/************************************/ /* Kicad: Common plot HPGL Routines */ /************************************/ #include "fctsys.h" #include "gr_basic.h" #include "trigo.h" #include "wxstruct.h" #include "base_struct.h" #include "plot_common.h" #include "macros.h" #include "kicad_string.h" /* HPGL scale factor. */ const double SCALE_HPGL = 0.102041; /* Set the plot offset for the current plotting */ void HPGL_PLOTTER::set_viewport( wxPoint aOffset, double aScale, bool aMirror ) { wxASSERT( !output_file ); plot_offset = aOffset; plot_scale = aScale; device_scale = SCALE_HPGL; set_default_line_width( 100 ); /* default line width in 1 / 1000 inch */ plotMirror = aMirror; } bool HPGL_PLOTTER::start_plot( FILE* fout ) { wxASSERT( !output_file ); output_file = fout; fprintf( output_file, "IN;VS%d;PU;PA;SP%d;\n", pen_speed, pen_number ); return true; } bool HPGL_PLOTTER::end_plot() { wxASSERT( output_file ); fputs( "PU;PA;SP0;\n", output_file ); fclose( output_file ); output_file = NULL; return true; } void HPGL_PLOTTER::rect( wxPoint p1, wxPoint p2, FILL_T fill, int width ) { wxASSERT( output_file ); user_to_device_coordinates( p2 ); move_to( p1 ); fprintf( output_file, "EA %d,%d;\n", p2.x, p2.y ); pen_finish(); } void HPGL_PLOTTER::circle( wxPoint centre, int diameter, FILL_T fill, int width ) { wxASSERT( output_file ); double rayon = user_to_device_size( diameter / 2 ); if( rayon > 0 ) { move_to( centre ); fprintf( output_file, "CI %g;\n", rayon ); pen_finish(); } } /* Plot a polygon (closed if completed) in HPGL * Coord = coord table tops * Nb = number of coord (coord 1 = 2 elements: X and Y table) * Fill: if! = 0 filled polygon */ void HPGL_PLOTTER::poly( int nb, int* coord, FILL_T fill, int width ) { wxASSERT( output_file ); if( nb <= 1 ) return; move_to( wxPoint( coord[0], coord[1] ) ); for( int ii = 1; ii < nb; ii++ ) line_to( wxPoint( coord[ii * 2], coord[(ii * 2) + 1] ) ); /* Close polygon if filled. */ if( fill ) { int ii = (nb - 1) * 2; if( (coord[ii] != coord[0] ) || (coord[ii + 1] != coord[1]) ) line_to( wxPoint( coord[0], coord[1] ) ); } pen_finish(); } /* Set pen up ('U') or down ('D'). */ void HPGL_PLOTTER::pen_control( int plume ) { wxASSERT( output_file ); switch( plume ) { case 'U': if( pen_state != 'U' ) { fputs( "PU;", output_file ); pen_state = 'U'; } break; case 'D': if( pen_state != 'D' ) { fputs( "PD;", output_file ); pen_state = 'D'; } break; case 'Z': fputs( "PU;", output_file ); pen_state = 'U'; pen_lastpos.x = -1; pen_lastpos.y = -1; break; } } /* * Move the pen to position with pen up or down. * At position x, y * Unit to unit DRAWING * If pen = 'Z' without changing pen during move. */ void HPGL_PLOTTER::pen_to( wxPoint pos, char plume ) { wxASSERT( output_file ); if( plume == 'Z' ) { pen_control( 'Z' ); return; } pen_control( plume ); user_to_device_coordinates( pos ); if( pen_lastpos != pos ) fprintf( output_file, "PA %d,%d;\n", pos.x, pos.y ); pen_lastpos = pos; } void HPGL_PLOTTER::set_dash( bool dashed ) { wxASSERT( output_file ); if( dashed ) fputs( "LI 2;\n", stderr ); else fputs( "LI;\n", stderr ); } /** * Function Plot a filled segment (track) * @param start = starting point * @param end = ending point * @param width = segment width (thickness) * @param tracemode = FILLED, SKETCH .. */ void HPGL_PLOTTER::thick_segment( wxPoint start, wxPoint end, int width, GRTraceMode tracemode ) { wxASSERT( output_file ); wxPoint center; wxSize size; if( (pen_diameter >= width) || (tracemode == FILAIRE) ) /* just a line is * Ok */ { move_to( start ); finish_to( end ); } else segment_as_oval( start, end, width, tracemode ); } /* Plot an arc: * Center = center coord * Stangl, endAngle = angle of beginning and end * Radius = radius of the arc * Command * PU PY x, y; PD start_arc_X AA, start_arc_Y, angle, NbSegm; PU; * Or PU PY x, y; PD start_arc_X AA, start_arc_Y, angle, PU; */ void HPGL_PLOTTER::arc( wxPoint centre, int StAngle, int EndAngle, int rayon, FILL_T fill, int width ) { wxASSERT( output_file ); wxPoint cmap; wxPoint cpos; float angle; if( rayon <= 0 ) return; cpos = centre; user_to_device_coordinates( cpos ); if( plotMirror ) angle = (StAngle - EndAngle) / 10.0; else angle = (EndAngle - StAngle) / 10.0; /* Calculate start point, */ cmap.x = (int) ( centre.x + ( rayon * cos( StAngle * M_PI / 1800 ) ) ); cmap.y = (int) ( centre.y - ( rayon * sin( StAngle * M_PI / 1800 ) ) ); user_to_device_coordinates( cmap ); fprintf( output_file, "PU;PA %d,%d;PD;AA %d,%d, ", cmap.x, cmap.y, cpos.x, cpos.y ); fprintf( output_file, "%f", angle ); fprintf( output_file, ";PU;\n" ); pen_finish(); } /* Plot oval pad. */ void HPGL_PLOTTER::flash_pad_oval( wxPoint pos, wxSize size, int orient, GRTraceMode trace_mode ) { wxASSERT( output_file ); int rayon, deltaxy, cx, cy; /* The pad is reduced to an oval with size.y > size.x * (Oval vertical orientation 0) */ if( size.x > size.y ) { EXCHG( size.x, size.y ); orient += 900; if( orient >= 3600 ) orient -= 3600; } deltaxy = size.y - size.x; /* distance between centers of the oval */ rayon = size.x / 2; if( trace_mode == FILLED ) { flash_pad_rect( pos, wxSize( size.x, deltaxy + wxRound( pen_diameter ) ), orient, trace_mode ); cx = 0; cy = deltaxy / 2; RotatePoint( &cx, &cy, orient ); flash_pad_circle( wxPoint( cx + pos.x, cy + pos.y ), size.x, trace_mode ); cx = 0; cy = -deltaxy / 2; RotatePoint( &cx, &cy, orient ); flash_pad_circle( wxPoint( cx + pos.x, cy + pos.y ), size.x, trace_mode ); } else /* Plot in SKETCH mode. */ { sketch_oval( pos, size, orient, wxRound( pen_diameter ) ); } } /* Plot round pad or via. */ void HPGL_PLOTTER::flash_pad_circle( wxPoint pos, int diametre, GRTraceMode trace_mode ) { wxASSERT( output_file ); int rayon, delta; user_to_device_coordinates( pos ); delta = wxRound( pen_diameter - pen_overlap ); rayon = diametre / 2; if( trace_mode != FILAIRE ) { rayon = ( diametre - wxRound( pen_diameter ) ) / 2; } if( rayon < 0 ) { rayon = 0; } wxSize rsize( rayon, rayon ); user_to_device_size( rsize ); fprintf( output_file, "PA %d,%d;CI %d;\n", pos.x, pos.y, rsize.x ); if( trace_mode == FILLED ) /* Plot in filled mode. */ { if( delta > 0 ) { while( (rayon -= delta ) >= 0 ) { rsize.x = rsize.y = rayon; user_to_device_size( rsize ); fprintf( output_file, "PA %d,%d; CI %d;\n", pos.x, pos.y, rsize.x ); } } } pen_finish(); return; } /* * Plot rectangular pad vertical or horizontal. * Gives its center and its dimensions X and Y * Units are user units */ void HPGL_PLOTTER::flash_pad_rect( wxPoint pos, wxSize padsize, int orient, GRTraceMode trace_mode ) { wxASSERT( output_file ); wxSize size; int delta; int ox, oy, fx, fy; size.x = padsize.x / 2; size.y = padsize.y / 2; if( trace_mode != FILAIRE ) { size.x = (padsize.x - (int) pen_diameter) / 2; size.y = (padsize.y - (int) pen_diameter) / 2; } if( size.x < 0 ) size.x = 0; if( size.y < 0 ) size.y = 0; /* If a dimension is zero, the trace is reduced to 1 line. */ if( size.x == 0 ) { ox = pos.x; oy = pos.y - size.y; RotatePoint( &ox, &oy, pos.x, pos.y, orient ); fx = pos.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); move_to( wxPoint( ox, oy ) ); finish_to( wxPoint( fx, fy ) ); return; } if( size.y == 0 ) { ox = pos.x - size.x; oy = pos.y; RotatePoint( &ox, &oy, pos.x, pos.y, orient ); fx = pos.x + size.x; fy = pos.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); move_to( wxPoint( ox, oy ) ); finish_to( wxPoint( fx, fy ) ); return; } ox = pos.x - size.x; oy = pos.y - size.y; RotatePoint( &ox, &oy, pos.x, pos.y, orient ); move_to( wxPoint( ox, oy ) ); fx = pos.x - size.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); line_to( wxPoint( fx, fy ) ); fx = pos.x + size.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); line_to( wxPoint( fx, fy ) ); fx = pos.x + size.x; fy = pos.y - size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); line_to( wxPoint( fx, fy ) ); finish_to( wxPoint( ox, oy ) ); if( trace_mode == FILLED ) { /* Plot in filled mode. */ delta = (int) (pen_diameter - pen_overlap); if( delta > 0 ) while( (size.x > 0) && (size.y > 0) ) { size.x -= delta; size.y -= delta; if( size.x < 0 ) size.x = 0; if( size.y < 0 ) size.y = 0; ox = pos.x - size.x; oy = pos.y - size.y; RotatePoint( &ox, &oy, pos.x, pos.y, orient ); move_to( wxPoint( ox, oy ) ); fx = pos.x - size.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); line_to( wxPoint( fx, fy ) ); fx = pos.x + size.x; fy = pos.y + size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); line_to( wxPoint( fx, fy ) ); fx = pos.x + size.x; fy = pos.y - size.y; RotatePoint( &fx, &fy, pos.x, pos.y, orient ); line_to( wxPoint( fx, fy ) ); finish_to( wxPoint( ox, oy ) ); } } } /* Plot trapezoidal pad. * aPadPos is pad position, aCorners the corners position of the basic shape * Orientation aPadOrient in 0.1 degrees * Plot mode FILLED or SKETCH */ void HPGL_PLOTTER::flash_pad_trapez( wxPoint aPadPos, wxPoint aCorners[4], int aPadOrient, GRTraceMode aTrace_Mode ) { wxASSERT( output_file ); wxPoint polygone[4]; // coordinates of corners relatives to the pad wxPoint coord[4]; // absolute coordinates of corners (coordinates in plotter space) int move; move = wxRound( pen_diameter ); for( int ii = 0; ii < 4; ii++ ) polygone[ii] = aCorners[ii]; // polygone[0] is assumed the lower left // polygone[1] is assumed the upper left // polygone[2] is assumed the upper right // polygone[3] is assumed the lower right // Plot the outline: for( int ii = 0; ii < 4; ii++ ) { coord[ii] = polygone[ii]; RotatePoint( &coord[ii], aPadOrient ); coord[ii] += aPadPos; } move_to( coord[0] ); line_to( coord[1] ); line_to( coord[2] ); line_to( coord[3] ); finish_to( coord[0] ); // Fill shape: if( aTrace_Mode == FILLED ) { // TODO: replace this par the HPGL plot polygon. int jj; /* Fill the shape */ move = wxRound( pen_diameter - pen_overlap ); /* Calculate fill height. */ if( polygone[0].y == polygone[3].y ) /* Horizontal */ { jj = polygone[3].y - (int) ( pen_diameter + ( 2 * pen_overlap ) ); } else // vertical { jj = polygone[3].x - (int) ( pen_diameter + ( 2 * pen_overlap ) ); } /* Calculation of dd = number of segments was traced to fill. */ jj = jj / (int) ( pen_diameter - pen_overlap ); /* Trace the outline. */ for( ; jj > 0; jj-- ) { polygone[0].x += move; polygone[0].y -= move; polygone[1].x += move; polygone[1].y += move; polygone[2].x -= move; polygone[2].y += move; polygone[3].x -= move; polygone[3].y -= move; /* Test for crossed vertexes. */ if( polygone[0].x > polygone[3].x ) /* X axis intersection on *vertexes 0 and 3 */ { polygone[0].x = polygone[3].x = 0; } if( polygone[1].x > polygone[2].x ) /* X axis intersection on *vertexes 1 and 2 */ { polygone[1].x = polygone[2].x = 0; } if( polygone[1].y > polygone[0].y ) /* Y axis intersection on *vertexes 0 and 1 */ { polygone[0].y = polygone[1].y = 0; } if( polygone[2].y > polygone[3].y ) /* Y axis intersection on *vertexes 2 and 3 */ { polygone[2].y = polygone[3].y = 0; } for( int ii = 0; ii < 4; ii++ ) { coord[ii] = polygone[ii]; RotatePoint( &coord[ii], aPadOrient ); coord[ii] += aPadPos; } move_to( coord[0] ); line_to( coord[1] ); line_to( coord[2] ); line_to( coord[3] ); finish_to( coord[0] ); } } }