them to linear form. We can
do this using logarithms, as follows:

Ln(I) = Ln(k) + β1∗Ln(∆T) + β2*Ln(A) Eq. 3

Ln(I) = Ln(k) + β1∗Ln(∆T) + β2*Ln(W) + β3*Ln(Th) Eq. 4

Where Ln() is the natural logarithm (to the base e). We will use these forms of the model to find the best
fit coefficients for the data.

Data

The IPC and DN sources have charts relating temperature change and current for various trace
configurations. The DN data provides information allowing the independent evaluation of length and
width for the traces under study. The IPC data appears to, but in fact it does not. The data really is
tabulated by cross-sectional area for 4 trace thicknesses. I took approximately 300 data points from these
charts, more or less randomly, as the source data for the analysis.



The first question is whether this approach can introduce its own error? Obviously my estimation of data
points will result in some error. But IF this error is RANDOM, then it will introduce no bias into the
estimate of the coefficients (constants), which is what this is all about. This additional random error will
have a marginal effect on the statistical inferences we can make. But as we will see, there is enough error
from other sources that my errors (if any) in estimating the raw data is pretty insignificant!

Analysis of DN Data

The DN data included charts for three trace thicknesses, 1 oz., 2 oz, and 5 oz. copper traces. When all DN
data is used in a regression analysis, using Eq. 3, we get the following estimate for Eq. 3 (see Table 1 and
Footnote 5):

Ln(I) = -3.23 + .45*Ln(∆T) + .69*Ln(A)

which leads to this estimate of Eq. 1:

I =.04 * T A.45∆ .69 Eq. 5

Looking at a graph of this result (Fig. 1), the fit is obviously not
really good, so let’s change the model, as discussed above, to use
Width*Thickness instead of simply Area (Eq. 4) That results in the
following estimate (see Table 2):

Ln(I) = -3.69 + .45*Ln(∆T) + .79*Ln(W) + .53*Ln(Th).

If the effects of Width and Thickness were equal, then the
individual coefficients for Ln(W) and Ln(Th) would be equal and
would be the same as the coefficient for Ln(A) above. That they are
not is one indication that the form factor of the trace (not simply its
cross-sectional area) is important.

This result leads to this estimate of Eq. 2:

I =.025* T W Th∆ . . .45 79 53 Eq. 6

Above it was mentioned that one desirable characteristic in a
regression analysis is that the residuals (error terms) be randomly
distributed. Figure 2 is a graph of the actual current (I) and the
current (I’) predicted from Eq. 6. The fit is better than that in Fig.
1. But when we look at the graph of the error terms (I - I’, Fig 3, in
order of trace thickness) the error terms are CLEARLY not
random. It appears that the residuals for the 2 oz trace are
significantly shifted from those for 1 oz. and 5 oz.

One way of adjusting for, and evaluating, the effects of this
problem is through the introduction of what is called a “Dummy”
variable. This is a variable whose value is 0 (zero) for all cases
except where the trace thickness is 2 oz, where the value of the
Dummy variable is 1 (one). Introducing a Dummy variable into Eq.
4 results in:

Ln(I) = Ln(k) + D + β1∗Ln(∆T) + β2*Ln(W) + β3*Ln(Th) Eq. 7
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Figure 1
Graph of Actual vs Estimated Current from DN Data
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Figure 2
Improved Fit Using Eq. 6
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Figure 3
Graph of Residuals or Error Terms, Eq. 6



Now, the result of the regression of this modified model is (see Table 3):

Ln(I) = -3.58 + .2*(D) + .46*Ln(∆T) + .76*Ln(W) + .54*Ln(Th). Eq. 8

Now D=0 for all but 2 oz. traces, so the result is really

Ln(I) = -3.58 + .46*Ln(∆T) + .76*Ln(W) + .54*Ln(Th)           for 1 and 5 oz. traces, and  Eq. 9

Ln(I) = -3.38 + .46*Ln(∆T) + .76*Ln(W) + .54*Ln(Th)           for 2 oz. traces.         Eq. 10

This results, in turn, in the following estimated models:

I =.028* T W Th∆ . . .46 76 54         for 1 oz. and 5 oz. traces, and Eq. 11

I =.034 * T W Th∆ . . .46 76 54         for 2 oz. traces Eq. 12

The results of this model are graphed in Fig. 4(a). The residuals (error terms) are graphed in Figs. 4(b) (in
Amps) and 4(c) (in percent.) In general, the model fits within 10% or 4 Amps, whichever is less.

Summary of DN Data

The implications of this are quite interesting. Let’s summarize the results so far:

I =.040 * T A.45∆ .69 Adj. R2 = .961 Eq. 5

I =.025* T W Th∆ . . .45 79 53 Adj. R2 = .990 Eq. 6

I =.028* T W Th∆ . . .46 76 54         (for 1 oz. and 5 oz. traces, and) Adj. R2 = .997 Eq. 11

I =.034 * T W Th∆ . . .46 76 54         (for 2 oz. traces) Eq. 12

The “Adjusted R2” is a measure of “goodness of fit.” In general, the higher the value of  R2, the better the
model is at fitting the actual data. A “perfect” fit would result in an R2 = 1.0, and a “perfect ‘non-fit’ “
(which would be suspicious in itself!) would result in an R2 of 0 (zero). No matter how we look at the data,

the coefficient of the ∆T term is .45 or .46 . We can have a high confidence that this reflects a “true”
relationship, at least for this data. Separating the cross-sectional area term (A) into its two components,
width (W) and thickness (Th) results in significant improvement, and once that is done, those coefficients
remain somewhat stable.
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Figure 4
Results of Eq. 8 (DN Data)



The impact of the Dummy variable is surprising. What it implies is --- all other things equal --- the 2 oz.
traces can carry 21% more current than can the other traces! How can this be? I wasn’t there to see the
test conditions. The article summarizes the test conditions, but not nearly in enough detail to be able to
evaluate what happened. But my personal opinion is that one or both of the following  probably explain
this result:

1. This kind of test is inherently difficult to set up and to control. The results reflect the normal variability
that is to be expected from these kinds of investigations. However, if this were true, then the close
consistency of the data for the 1 oz. and 5 oz. traces would not necessarily be expected.

2. Since all other results are so consistent, there was some variable that was not controlled as tightly as the
researchers thought, and the results reflect conditions that were slightly different when the 2 oz. traces
were fabricated and/or tested.

Analysis of IPC Data

The IPC data is graphed in IPC-D-275 for two conditions, external traces and internal traces. In a similar
manner to the above, the IPC external data was used to fit the coefficients to the model in Eq. 3 with the
following results (see Table 4 and Fig. 5):

I =.065* T A.43∆ .68 Eq. 13

The IPC data does not provide a way of independently obtaining the width and thickness components of
the cross-sectional data except by estimating them from the middle graph. When this is done, the results
shown in Table 5 occur. Note that the coefficients for the width and thickness terms are (1) almost
identical to each other, and (2) almost identical to the coefficient for the area term, above. All other results
are virtually identical. This illustrates that there is no information to be gained from the IPC data from
breaking down the IPC area numbers into their width and thickness components. This, therefore, implies
that the IPC data was not taken with this idea in mind, or at least that it was ignored in the subsequent
presentation of the data.

Comparing the results of this model for the two sets of data reveals:

I =.040* T A.45∆ .69 (DN data) Eq. 5

I =.065* T A.43∆ .68 (IPC data) Eq. 13
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Figure 5
Results of IPC External Data, Eq. 13



This data suggest that the fundamental model is the same for both sets of data (IPC and DN) but that all
other things equal, the IPC implied currents are over 60% higher. This can be a little misleading,
however. Consider this possibility: Use the DN model (Eq. 5)  to calculate what the IPC currents would be

for each observation of IPC ∆T and Area. Then compare this calculated IPC current (using the DN model,
Eq. 5) to the actual IPC current from the chart. When this is done, we get the following relationship (see
Table 6):

IPC Current (Amps) = .251+ 1.34*(Current Predicted From DN Eq. 5) R2 = .996 Eq. 14

This shows that, on average, the IPC currents are shifted UP by 250 ma (remember the comment that they
really should go through the origin?), and then are 34% higher than those implied by the DN model. But,
then, DN’s own 2 oz. trace data are higher than would be predicted by this model, also!

This time it is easier to accept that the reason is different test conditions. Although I have not been able to
determine this precisely, I have reason to believe that the test conditions for the DN data collection and
the IPC data collection were quite different (Footnote 6). I believe the IPC data were taken with the test
board hung vertically, and the temperature change data were determined by the change in resistance of the
trace under test. Since the temperature coefficient of resistivity is (supposedly) known for copper, then a
change in resistivity can be directly correlated with a change in temperature. The DN data were taken
with the test board hung horizontally, and the temperature change read with an infrared microscope. The
data are remarkably close considering the fact that the data were taken (a) using different testing
procedures on (b) different boards, (c) at different times, (d) by different people! It is especially
remarkable that the coefficients for the primary variables are virtually identical.

IPC Internal Data

The IPC charts also include data for internal traces (the DN charts do not). Those data were fitted to Eq. 2
to compare the results with IPC’s external data with the following results (see Table 7):

Ln(I) = -4.20 + .55*Ln(∆T) + .74*Ln(A)

which leads to this estimate of Eq. 1:

I =.015* T A.55∆ .74 (IPC Internal) Eq. 15

I have heard rumors (which I have not confirmed) that the IPC internal charts were simply derated 50%
from the external ones. In a practical sense that is about the conclusion that could be drawn from, and is
consistent with, the result of Eq. 15.

Conclusion

The relationship of current, change in temperature, and PCB trace cross-sectional area has been assumed
to be of the form:

I = k * T A1 2∆ β β Eq. 1

Analysis of two independent sets of data suggest this relationship is true, with the coefficients β1 and β2
being approximately .44 and .68, respectively. The Design News data suggest that this model can be
improved by separating the area term into its components, Width * Thickness:

I = k * T W Th1 2 3∆ β β β Eq. 2



When this occurs, the coefficient β1 does not
significantly change, but β2 and β3 become
.76 and ,54, respectively.

The constant term, k, however, varies
considerably by data source and even within
one set of data, suggesting that it is quite
sensitive to variations in test conditions.

The IPC internal trace data suggest that
currents be derated 50% (with respect to
external traces) for the same degree of
heating.

Temp Calculator

My company has created a freeware Windows
calculator (PCBTEMP.EXE) for determining
the relationship between current, trace
configuration, and trace temperature rise. It is
available for downloading from:
       www.UltraCAD.com
Follow the links to calculators.

**********************************************************************************
Footnotes

1. ANSI/IPC-D-275, Design Standard for Rigid Printed Boards and Rigid Printed Board Assemblies,
Figure 3-4, Page 10, IPC, September, 1991

2. “Printed Circuits and High Currents”, Friar, Michael E. and McClurg, Roger H., Design News, Vol.
23, December 6, 1968, pp. 102 - 107.

3. “Empirical Equation for Sizing Copper PWB Traces,” McHardy, John, and Gandhi, Mahendra,
Presented at IPC Works ‘97, October 5-9, 1997, Arlington, VA

4. The formulas can be very complex, and any reasonable problem requires a computer to do the analysis.
All major current spreadsheets can perform least squares fits and regression analyses. Almost any
text for a first or second course in college level statistics will cover this topic.

5. The tables of coefficients and for ANOVA for the various results are included as an Appendix for those
readers who understand them. A thorough understanding of these tables is not necessary to
understand the fundamental conclusions that will be drawn from this analysis.

6. I am indebted to Ralph Hersey of Ralph Hersey and Associates, Livermore, CA., for insights into test
procedures and the history of this kind of data. (Nevertheless, any errors and/or shortcomings in this
analysis are purely my own.)

*********************************************************************************

Figure 6
Example output from PCBTEMP.EXE



Appendices

An  Interesting  Observation

(In the following analysis, “k” represents a constant, but not necessarily the same constant from step to
step. This will keep the flow of the logic easier.)

Look at the form of Eq. 6: I = k * T W Th∆ . . .45 79 53

Rearrange terms:       ∆T = k *I / W Th.45 .79 .53

Now, approximately square both sides:                     ∆T k *I W Th2 1.5≈ /
Recognize that Area (A)  = W*Th           ∆T k *I / A * W2≈
Further recognize that Resistance is proportional to 1/A, so           ∆T k *I R / W2≈

This suggests that ∆T is directly proportional to power (I2R), which acts to heat the trace, and inversely
proportional to the square root of W (surface area), which helps to cool the trace. Thus, the results of this
analysis lead to a fairly reasonable, intuitive understanding of the dynamics involved.

ANOVA Tables Related to the Various Analyses

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: Ln_I
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                -3.23158        0.12787       -25.2725         0.0000
Ln_DT                   0.450045      0.0237091         18.982         0.0000
Ln_Area                 0.686565      0.0125318        54.7857         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     96.4864      2      48.2432    1646.46       0.0000
Residual                  3.95567    135    0.0293012
-----------------------------------------------------------------------------
Total (Corr.)             100.442    137

R-squared = 96.0617 percent
R-squared (adjusted for d.f.) = 96.0034 percent
Standard Error of Est. = 0.171176
Mean absolute error = 0.142287
Durbin-Watson statistic = 0.215158

Table 1
Regression of Ln(I) vs Ln(DT) and Ln(A), DN data



Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: Ln_I
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                -3.68796      0.0681556       -54.1109         0.0000
Ln_DT                   0.452776      0.0118993        38.0508         0.0000
Ln_W                    0.791638      0.0082062        96.4683         0.0000
Ln_Th                   0.532173     0.00998182        53.3143         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     99.4532      3      33.1511    4492.18       0.0000
Residual                 0.988884    134   0.00737973
-----------------------------------------------------------------------------
Total (Corr.)             100.442    137

R-squared = 99.0155 percent
R-squared (adjusted for d.f.) = 98.9934 percent
Standard Error of Est. = 0.0859054
Mean absolute error = 0.0672203
Durbin-Watson statistic = 0.487489

Table 2
Regression of Ln(I) vs Ln(DT), Ln(W), and Ln(Th), DN Data

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: Ln_I
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                -3.57889      0.0375705        -95.258         0.0000
Ln_DT                   0.457264     0.00647729        70.5949         0.0000
Ln_W                    0.762972     0.00474267        160.874         0.0000
Ln_Th                   0.540707     0.00545039        99.2051         0.0000
D                       0.200244      0.0111956         17.886         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     100.152      4      25.0379   11467.34       0.0000
Residual                 0.290394    133   0.00218341
-----------------------------------------------------------------------------
Total (Corr.)             100.442    137

R-squared = 99.7109 percent
R-squared (adjusted for d.f.) = 99.7022 percent
Standard Error of Est. = 0.046727
Mean absolute error = 0.0335754
Durbin-Watson statistic = 1.29037

Table 3
Effects of Introducing Dummy Variable, D, Into The Regression (Refer to Table 2)



Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: Ln_I
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                -2.73791      0.0392918       -69.6815         0.0000
Ln_DT                   0.428273     0.00617235        69.3858         0.0000
Ln_A                     0.67321     0.00642648        104.756         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     35.0315      2      17.5158    7894.06       0.0000
Residual                 0.226323    102   0.00221885
-----------------------------------------------------------------------------
Total (Corr.)             35.2579    104

R-squared = 99.3581 percent
R-squared (adjusted for d.f.) = 99.3455 percent
Standard Error of Est. = 0.0471047
Mean absolute error = 0.0373772
Durbin-Watson statistic = 1.01609

Table 4
Regression of Ln(I) vs Ln(DT) and Ln(A), IPC (External) Data

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: Ln_I
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                -2.73817      0.0391329       -69.9712         0.0000
Ln_DT                   0.428273     0.00614715        69.6703         0.0000
Ln_W                    0.672272     0.00646809        103.937         0.0000
Ln_Th                    0.68235     0.00886406        76.9794         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     35.0356      3      11.6785    5306.56       0.0000
Residual                 0.222278    101   0.00220077
-----------------------------------------------------------------------------
Total (Corr.)             35.2579    104

R-squared = 99.3696 percent
R-squared (adjusted for d.f.) = 99.3508 percent
Standard Error of Est. = 0.0469124
Mean absolute error = 0.0369706
Durbin-Watson statistic = 1.04776

Table 5
IPC (External) Results Using A = W*Th.

(Note almost no new information is obtained.)



Regression Analysis - Linear model: Y = a + b*X
-----------------------------------------------------------------------------
Dependent variable: I
Independent variable: Col_16
-----------------------------------------------------------------------------
                               Standard          T
Parameter       Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
Intercept       0.251202       0.102736        2.44513         0.0162
Slope            1.34477      0.0117182        114.758         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                      4008.3      1       4008.3   13169.51       0.0000
Residual                  31.3493    103     0.304363
-----------------------------------------------------------------------------
Total (Corr.)             4039.65    104

Correlation Coefficient = 0.996112
R-squared = 99.224 percent
Standard Error of Est. = 0.551691

Table 6
IPC External Current as a Function of DN Current Estimated From Eq. 5

Multiple Regression Analysis
-----------------------------------------------------------------------------
Dependent variable: Ln_I
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                -4.19966      0.0766892       -54.7621         0.0000
Ln_DT                   0.545301       0.018251        29.8779         0.0000
Ln_Area                 0.735127      0.0105064        69.9695         0.0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     35.6781      2       17.839    2894.21       0.0000
Residual                 0.351331     57    0.0061637
-----------------------------------------------------------------------------
Total (Corr.)             36.0294     59

R-squared = 99.0249 percent
R-squared (adjusted for d.f.) = 98.9907 percent
Standard Error of Est. = 0.0785092
Mean absolute error = 0.0563861
Durbin-Watson statistic = 0.925714

Table 7
Regression of Ln(I) vs Ln(DT) and Ln(A), IPC (Internal) Data


