/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2016 Cirilo Bernardo * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include "oce_utils.h" #include "kicadpad.h" #include "streamwrapper.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USER_PREC (1e-4) #define USER_ANGLE_PREC (1e-6) // minimum PCB thickness in mm (2 microns assumes a very thin polyimide film) #define THICKNESS_MIN (0.002) // default PCB thickness in mm #define THICKNESS_DEFAULT (1.6) // nominal offset from the board #define BOARD_OFFSET (0.05 ) // min. length**2 below which 2 points are considered coincident #define MIN_LENGTH2 (0.0001) static void getEndPoints( const KICADCURVE& aCurve, double& spx0, double& spy0, double& epx0, double& epy0 ) { if( CURVE_ARC == aCurve.m_form ) { spx0 = aCurve.m_end.x; spy0 = aCurve.m_end.y; epx0 = aCurve.m_ep.x; epy0 = aCurve.m_ep.y; return; } // assume a line spx0 = aCurve.m_start.x; spy0 = aCurve.m_start.y; epx0 = aCurve.m_end.x; epy0 = aCurve.m_end.y; return; } static void getCurveEndPoint( const KICADCURVE& aCurve, DOUBLET& aEndPoint ) { if( CURVE_CIRCLE == aCurve.m_form ) return; // circles are closed loops and have no end point if( CURVE_ARC == aCurve.m_form ) { aEndPoint.x = aCurve.m_ep.x; aEndPoint.y = aCurve.m_ep.y; return; } // assume a line aEndPoint.x = aCurve.m_end.x; aEndPoint.y = aCurve.m_end.y; return; } static void reverseCurve( KICADCURVE& aCurve ) { if( CURVE_NONE == aCurve.m_form || CURVE_CIRCLE == aCurve.m_form ) return; if( CURVE_LINE == aCurve.m_form ) { std::swap( aCurve.m_start, aCurve.m_end ); return; } std::swap( aCurve.m_end, aCurve.m_ep ); std::swap( aCurve.m_endangle, aCurve.m_startangle ); aCurve.m_angle = -aCurve.m_angle; return; } // supported file types enum FormatType { FMT_NONE = 0, FMT_STEP = 1, FMT_IGES = 2, FMT_EMN = 3, FMT_IDF = 4 }; FormatType fileType( const char* aFileName ) { wxFileName lfile( wxString::FromUTF8Unchecked( aFileName ) ); if( !lfile.FileExists() ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * no such file: '" << aFileName << "'\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return FMT_NONE; } wxString ext = lfile.GetExt(); if( ext == "idf" || ext == "IDF" ) return FMT_IDF; // component outline else if( ext == "emn" || ext == "EMN" ) return FMT_EMN; // PCB assembly OPEN_ISTREAM( ifile, aFileName ); if( ifile.fail() ) return FMT_NONE; char iline[82]; memset( iline, 0, 82 ); ifile.getline( iline, 82 ); CLOSE_STREAM( ifile ); iline[81] = 0; // ensure NULL termination when string is too long // check for STEP in Part 21 format // (this can give false positives since Part 21 is not exclusively STEP) if( !strncmp( iline, "ISO-10303-21;", 13 ) ) return FMT_STEP; std::string fstr = iline; // check for STEP in XML format // (this can give both false positive and false negatives) if( fstr.find( "urn:oid:1.0.10303." ) != std::string::npos ) return FMT_STEP; // Note: this is a very simple test which can yield false positives; the only // sure method for determining if a file *not* an IGES model is to attempt // to load it. if( iline[72] == 'S' && ( iline[80] == 0 || iline[80] == 13 || iline[80] == 10 ) ) return FMT_IGES; return FMT_NONE; } PCBMODEL::PCBMODEL() { m_app = XCAFApp_Application::GetApplication(); m_app->NewDocument( "MDTV-XCAF", m_doc ); m_assy = XCAFDoc_DocumentTool::ShapeTool ( m_doc->Main() ); m_assy_label = m_assy->NewShape(); m_hasPCB = false; m_components = 0; m_precision = USER_PREC; m_angleprec = USER_ANGLE_PREC; m_thickness = THICKNESS_DEFAULT; m_minx = 1.0e10; // absurdly large number; any valid PCB X value will be smaller m_mincurve = m_curves.end(); BRepBuilderAPI::Precision( 1.0e-6 ); return; } PCBMODEL::~PCBMODEL() { m_doc->Close(); return; } // add an outline segment bool PCBMODEL::AddOutlineSegment( KICADCURVE* aCurve ) { if( NULL == aCurve || LAYER_EDGE != aCurve->m_layer || CURVE_NONE == aCurve->m_form ) return false; if( CURVE_LINE == aCurve->m_form ) { // reject zero - length lines double dx = aCurve->m_end.x - aCurve->m_start.x; double dy = aCurve->m_end.y - aCurve->m_start.y; double distance = dx * dx + dy * dy; if( distance < MIN_LENGTH2 ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * rejected a zero-length line\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } } else { // ensure that the start (center) and end (start of arc) are not the same point double dx = aCurve->m_end.x - aCurve->m_start.x; double dy = aCurve->m_end.y - aCurve->m_start.y; double rad = dx * dx + dy * dy; if( rad < MIN_LENGTH2 ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * rejected a zero-radius arc or circle\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } // calculate the radius and, if applicable, end point rad = sqrt( rad ); aCurve->m_radius = rad; if( CURVE_ARC == aCurve->m_form ) { aCurve->m_startangle = atan2( dy, dx ); if( aCurve->m_startangle < 0.0 ) aCurve->m_startangle += 2.0 * M_PI; double eang = aCurve->m_startangle + aCurve->m_angle; if( eang < 0.0 ) eang += 2.0 * M_PI; if( aCurve->m_angle < 0.0 && eang > aCurve->m_startangle ) aCurve->m_startangle += 2.0 * M_PI; else if( aCurve->m_angle >= 0.0 && eang < aCurve->m_startangle ) eang += 2.0 * M_PI; aCurve->m_endangle = eang; aCurve->m_ep.x = aCurve->m_start.x + rad * cos( eang ); aCurve->m_ep.y = aCurve->m_start.y + rad * sin( eang ); dx = aCurve->m_ep.x - aCurve->m_end.x; dy = aCurve->m_ep.y - aCurve->m_end.y; rad = dx * dx + dy * dy; if( rad < MIN_LENGTH2 ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * rejected an arc with equivalent end points\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } } } m_curves.push_back( *aCurve ); // check if this curve has the current leftmost feature switch( aCurve->m_form ) { case CURVE_LINE: if( aCurve->m_start.x < m_minx ) { m_minx = aCurve->m_start.x; m_mincurve = --(m_curves.end()); } if( aCurve->m_end.x < m_minx ) { m_minx = aCurve->m_end.x; m_mincurve = --(m_curves.end()); } break; case CURVE_CIRCLE: do { double dx = aCurve->m_start.x - aCurve->m_radius; if( dx < m_minx ) { m_minx = dx; m_mincurve = --(m_curves.end()); } } while( 0 ); break; case CURVE_ARC: do { double dx0 = aCurve->m_end.x - aCurve->m_start.x; double dy0 = aCurve->m_end.y - aCurve->m_start.y; int q0; // quadrant of start point if( dx0 > 0.0 && dy0 >= 0.0 ) q0 = 1; else if( dx0 <= 0.0 && dy0 > 0.0 ) q0 = 2; else if( dx0 < 0.0 && dy0 <= 0.0 ) q0 = 3; else q0 = 4; double dx1 = aCurve->m_ep.x - aCurve->m_start.x; double dy1 = aCurve->m_ep.y - aCurve->m_start.y; int q1; // quadrant of end point if( dx1 > 0.0 && dy1 >= 0.0 ) q1 = 1; else if( dx1 <= 0.0 && dy1 > 0.0 ) q1 = 2; else if( dx1 < 0.0 && dy1 <= 0.0 ) q1 = 3; else q1 = 4; // calculate x0, y0 for the start point on a CCW arc double x0 = aCurve->m_end.x; double x1 = aCurve->m_ep.x; if( aCurve->m_angle < 0.0 ) { std::swap( q0, q1 ); std::swap( x0, x1 ); } double minx; if( ( q0 <= 2 && q1 >= 3 ) || ( q0 >= 3 && x0 > x1 ) ) minx = aCurve->m_start.x - aCurve->m_radius; else minx = std::min( x0, x1 ); if( minx < m_minx ) { m_minx = minx; m_mincurve = --(m_curves.end()); } } while( 0 ); break; default: // unexpected curve type do { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * unsupported curve type: '" << aCurve->m_form << "'\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); } while( 0 ); return false; } return true; } // add a pad hole or slot bool PCBMODEL::AddPadHole( KICADPAD* aPad ) { if( NULL == aPad || !aPad->IsThruHole() ) return false; if( !aPad->m_drill.oval ) { TopoDS_Shape s = BRepPrimAPI_MakeCylinder( aPad->m_drill.size.x * 0.5, m_thickness * 2.0 ).Shape(); gp_Trsf shift; shift.SetTranslation( gp_Vec( aPad->m_position.x, aPad->m_position.y, -m_thickness * 0.5 ) ); BRepBuilderAPI_Transform hole( s, shift ); m_cutouts.push_back( hole.Shape() ); return true; } // slotted hole double angle_offset = 0.0; double rad; // radius of the slot double hlen; // half length of the slot if( aPad->m_drill.size.x < aPad->m_drill.size.y ) { angle_offset = M_PI_2; rad = aPad->m_drill.size.x * 0.5; hlen = aPad->m_drill.size.y * 0.5 - rad; } else { rad = aPad->m_drill.size.y * 0.5; hlen = aPad->m_drill.size.x * 0.5 - rad; } DOUBLET c0( -hlen, 0.0 ); DOUBLET c1( hlen, 0.0 ); DOUBLET p0( -hlen, rad ); DOUBLET p1( -hlen, -rad ); DOUBLET p2( hlen, -rad ); DOUBLET p3( hlen, rad ); angle_offset += aPad->m_rotation; double dlim = (double)std::numeric_limits< float >::epsilon(); if( angle_offset < -dlim || angle_offset > dlim ) { double vsin = sin( angle_offset ); double vcos = cos( angle_offset ); double x = c0.x * vcos - c0.y * vsin; double y = c0.x * vsin + c0.y * vcos; c0.x = x; c0.y = y; x = c1.x * vcos - c1.y * vsin; y = c1.x * vsin + c1.y * vcos; c1.x = x; c1.y = y; x = p0.x * vcos - p0.y * vsin; y = p0.x * vsin + p0.y * vcos; p0.x = x; p0.y = y; x = p1.x * vcos - p1.y * vsin; y = p1.x * vsin + p1.y * vcos; p1.x = x; p1.y = y; x = p2.x * vcos - p2.y * vsin; y = p2.x * vsin + p2.y * vcos; p2.x = x; p2.y = y; x = p3.x * vcos - p3.y * vsin; y = p3.x * vsin + p3.y * vcos; p3.x = x; p3.y = y; } c0.x += aPad->m_position.x; c0.y += aPad->m_position.y; c1.x += aPad->m_position.x; c1.y += aPad->m_position.y; p0.x += aPad->m_position.x; p0.y += aPad->m_position.y; p1.x += aPad->m_position.x; p1.y += aPad->m_position.y; p2.x += aPad->m_position.x; p2.y += aPad->m_position.y; p3.x += aPad->m_position.x; p3.y += aPad->m_position.y; OUTLINE oln; KICADCURVE crv0, crv1, crv2, crv3; // crv0 = arc crv0.m_start = c0; crv0.m_end = p0; crv0.m_ep = p1; crv0.m_angle = M_PI; crv0.m_radius = rad; crv0.m_form = CURVE_ARC; // crv1 = line crv1.m_start = p1; crv1.m_end = p2; crv1.m_form = CURVE_LINE; // crv2 = arc crv2.m_start = c1; crv2.m_end = p2; crv2.m_ep = p3; crv2.m_angle = M_PI; crv2.m_radius = rad; crv2.m_form = CURVE_ARC; // crv3 = line crv3.m_start = p3; crv3.m_end = p0; crv3.m_form = CURVE_LINE; oln.AddSegment( crv0 ); oln.AddSegment( crv1 ); oln.AddSegment( crv2 ); oln.AddSegment( crv3 ); TopoDS_Shape slot; if( oln.MakeShape( slot, m_thickness ) ) { if( !slot.IsNull() ) m_cutouts.push_back( slot ); return true; } return false; } // add a component at the given position and orientation bool PCBMODEL::AddComponent( const std::string& aFileName, const std::string aRefDes, bool aBottom, DOUBLET aPosition, double aRotation, TRIPLET aOffset, TRIPLET aOrientation ) { // first retrieve a label TDF_Label lmodel; if( !getModelLabel( aFileName, lmodel ) ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * no model for filename '" << aFileName << "'\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } // calculate the Location transform TopLoc_Location toploc; if( !getModelLocation( aBottom, aPosition, aRotation, aOffset, aOrientation, toploc ) ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * no location data for filename '" << aFileName << "'\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } // add the located sub-assembly TDF_Label llabel = m_assy->AddComponent( m_assy_label, lmodel, toploc ); if( llabel.IsNull() ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * could not add component with filename '" << aFileName << "'\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } // attach the RefDes name TCollection_ExtendedString refdes( aRefDes.c_str() ); TDataStd_Name::Set( llabel, refdes ); return true; } void PCBMODEL::SetPCBThickness( double aThickness ) { if( aThickness < 0.0 ) m_thickness = THICKNESS_DEFAULT; else if( aThickness < THICKNESS_MIN ) m_thickness = THICKNESS_MIN; else m_thickness = aThickness; return; } // create the PCB (board only) model using the current outlines and drill holes bool PCBMODEL::CreatePCB() { if( m_hasPCB ) { if( m_pcb_label.IsNull() ) return false; return true; } if( m_curves.empty() || m_mincurve == m_curves.end() ) { m_hasPCB = true; std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * no valid board outline\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } m_hasPCB = true; // whether or not operations fail we note that CreatePCB has been invoked TopoDS_Shape board; OUTLINE oln; // loop to assemble (represents PCB outline and cutouts) oln.AddSegment( *m_mincurve ); m_curves.erase( m_mincurve ); while( !m_curves.empty() ) { if( oln.IsClosed() ) { if( board.IsNull() ) { if( !oln.MakeShape( board, m_thickness ) ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * could not create board extrusion\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } } else { TopoDS_Shape hole; if( oln.MakeShape( hole, m_thickness ) ) { m_cutouts.push_back( hole ); } else { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * could not create board cutout\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); } } oln.Clear(); if( !m_curves.empty() ) { oln.AddSegment( m_curves.front() ); m_curves.pop_front(); } continue; } std::list< KICADCURVE >::iterator sC = m_curves.begin(); std::list< KICADCURVE >::iterator eC = m_curves.end(); while( sC != eC ) { if( oln.AddSegment( *sC ) ) { m_curves.erase( sC ); break; } ++sC; } if( sC == eC && !oln.m_curves.empty() ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * could not close outline (dropping outline data with " << oln.m_curves.size() << " segments)\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); oln.Clear(); if( !m_curves.empty() ) { oln.AddSegment( m_curves.front() ); m_curves.pop_front(); } } } if( oln.IsClosed() ) { if( board.IsNull() ) { if( !oln.MakeShape( board, m_thickness ) ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * could not create board extrusion\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } } else { TopoDS_Shape hole; if( oln.MakeShape( hole, m_thickness ) ) { m_cutouts.push_back( hole ); } else { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * could not create board cutout\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); } } } // subtract cutouts (if any) for( auto i : m_cutouts ) board = BRepAlgoAPI_Cut( board, i ); // push the board to the data structure m_pcb_label = m_assy->AddComponent( m_assy_label, board ); if( m_pcb_label.IsNull() ) return false; // color the PCB Handle(XCAFDoc_ColorTool) color = XCAFDoc_DocumentTool::ColorTool( m_doc->Main () ); Quantity_Color pcb_green( 0.06, 0.4, 0.06, Quantity_TOC_RGB ); color->SetColor( m_pcb_label, pcb_green, XCAFDoc_ColorSurf ); TopExp_Explorer topex; topex.Init( m_assy->GetShape( m_pcb_label ), TopAbs_SOLID ); while( topex.More() ) { color->SetColor( topex.Current(), pcb_green, XCAFDoc_ColorSurf ); topex.Next(); } return true; } #ifdef SUPPORTS_IGES // write the assembly model in IGES format bool PCBMODEL::WriteIGES( const std::string& aFileName, bool aOverwrite ) { if( m_pcb_label.IsNull() ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * No valid PCB assembly; cannot create output file " << aFileName << "\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } wxFileName fn( aFileName ); IGESControl_Controller::Init(); IGESCAFControl_Writer writer; writer.SetColorMode( Standard_True ); writer.SetNameMode( Standard_True ); IGESData_GlobalSection header = writer.Model()->GlobalSection(); header.SetFileName( new TCollection_HAsciiString( fn.GetFullName().ToUTF8() ) ); header.SetSendName( new TCollection_HAsciiString( "KiCad electronic assembly" ) ); header.SetAuthorName( new TCollection_HAsciiString( Interface_Static::CVal( "write.iges.header.author" ) ) ); header.SetCompanyName( new TCollection_HAsciiString( Interface_Static::CVal( "write.iges.header.company" ) ) ); writer.Model()->SetGlobalSection( header ); if( Standard_False == writer.Perform( m_doc, aFileName.c_str() ) ) return false; return true; } #endif // write the assembly model in STEP format bool PCBMODEL::WriteSTEP( const std::string& aFileName, bool aOverwrite ) { if( m_pcb_label.IsNull() ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * No valid PCB assembly; cannot create output file " << aFileName << "\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } STEPCAFControl_Writer writer; writer.SetColorMode( Standard_True ); writer.SetNameMode( Standard_True ); if( Standard_False == writer.Transfer( m_doc, STEPControl_AsIs ) ) return false; APIHeaderSection_MakeHeader hdr( writer.ChangeWriter().Model() ); wxFileName fn( aFileName ); hdr.SetName( new TCollection_HAsciiString( fn.GetFullName().ToUTF8() ) ); // TODO: how to control and ensure consistency with IGES? hdr.SetAuthorValue( 1, new TCollection_HAsciiString( "An Author" ) ); hdr.SetOrganizationValue( 1, new TCollection_HAsciiString( "A Company" ) ); hdr.SetOriginatingSystem( new TCollection_HAsciiString( "KiCad to STEP converter" ) ); hdr.SetDescriptionValue( 1, new TCollection_HAsciiString( "KiCad electronic assembly" ) ); if( Standard_False == writer.Write( aFileName.c_str() ) ) return false; return true; } bool PCBMODEL::getModelLabel( const std::string aFileName, TDF_Label& aLabel ) { MODEL_MAP::const_iterator mm = m_models.find( aFileName ); if( mm != m_models.end() ) { aLabel = mm->second; return true; } aLabel.Nullify(); Handle( TDocStd_Document ) doc; m_app->NewDocument( "MDTV-XCAF", doc ); FormatType modelFmt = fileType( aFileName.c_str() ); switch( modelFmt ) { case FMT_IGES: if( !readIGES( doc, aFileName.c_str() ) ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * readIGES() failed on filename '" << aFileName << "'\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } break; case FMT_STEP: if( !readSTEP( doc, aFileName.c_str() ) ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * readSTEP() failed on filename '" << aFileName << "'\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } break; // TODO: implement IDF and EMN converters default: return false; } aLabel = transferModel( doc, m_doc ); if( aLabel.IsNull() ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * could not transfer model data from file '" << aFileName << "'\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } // attach the PART NAME ( base filename: note that in principle // different models may have the same base filename ) wxFileName afile( aFileName.c_str() ); std::string pname( afile.GetName().ToUTF8() ); TCollection_ExtendedString partname( pname.c_str() ); TDataStd_Name::Set( aLabel, partname ); m_models.insert( MODEL_DATUM( aFileName, aLabel ) ); ++m_components; return true; } bool PCBMODEL::getModelLocation( bool aBottom, DOUBLET aPosition, double aRotation, TRIPLET aOffset, TRIPLET aOrientation, TopLoc_Location& aLocation ) { // Order of operations: // a. aOrientation is applied -Z*-Y*-X // b. aOffset is applied // Top ? add thickness to the Z offset // c. Bottom ? Rotate on X axis (in contrast to most ECAD which mirror on Y), // then rotate on +Z // Top ? rotate on -Z // d. aPosition is applied // // Note: Y axis is inverted in KiCad gp_Trsf lPos; lPos.SetTranslation( gp_Vec( aPosition.x, -aPosition.y, 0.0 ) ); // offset (inches) aOffset.x *= 25.4; aOffset.y *= 25.4; aOffset.z *= 25.4 + BOARD_OFFSET; gp_Trsf lRot; if( aBottom ) { lRot.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), aRotation ); lPos.Multiply( lRot ); lRot.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 1.0, 0.0, 0.0 ) ), M_PI ); lPos.Multiply( lRot ); } else { aOffset.z += m_thickness; lRot.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), aRotation ); lPos.Multiply( lRot ); } gp_Trsf lOff; lOff.SetTranslation( gp_Vec( aOffset.x, aOffset.y, aOffset.z ) ); lPos.Multiply( lOff ); gp_Trsf lOrient; lOrient.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), -aOrientation.z ); lPos.Multiply( lOrient ); lOrient.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 1.0, 0.0 ) ), -aOrientation.y ); lPos.Multiply( lOrient ); lOrient.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 1.0, 0.0, 0.0 ) ), -aOrientation.x ); lPos.Multiply( lOrient ); aLocation = TopLoc_Location( lPos ); return true; } bool PCBMODEL::readIGES( Handle( TDocStd_Document )& doc, const char* fname ) { IGESControl_Controller::Init(); IGESCAFControl_Reader reader; IFSelect_ReturnStatus stat = reader.ReadFile( fname ); if( stat != IFSelect_RetDone ) return false; // Enable user-defined shape precision if( !Interface_Static::SetIVal( "read.precision.mode", 1 ) ) return false; // Set the shape conversion precision to USER_PREC (default 0.0001 has too many triangles) if( !Interface_Static::SetRVal( "read.precision.val", USER_PREC ) ) return false; // set other translation options reader.SetColorMode(true); // use model colors reader.SetNameMode(false); // don't use IGES label names reader.SetLayerMode(false); // ignore LAYER data if ( !reader.Transfer( doc ) ) { doc->Close(); return false; } // are there any shapes to translate? if( reader.NbShapes() < 1 ) { doc->Close(); return false; } return true; } bool PCBMODEL::readSTEP( Handle(TDocStd_Document)& doc, const char* fname ) { STEPCAFControl_Reader reader; IFSelect_ReturnStatus stat = reader.ReadFile( fname ); if( stat != IFSelect_RetDone ) return false; // Enable user-defined shape precision if( !Interface_Static::SetIVal( "read.precision.mode", 1 ) ) return false; // Set the shape conversion precision to USER_PREC (default 0.0001 has too many triangles) if( !Interface_Static::SetRVal( "read.precision.val", USER_PREC ) ) return false; // set other translation options reader.SetColorMode(true); // use model colors reader.SetNameMode(false); // don't use label names reader.SetLayerMode(false); // ignore LAYER data if ( !reader.Transfer( doc ) ) { doc->Close(); return false; } // are there any shapes to translate? if( reader.NbRootsForTransfer() < 1 ) { doc->Close(); return false; } return true; } TDF_Label PCBMODEL::transferModel( Handle( TDocStd_Document )& source, Handle( TDocStd_Document )& dest ) { // transfer data from Source into a top level component of Dest // s_assy = shape tool for the source Handle(XCAFDoc_ShapeTool) s_assy = XCAFDoc_DocumentTool::ShapeTool ( source->Main() ); // retrieve all free shapes within the assembly TDF_LabelSequence frshapes; s_assy->GetFreeShapes( frshapes ); // d_assy = shape tool for the destination Handle(XCAFDoc_ShapeTool) d_assy = XCAFDoc_DocumentTool::ShapeTool ( dest->Main() ); // create a new shape within the destination and set the assembly tool to point to it TDF_Label component = d_assy->NewShape(); int nshapes = frshapes.Length(); int id = 1; Handle( XCAFDoc_ColorTool ) scolor = XCAFDoc_DocumentTool::ColorTool( source->Main() ); Handle( XCAFDoc_ColorTool ) dcolor = XCAFDoc_DocumentTool::ColorTool( dest->Main() ); TopExp_Explorer dtop; TopExp_Explorer stop; while( id <= nshapes ) { TopoDS_Shape shape = s_assy->GetShape( frshapes.Value(id) ); if ( !shape.IsNull() ) { TDF_Label niulab = d_assy->AddComponent( component, shape, Standard_False ); // check for per-surface colors stop.Init( shape, TopAbs_FACE ); dtop.Init( d_assy->GetShape( niulab ), TopAbs_FACE ); while( stop.More() && dtop.More() ) { Quantity_Color face_color; TDF_Label tl; // give priority to the base shape's color if( s_assy->FindShape( stop.Current(), tl ) ) { if( scolor->GetColor( tl, XCAFDoc_ColorSurf, face_color ) || scolor->GetColor( tl, XCAFDoc_ColorGen, face_color ) || scolor->GetColor( tl, XCAFDoc_ColorCurv, face_color ) ) { dcolor->SetColor( dtop.Current(), face_color, XCAFDoc_ColorSurf ); } } else if( scolor->GetColor( stop.Current(), XCAFDoc_ColorSurf, face_color ) || scolor->GetColor( stop.Current(), XCAFDoc_ColorGen, face_color ) || scolor->GetColor( stop.Current(), XCAFDoc_ColorCurv, face_color ) ) { dcolor->SetColor( dtop.Current(), face_color, XCAFDoc_ColorSurf ); } stop.Next(); dtop.Next(); } // check for per-solid colors stop.Init( shape, TopAbs_SOLID ); dtop.Init( d_assy->GetShape( niulab ), TopAbs_SOLID, TopAbs_FACE ); while( stop.More() && dtop.More() ) { Quantity_Color face_color; TDF_Label tl; // give priority to the base shape's color if( s_assy->FindShape( stop.Current(), tl ) ) { if( scolor->GetColor( tl, XCAFDoc_ColorSurf, face_color ) || scolor->GetColor( tl, XCAFDoc_ColorGen, face_color ) || scolor->GetColor( tl, XCAFDoc_ColorCurv, face_color ) ) { dcolor->SetColor( dtop.Current(), face_color, XCAFDoc_ColorGen ); } } else if( scolor->GetColor( stop.Current(), XCAFDoc_ColorSurf, face_color ) || scolor->GetColor( stop.Current(), XCAFDoc_ColorGen, face_color ) || scolor->GetColor( stop.Current(), XCAFDoc_ColorCurv, face_color ) ) { dcolor->SetColor( dtop.Current(), face_color, XCAFDoc_ColorSurf ); } stop.Next(); dtop.Next(); } } ++id; }; return component; } OUTLINE::OUTLINE() { m_closed = false; return; } OUTLINE::~OUTLINE() { return; } void OUTLINE::Clear() { m_closed = false; m_curves.clear(); return; } bool OUTLINE::AddSegment( const KICADCURVE& aCurve ) { if( m_closed ) return false; if( m_curves.empty() ) { m_curves.push_back( aCurve ); if( CURVE_CIRCLE == aCurve.m_form ) m_closed = true; return true; } if( CURVE_CIRCLE == aCurve.m_form ) return false; // get the end points of the first curve double spx0, spy0; double epx0, epy0; getEndPoints( m_curves.front(), spx0, spy0, epx0, epy0 ); // get the end points of the free curve double spx1, spy1; double epx1, epy1; getEndPoints( aCurve, spx1, spy1, epx1, epy1 ); // check if the curve attaches to the front double dx, dy; dx = epx1 - spx0; dy = epy1 - spy0; if( dx * dx + dy * dy < MIN_LENGTH2 ) { m_curves.push_front( aCurve ); m_closed = testClosed( m_curves.front(), m_curves.back() ); return true; } else { dx = spx1 - spx0; dy = spy1 - spy0; if( dx * dx + dy * dy < MIN_LENGTH2 ) { KICADCURVE curve = aCurve; reverseCurve( curve ); m_curves.push_front( curve ); m_closed = testClosed( m_curves.front(), m_curves.back() ); return true; } } // check if the curve attaches to the back getEndPoints( m_curves.back(), spx0, spy0, epx0, epy0 ); dx = spx1 - epx0; dy = spy1 - epy0; if( dx * dx + dy * dy < MIN_LENGTH2 ) { m_curves.push_back( aCurve ); m_closed = testClosed( m_curves.front(), m_curves.back() ); return true; } else { dx = epx1 - epx0; dy = epy1 - epy0; if( dx * dx + dy * dy < MIN_LENGTH2 ) { KICADCURVE curve = aCurve; reverseCurve( curve ); m_curves.push_back( curve ); m_closed = testClosed( m_curves.front(), m_curves.back() ); return true; } } // this curve is not an end segment of the current loop return false; } bool OUTLINE::MakeShape( TopoDS_Shape& aShape, double aThickness ) { if( !aShape.IsNull() ) return false; // there is already data in the shape object if( m_curves.empty() ) return true; // suceeded in doing nothing if( !m_closed ) return false; // the loop is not closed BRepBuilderAPI_MakeWire wire; DOUBLET lastPoint; getCurveEndPoint( m_curves.back(), lastPoint ); for( auto i : m_curves ) { if( !addEdge( &wire, i, lastPoint ) ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * failed to add an edge\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } } TopoDS_Face face = BRepBuilderAPI_MakeFace( wire ); aShape = BRepPrimAPI_MakePrism( face, gp_Vec( 0, 0, aThickness ) ); if( aShape.IsNull() ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * failed to create a prismatic shape\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } return true; } bool OUTLINE::addEdge( BRepBuilderAPI_MakeWire* aWire, KICADCURVE& aCurve, DOUBLET& aLastPoint ) { TopoDS_Edge edge; DOUBLET endPoint; getCurveEndPoint( aCurve, endPoint ); switch( aCurve.m_form ) { case CURVE_LINE: edge = BRepBuilderAPI_MakeEdge( gp_Pnt( aLastPoint.x, aLastPoint.y, 0.0 ), gp_Pnt( endPoint.x, endPoint.y, 0.0 ) ); break; case CURVE_ARC: do { gp_Circ arc( gp_Ax2( gp_Pnt( aCurve.m_start.x, aCurve.m_start.y, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), aCurve.m_radius ); gp_Pnt sa( aLastPoint.x, aLastPoint.y, 0.0 ); gp_Pnt ea( endPoint.x, endPoint.y, 0.0 ); if( aCurve.m_angle < 0.0 ) edge = BRepBuilderAPI_MakeEdge( arc, ea, sa ); else edge = BRepBuilderAPI_MakeEdge( arc, sa, ea ); } while( 0 ); break; case CURVE_CIRCLE: edge = BRepBuilderAPI_MakeEdge( gp_Circ( gp_Ax2( gp_Pnt( aCurve.m_start.x, aCurve.m_start.y, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), aCurve.m_radius ) ); break; default: do { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * unsupported curve type: " << aCurve.m_form << "\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } while( 0 ); } if( edge.IsNull() ) return false; aLastPoint = endPoint; aWire->Add( edge ); if( BRepBuilderAPI_DisconnectedWire == aWire->Error() ) { std::ostringstream ostr; ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n"; ostr << " * failed to add curve\n"; wxLogMessage( "%s\n", ostr.str().c_str() ); return false; } return true; } bool OUTLINE::testClosed( KICADCURVE& aFrontCurve, KICADCURVE& aBackCurve ) { double spx0, spy0, epx0, epy0; getEndPoints( aFrontCurve, spx0, spy0, epx0, epy0 ); double spx1, spy1, epx1, epy1; getEndPoints( aBackCurve, spx1, spy1, epx1, epy1 ); double dx = epx1 - spx0; double dy = epy1 - spy0; double r = dx * dx + dy * dy; if( r < MIN_LENGTH2 ) return true; return false; }