/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2015 CERN * Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include // God forgive me doing this... #include "pns_node.h" #include "pns_itemset.h" #include "pns_topology.h" #include "pns_meander_skew_placer.h" #include "pns_solid.h" #include "pns_router.h" #include "pns_debug_decorator.h" namespace PNS { MEANDER_SKEW_PLACER::MEANDER_SKEW_PLACER ( ROUTER* aRouter ) : MEANDER_PLACER ( aRouter ) { // Init temporary variables (do not leave uninitialized members) m_coupledLength = 0; m_padToDieN = 0; m_padToDieP = 0; } MEANDER_SKEW_PLACER::~MEANDER_SKEW_PLACER( ) { } bool MEANDER_SKEW_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem ) { if( !aStartItem || !aStartItem->OfKind( ITEM::SEGMENT_T | ITEM::ARC_T) ) { Router()->SetFailureReason( _( "Please select a differential pair trace you want to tune." ) ); return false; } m_initialSegment = static_cast( aStartItem ); m_currentNode = nullptr; m_currentStart = getSnappedStartPoint( m_initialSegment, aP ); m_world = Router()->GetWorld( )->Branch(); m_originLine = m_world->AssembleLine( m_initialSegment ); TOPOLOGY topo( m_world ); m_tunedPath = topo.AssembleTrivialPath( m_initialSegment, nullptr, true ); if( !topo.AssembleDiffPair ( m_initialSegment, m_originPair ) ) { Router()->SetFailureReason( _( "Unable to find complementary differential pair " "net for skew tuning. Make sure the names of the nets belonging " "to a differential pair end with either _N/_P or +/-." ) ); return false; } if( m_originPair.Gap() < 0 ) m_originPair.SetGap( Router()->Sizes().DiffPairGap() ); if( !m_originPair.PLine().SegmentCount() || !m_originPair.NLine().SegmentCount() ) return false; m_tunedPathP = topo.AssembleTuningPath( m_originPair.PLine().GetLink( 0 ), &m_startPad_p, &m_endPad_p ); m_padToDieP = 0; if( m_startPad_p ) m_padToDieP += m_startPad_p->GetPadToDie(); if( m_endPad_p ) m_padToDieP += m_endPad_p->GetPadToDie(); m_tunedPathN = topo.AssembleTuningPath( m_originPair.NLine().GetLink( 0 ), &m_startPad_n, &m_endPad_n ); m_padToDieN = 0; if( m_startPad_n ) m_padToDieN += m_startPad_n->GetPadToDie(); if( m_endPad_n ) m_padToDieN += m_endPad_n->GetPadToDie(); m_world->Remove( m_originLine ); m_currentWidth = m_originLine.Width(); m_currentEnd = VECTOR2I( 0, 0 ); if ( m_originPair.NetP() == m_originLine.Net() ) { m_coupledLength = m_padToDieN + lineLength( m_tunedPathN, m_startPad_n, m_endPad_n ); m_lastLength = m_padToDieP + lineLength( m_tunedPathP, m_startPad_p, m_endPad_p ); m_tunedPath = m_tunedPathP; } else { m_coupledLength = m_padToDieP + lineLength( m_tunedPathP, m_startPad_p, m_endPad_p ); m_lastLength = m_padToDieN + lineLength( m_tunedPathN, m_startPad_n, m_endPad_n ); m_tunedPath = m_tunedPathN; } m_targetSkew = (int) currentSkew(); return true; } long long int MEANDER_SKEW_PLACER::origPathLength() const { if ( m_originPair.NetP() == m_originLine.Net() ) return m_padToDieP + lineLength( m_tunedPath, m_startPad_p, m_endPad_p ); return m_padToDieN + lineLength( m_tunedPath, m_startPad_n, m_endPad_n ); } long long int MEANDER_SKEW_PLACER::currentSkew() const { return m_lastLength - m_coupledLength; } bool MEANDER_SKEW_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem ) { bool isPositive = m_originPair.NetP() == m_originLine.Net(); for( const ITEM* item : m_tunedPathP.CItems() ) { if( const LINE* l = dyn_cast( item ) ) { PNS_DBG( Dbg(), AddItem, l, BLUE, 10000, wxT( "tuned-path-skew-p" ) ); m_router->GetInterface()->DisplayPathLine( l->CLine(), isPositive ? 1 : 0 ); } } for( const ITEM* item : m_tunedPathN.CItems() ) { if( const LINE* l = dyn_cast( item ) ) { PNS_DBG( Dbg(), AddItem, l, YELLOW, 10000, wxT( "tuned-path-skew-n" ) ); m_router->GetInterface()->DisplayPathLine( l->CLine(), isPositive ? 0 : 1 ); } } return doMove( aP, aEndItem, m_coupledLength + m_targetSkew ); } const wxString MEANDER_SKEW_PLACER::TuningInfo( EDA_UNITS aUnits ) const { wxString status; switch( m_lastStatus ) { case TOO_LONG: status = _( "Too long: skew " ); break; case TOO_SHORT: status = _( "Too short: skew " ); break; case TUNED: status = _( "Tuned: skew " ); break; default: return _( "?" ); } status += EDA_UNIT_UTILS::UI::MessageTextFromValue( pcbIUScale, aUnits, m_lastLength - m_coupledLength ); status += wxT( "/" ); status += EDA_UNIT_UTILS::UI::MessageTextFromValue( pcbIUScale, aUnits, m_targetSkew ); return status; } }