/** * @file graphpcb.cpp * @brief PCB editor autorouting and "graphics" routines. */ /* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * * Copyright (C) 1992-2012 KiCad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include void TracePcbLine( int x0, int y0, int x1, int y1, int layer, int color ); void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer, int color, int op_logic ); static void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logic ); static void TraceFilledCircle( int cx, int cy, int radius, int aLayerMask, int color, int op_logic ); static void TraceCircle( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logic ); // Macro call to update cell. #define OP_CELL( layer, dy, dx ) \ { \ if( layer < 0 ) \ { \ RoutingMatrix.WriteCell( dy, dx, BOTTOM, color ); \ if( RoutingMatrix.m_RoutingLayersCount > 1 ) \ RoutingMatrix.WriteCell( dy, dx, TOP, color ); \ } \ else \ { \ if( layer == Route_Layer_BOTTOM ) \ RoutingMatrix.WriteCell( dy, dx, BOTTOM, color ); \ if( RoutingMatrix.m_RoutingLayersCount > 1 ) \ if( layer == Route_Layer_TOP ) \ RoutingMatrix.WriteCell( dy, dx, TOP, color ); \ } \ } void PlacePad( D_PAD* aPad, int color, int marge, int op_logic ) { int dx, dy; wxPoint shape_pos = aPad->ReturnShapePos(); dx = aPad->GetSize().x / 2; dx += marge; if( aPad->GetShape() == PAD_CIRCLE ) { TraceFilledCircle( shape_pos.x, shape_pos.y, dx, aPad->GetLayerMask(), color, op_logic ); return; } dy = aPad->GetSize().y / 2; dy += marge; if( aPad->GetShape() == PAD_TRAPEZOID ) { dx += abs( aPad->GetDelta().y ) / 2; dy += abs( aPad->GetDelta().x ) / 2; } // The pad is a rectangle ( horizontal or vertical ) if( int( aPad->GetOrientation() ) % 900 == 0 ) { // Orientation turned 90 deg. if( aPad->GetOrientation() == 900 || aPad->GetOrientation() == 2700 ) { EXCHG( dx, dy ); } TraceFilledRectangle( shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx, shape_pos.y + dy, aPad->GetLayerMask(), color, op_logic ); } else { TraceFilledRectangle( shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx, shape_pos.y + dy, (int) aPad->GetOrientation(), aPad->GetLayerMask(), color, op_logic ); } } /* Set to color the cells included in the circle * Parameters: * center: cx, cy. * radius: a value add to the radius or half the score pad * aLayerMask: layer occupied * color: mask write in cells * op_logic: type of writing in the cell (WRITE, OR) */ void TraceFilledCircle( int cx, int cy, int radius, int aLayerMask, int color, int op_logic ) { int row, col; int ux0, uy0, ux1, uy1; int row_max, col_max, row_min, col_min; int trace = 0; double fdistmin, fdistx, fdisty; int tstwrite = 0; int distmin; if( aLayerMask & GetLayerMask( Route_Layer_BOTTOM ) ) trace = 1; // Trace on BOTTOM if( aLayerMask & GetLayerMask( Route_Layer_TOP ) ) if( RoutingMatrix.m_RoutingLayersCount > 1 ) trace |= 2; // Trace on TOP if( trace == 0 ) return; RoutingMatrix.SetCellOperation( op_logic ); cx -= RoutingMatrix.GetBrdCoordOrigin().x; cy -= RoutingMatrix.GetBrdCoordOrigin().y; distmin = radius; // Calculate the bounding rectangle of the circle. ux0 = cx - radius; uy0 = cy - radius; ux1 = cx + radius; uy1 = cy + radius; // Calculate limit coordinates of cells belonging to the rectangle. row_max = uy1 / RoutingMatrix.m_GridRouting; col_max = ux1 / RoutingMatrix.m_GridRouting; row_min = uy0 / RoutingMatrix.m_GridRouting; // if (uy0 > row_min*Board.m_GridRouting) row_min++; col_min = ux0 / RoutingMatrix.m_GridRouting; // if (ux0 > col_min*Board.m_GridRouting) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (RoutingMatrix.m_Nrows - 1) ) row_max = RoutingMatrix.m_Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= (RoutingMatrix.m_Ncols - 1) ) col_max = RoutingMatrix.m_Ncols - 1; // Calculate coordinate limits of cell belonging to the rectangle. if( row_min > row_max ) row_max = row_min; if( col_min > col_max ) col_max = col_min; fdistmin = (double) distmin * distmin; for( row = row_min; row <= row_max; row++ ) { fdisty = (double) ( cy - ( row * RoutingMatrix.m_GridRouting ) ); fdisty *= fdisty; for( col = col_min; col <= col_max; col++ ) { fdistx = (double) ( cx - ( col * RoutingMatrix.m_GridRouting ) ); fdistx *= fdistx; if( fdistmin <= ( fdistx + fdisty ) ) continue; if( trace & 1 ) RoutingMatrix.WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) RoutingMatrix.WriteCell( row, col, TOP, color ); tstwrite = 1; } } if( tstwrite ) return; /* If no cell has been written, it affects the 4 neighboring diagonal * (Adverse event: pad off grid in the center of the 4 neighboring * diagonal) */ distmin = RoutingMatrix.m_GridRouting / 2 + 1; fdistmin = ( (double) distmin * distmin ) * 2; // Distance to center point diagonally for( row = row_min; row <= row_max; row++ ) { fdisty = (double) ( cy - ( row * RoutingMatrix.m_GridRouting ) ); fdisty *= fdisty; for( col = col_min; col <= col_max; col++ ) { fdistx = (double) ( cx - ( col * RoutingMatrix.m_GridRouting ) ); fdistx *= fdistx; if( fdistmin <= ( fdistx + fdisty ) ) continue; if( trace & 1 ) RoutingMatrix.WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) RoutingMatrix.WriteCell( row, col, TOP, color ); } } } void TraceSegmentPcb( TRACK* pt_segm, int color, int marge, int op_logic ) { int half_width; int ux0, uy0, ux1, uy1; half_width = ( pt_segm->m_Width / 2 ) + marge; // Calculate the bounding rectangle of the segment (if H, V or Via) ux0 = pt_segm->m_Start.x - RoutingMatrix.GetBrdCoordOrigin().x; uy0 = pt_segm->m_Start.y - RoutingMatrix.GetBrdCoordOrigin().y; ux1 = pt_segm->m_End.x - RoutingMatrix.GetBrdCoordOrigin().x; uy1 = pt_segm->m_End.y - RoutingMatrix.GetBrdCoordOrigin().y; // Test if VIA (filled circle was drawn) if( pt_segm->Type() == PCB_VIA_T ) { int mask_layer = 0; if( pt_segm->IsOnLayer( Route_Layer_BOTTOM ) ) mask_layer = 1 << Route_Layer_BOTTOM; if( pt_segm->IsOnLayer( Route_Layer_TOP ) ) { if( mask_layer == 0 ) mask_layer = 1 << Route_Layer_TOP; else mask_layer = -1; } if( color == VIA_IMPOSSIBLE ) mask_layer = -1; if( mask_layer ) TraceFilledCircle( pt_segm->m_Start.x, pt_segm->m_Start.y, half_width, mask_layer, color, op_logic ); return; } int layer = pt_segm->GetLayer(); if( color == VIA_IMPOSSIBLE ) layer = -1; // The segment is here a straight line or a circle or an arc.: if( pt_segm->m_Shape == S_CIRCLE ) { TraceCircle( ux0, uy0, ux1, uy1, half_width, layer, color, op_logic ); return; } if( pt_segm->m_Shape == S_ARC ) { TraceArc( ux0, uy0, ux1, uy1, pt_segm->m_Param, half_width, layer, color, op_logic ); return; } // The segment is here a line segment. if( ( ux0 != ux1 ) && ( uy0 != uy1 ) ) // Segment tilts. { DrawSegmentQcq( ux0, uy0, ux1, uy1, half_width, layer, color, op_logic ); return; } // The segment is horizontal or vertical. // F4EXB 051018-01 DrawSegmentQcq( ux0, uy0, ux1, uy1, half_width, layer, color, op_logic ); } /* Draws a line, if layer = -1 on all layers */ void TracePcbLine( int x0, int y0, int x1, int y1, int layer, int color, int op_logic ) { int dx, dy, lim; int cumul, inc, il, delta; RoutingMatrix.SetCellOperation( op_logic ); if( x0 == x1 ) // Vertical. { if( y1 < y0 ) EXCHG( y0, y1 ); dy = y0 / RoutingMatrix.m_GridRouting; lim = y1 / RoutingMatrix.m_GridRouting; dx = x0 / RoutingMatrix.m_GridRouting; // Clipping limits of board. if( ( dx < 0 ) || ( dx >= RoutingMatrix.m_Ncols ) ) return; if( dy < 0 ) dy = 0; if( lim >= RoutingMatrix.m_Nrows ) lim = RoutingMatrix.m_Nrows - 1; for( ; dy <= lim; dy++ ) { OP_CELL( layer, dy, dx ); } return; } if( y0 == y1 ) // Horizontal { if( x1 < x0 ) EXCHG( x0, x1 ); dx = x0 / RoutingMatrix.m_GridRouting; lim = x1 / RoutingMatrix.m_GridRouting; dy = y0 / RoutingMatrix.m_GridRouting; // Clipping limits of board. if( ( dy < 0 ) || ( dy >= RoutingMatrix.m_Nrows ) ) return; if( dx < 0 ) dx = 0; if( lim >= RoutingMatrix.m_Ncols ) lim = RoutingMatrix.m_Ncols - 1; for( ; dx <= lim; dx++ ) { OP_CELL( layer, dy, dx ); } return; } // Here is some perspective: using the algorithm LUCAS. if( abs( x1 - x0 ) >= abs( y1 - y0 ) ) // segment slightly inclined/ { if( x1 < x0 ) { EXCHG( x1, x0 ); EXCHG( y1, y0 ); } dx = x0 / RoutingMatrix.m_GridRouting; lim = x1 / RoutingMatrix.m_GridRouting; dy = y0 / RoutingMatrix.m_GridRouting; inc = 1; if( y1 < y0 ) inc = -1; il = lim - dx; cumul = il / 2; delta = abs( y1 - y0 ) / RoutingMatrix.m_GridRouting; for( ; dx <= lim; ) { if( ( dx >= 0 ) && ( dy >= 0 ) && ( dx < RoutingMatrix.m_Ncols ) && ( dy < RoutingMatrix.m_Nrows ) ) { OP_CELL( layer, dy, dx ); } dx++; cumul += delta; if( cumul > il ) { cumul -= il; dy += inc; } } } else { if( y1 < y0 ) { EXCHG( x1, x0 ); EXCHG( y1, y0 ); } dy = y0 / RoutingMatrix.m_GridRouting; lim = y1 / RoutingMatrix.m_GridRouting; dx = x0 / RoutingMatrix.m_GridRouting; inc = 1; if( x1 < x0 ) inc = -1; il = lim - dy; cumul = il / 2; delta = abs( x1 - x0 ) / RoutingMatrix.m_GridRouting; for( ; dy <= lim; ) { if( ( dx >= 0 ) && ( dy >= 0 ) && ( dx < RoutingMatrix.m_Ncols ) && ( dy < RoutingMatrix.m_Nrows ) ) { OP_CELL( layer, dy, dx ); } dy++; cumul += delta; if( cumul > il ) { cumul -= il; dx += inc; } } } } void TraceFilledRectangle( int ux0, int uy0, int ux1, int uy1, int aLayerMask, int color, int op_logic ) { int row, col; int row_min, row_max, col_min, col_max; int trace = 0; if( ( aLayerMask & GetLayerMask( Route_Layer_BOTTOM ) ) ) trace = 1; // Trace on BOTTOM if( ( aLayerMask & GetLayerMask( Route_Layer_TOP ) ) && RoutingMatrix.m_RoutingLayersCount > 1 ) trace |= 2; // Trace on TOP if( trace == 0 ) return; RoutingMatrix.SetCellOperation( op_logic ); ux0 -= RoutingMatrix.GetBrdCoordOrigin().x; uy0 -= RoutingMatrix.GetBrdCoordOrigin().y; ux1 -= RoutingMatrix.GetBrdCoordOrigin().x; uy1 -= RoutingMatrix.GetBrdCoordOrigin().y; // Calculating limits coord cells belonging to the rectangle. row_max = uy1 / RoutingMatrix.m_GridRouting; col_max = ux1 / RoutingMatrix.m_GridRouting; row_min = uy0 / RoutingMatrix.m_GridRouting; if( uy0 > row_min * RoutingMatrix.m_GridRouting ) row_min++; col_min = ux0 / RoutingMatrix.m_GridRouting; if( ux0 > col_min * RoutingMatrix.m_GridRouting ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= ( RoutingMatrix.m_Nrows - 1 ) ) row_max = RoutingMatrix.m_Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= ( RoutingMatrix.m_Ncols - 1 ) ) col_max = RoutingMatrix.m_Ncols - 1; for( row = row_min; row <= row_max; row++ ) { for( col = col_min; col <= col_max; col++ ) { if( trace & 1 ) RoutingMatrix.WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) RoutingMatrix.WriteCell( row, col, TOP, color ); } } } void TraceFilledRectangle( int ux0, int uy0, int ux1, int uy1, int angle, int aLayerMask, int color, int op_logic ) { int row, col; int cx, cy; // Center of rectangle int radius; // Radius of the circle int row_min, row_max, col_min, col_max; int rotrow, rotcol; int trace = 0; if( aLayerMask & GetLayerMask( Route_Layer_BOTTOM ) ) trace = 1; // Trace on BOTTOM if( aLayerMask & GetLayerMask( Route_Layer_TOP ) ) { if( RoutingMatrix.m_RoutingLayersCount > 1 ) trace |= 2; // Trace on TOP } if( trace == 0 ) return; RoutingMatrix.SetCellOperation( op_logic ); ux0 -= RoutingMatrix.GetBrdCoordOrigin().x; uy0 -= RoutingMatrix.GetBrdCoordOrigin().y; ux1 -= RoutingMatrix.GetBrdCoordOrigin().x; uy1 -= RoutingMatrix.GetBrdCoordOrigin().y; cx = (ux0 + ux1) / 2; cy = (uy0 + uy1) / 2; radius = (int) sqrt( (double) ( cx - ux0 ) * ( cx - ux0 ) + (double) ( cy - uy0 ) * ( cy - uy0 ) ); // Calculating coordinate limits belonging to the rectangle. row_max = ( cy + radius ) / RoutingMatrix.m_GridRouting; col_max = ( cx + radius ) / RoutingMatrix.m_GridRouting; row_min = ( cy - radius ) / RoutingMatrix.m_GridRouting; if( uy0 > row_min * RoutingMatrix.m_GridRouting ) row_min++; col_min = ( cx - radius ) / RoutingMatrix.m_GridRouting; if( ux0 > col_min * RoutingMatrix.m_GridRouting ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= ( RoutingMatrix.m_Nrows - 1 ) ) row_max = RoutingMatrix.m_Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= ( RoutingMatrix.m_Ncols - 1 ) ) col_max = RoutingMatrix.m_Ncols - 1; for( row = row_min; row <= row_max; row++ ) { for( col = col_min; col <= col_max; col++ ) { rotrow = row * RoutingMatrix.m_GridRouting; rotcol = col * RoutingMatrix.m_GridRouting; RotatePoint( &rotcol, &rotrow, cx, cy, -angle ); if( rotrow <= uy0 ) continue; if( rotrow >= uy1 ) continue; if( rotcol <= ux0 ) continue; if( rotcol >= ux1 ) continue; if( trace & 1 ) RoutingMatrix.WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) RoutingMatrix.WriteCell( row, col, TOP, color ); } } } /* Fills all cells inside a segment * half-width = lg, org = ux0,uy0 end = ux1,uy1 * coordinates are in PCB units */ void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logic ) { int row, col; int inc; int row_max, col_max, row_min, col_min; int demi_pas; int angle; int cx, cy, dx, dy; RoutingMatrix.SetCellOperation( op_logic ); // Make coordinate ux1 tj > ux0 to simplify calculations if( ux1 < ux0 ) { EXCHG( ux1, ux0 ); EXCHG( uy1, uy0 ); } // Calculating the incrementing the Y axis inc = 1; if( uy1 < uy0 ) inc = -1; demi_pas = RoutingMatrix.m_GridRouting / 2; col_min = ( ux0 - lg ) / RoutingMatrix.m_GridRouting; if( col_min < 0 ) col_min = 0; col_max = ( ux1 + lg + demi_pas ) / RoutingMatrix.m_GridRouting; if( col_max > ( RoutingMatrix.m_Ncols - 1 ) ) col_max = RoutingMatrix.m_Ncols - 1; if( inc > 0 ) { row_min = ( uy0 - lg ) / RoutingMatrix.m_GridRouting; row_max = ( uy1 + lg + demi_pas ) / RoutingMatrix.m_GridRouting; } else { row_min = ( uy1 - lg ) / RoutingMatrix.m_GridRouting; row_max = ( uy0 + lg + demi_pas ) / RoutingMatrix.m_GridRouting; } if( row_min < 0 ) row_min = 0; if( row_min > ( RoutingMatrix.m_Nrows - 1 ) ) row_min = RoutingMatrix.m_Nrows - 1; if( row_max < 0 ) row_max = 0; if( row_max > ( RoutingMatrix.m_Nrows - 1 ) ) row_max = RoutingMatrix.m_Nrows - 1; dx = ux1 - ux0; dy = uy1 - uy0; if( dx ) { angle = (int) ( atan2( (double) dy, (double) dx ) * 1800 / M_PI ); } else { angle = 900; if( dy < 0 ) angle = -900; } RotatePoint( &dx, &dy, angle ); // dx = length, dy = 0 for( col = col_min; col <= col_max; col++ ) { int cxr; cxr = ( col * RoutingMatrix.m_GridRouting ) - ux0; for( row = row_min; row <= row_max; row++ ) { cy = (row * RoutingMatrix.m_GridRouting) - uy0; cx = cxr; RotatePoint( &cx, &cy, angle ); if( abs( cy ) > lg ) continue; // The point is too far on the Y axis. /* This point a test is close to the segment: the position * along the X axis must be tested. */ if( ( cx >= 0 ) && ( cx <= dx ) ) { OP_CELL( layer, row, col ); continue; } // Examination of extremities are rounded. if( ( cx < 0 ) && ( cx >= -lg ) ) { if( ( ( cx * cx ) + ( cy * cy ) ) <= ( lg * lg ) ) OP_CELL( layer, row, col ); continue; } if( ( cx > dx ) && ( cx <= ( dx + lg ) ) ) { if( ( ( ( cx - dx ) * ( cx - dx ) ) + ( cy * cy ) ) <= ( lg * lg ) ) OP_CELL( layer, row, col ); continue; } } } } /* Fills all cells of the routing matrix contained in the circle * half-width = lg, center = ux0, uy0, ux1,uy1 is a point on the circle. * coord are in PCB units. */ void TraceCircle( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logic ) { int radius, nb_segm; int x0, y0, // Starting point of the current segment trace. x1, y1; // End point. int ii; int angle; radius = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) ); x0 = x1 = radius; y0 = y1 = 0; if( lg < 1 ) lg = 1; nb_segm = ( 2 * radius ) / lg; if( nb_segm < 5 ) nb_segm = 5; if( nb_segm > 100 ) nb_segm = 100; for( ii = 1; ii < nb_segm; ii++ ) { angle = (3600 * ii) / nb_segm; x1 = (int) ( radius * cos( DEG2RAD( (double)angle / 10.0 ) ) ); y1 = (int) ( radius * sin( DEG2RAD( (double)angle / 10.0 ) ) ); DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logic ); x0 = x1; y0 = y1; } DrawSegmentQcq( x1 + ux0, y1 + uy0, ux0 + radius, uy0, lg, layer, color, op_logic ); } /* Fills all routing matrix cells contained in the arc * angle = ArcAngle, half-width lg * center = ux0,uy0, starting at ux1, uy1. Coordinates are in * PCB units. */ void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer, int color, int op_logic ) { int radius, nb_segm; int x0, y0, // Starting point of the current segment trace x1, y1; // End point int ii; int angle, StAngle; radius = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) ); x0 = ux1 - ux0; y0 = uy1 - uy0; StAngle = ArcTangente( uy1 - uy0, ux1 - ux0 ); if( lg < 1 ) lg = 1; nb_segm = ( 2 * radius ) / lg; nb_segm = ( nb_segm * abs( ArcAngle ) ) / 3600; if( nb_segm < 5 ) nb_segm = 5; if( nb_segm > 100 ) nb_segm = 100; for( ii = 1; ii <= nb_segm; ii++ ) { angle = ( ArcAngle * ii ) / nb_segm; angle += StAngle; while( angle >= 3600 ) angle -= 3600; while( angle < 0 ) angle += 3600; x1 = (int) ( radius * cos( DEG2RAD( (double)angle / 10.0 ) ) ); y1 = (int) ( radius * sin( DEG2RAD( (double)angle / 10.0 ) ) ); DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logic ); x0 = x1; y0 = y1; } }