/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2004-2022 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include "plotters/plotter.h" LIB_SHAPE::LIB_SHAPE( LIB_SYMBOL* aParent, SHAPE_T aShape, int aLineWidth, FILL_T aFillType, KICAD_T aType ) : LIB_ITEM( aType, aParent ), EDA_SHAPE( aShape, aLineWidth, aFillType ) { m_editState = 0; } bool LIB_SHAPE::HitTest( const VECTOR2I& aPosRef, int aAccuracy ) const { if( aAccuracy < schIUScale.MilsToIU( MINIMUM_SELECTION_DISTANCE ) ) aAccuracy = schIUScale.MilsToIU( MINIMUM_SELECTION_DISTANCE ); return hitTest( DefaultTransform.TransformCoordinate( aPosRef ), aAccuracy ); } bool LIB_SHAPE::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const { if( m_flags & (STRUCT_DELETED | SKIP_STRUCT ) ) return false; return hitTest( DefaultTransform.TransformCoordinate( aRect ), aContained, aAccuracy ); } EDA_ITEM* LIB_SHAPE::Clone() const { return new LIB_SHAPE( *this ); } int LIB_SHAPE::compare( const LIB_ITEM& aOther, int aCompareFlags ) const { int retv = LIB_ITEM::compare( aOther, aCompareFlags ); if( retv ) return retv; return EDA_SHAPE::Compare( &static_cast( aOther ) ); } void LIB_SHAPE::Offset( const VECTOR2I& aOffset ) { move( aOffset ); } void LIB_SHAPE::MoveTo( const VECTOR2I& aPosition ) { setPosition( aPosition ); } void LIB_SHAPE::Normalize() { if( GetShape() == SHAPE_T::RECT ) { VECTOR2I size = GetEnd() - GetPosition(); if( size.y > 0 ) { SetStartY( GetStartY() + size.y ); SetEndY( GetStartY() - size.y ); } if( size.x < 0 ) { SetStartX( GetStartX() + size.x ); SetEndX( GetStartX() - size.x ); } } } void LIB_SHAPE::MirrorHorizontal( const VECTOR2I& aCenter ) { flip( aCenter, true ); } void LIB_SHAPE::MirrorVertical( const VECTOR2I& aCenter ) { flip( aCenter, false ); } void LIB_SHAPE::Rotate( const VECTOR2I& aCenter, bool aRotateCCW ) { EDA_ANGLE rot_angle = aRotateCCW ? -ANGLE_90 : ANGLE_90; rotate( aCenter, rot_angle ); } void LIB_SHAPE::Plot( PLOTTER* aPlotter, bool aBackground, const VECTOR2I& aOffset, const TRANSFORM& aTransform, bool aDimmed ) const { if( IsPrivate() ) return; VECTOR2I start = aTransform.TransformCoordinate( m_start ) + aOffset; VECTOR2I end = aTransform.TransformCoordinate( m_end ) + aOffset; VECTOR2I center = aTransform.TransformCoordinate( getCenter() ) + aOffset; static std::vector cornerList; if( GetShape() == SHAPE_T::POLY ) { const SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 ); cornerList.clear(); for( const VECTOR2I& pt : poly.CPoints() ) cornerList.push_back( aTransform.TransformCoordinate( pt ) + aOffset ); } else if( GetShape() == SHAPE_T::BEZIER ) { cornerList.clear(); for( const VECTOR2I& pt : m_bezierPoints ) cornerList.push_back( aTransform.TransformCoordinate( pt ) + aOffset ); } else if( GetShape() == SHAPE_T::ARC ) { EDA_ANGLE t1, t2; CalcArcAngles( t1, t2 ); // N.B. The order of evaluation is critical here as MapAngles will modify t1, t2 // and the Normalize routine depends on these modifications for the correct output bool transformed = aTransform.MapAngles( &t1, &t2 ); EDA_ANGLE arc_angle = ( t1 - t2 ).Normalize180(); bool transformed2 = ( arc_angle > ANGLE_0 ) && ( arc_angle < ANGLE_180 ); if( transformed != transformed2 ) std::swap( start, end ); } int penWidth; COLOR4D color = GetStroke().GetColor(); PLOT_DASH_TYPE lineStyle = GetStroke().GetPlotStyle(); FILL_T fill = m_fill; if( aBackground ) { if( !aPlotter->GetColorMode() ) return; switch( m_fill ) { case FILL_T::FILLED_SHAPE: return; case FILL_T::FILLED_WITH_COLOR: color = GetFillColor(); break; case FILL_T::FILLED_WITH_BG_BODYCOLOR: color = aPlotter->RenderSettings()->GetLayerColor( LAYER_DEVICE_BACKGROUND ); break; default: return; } penWidth = 0; lineStyle = PLOT_DASH_TYPE::SOLID; } else { if( !aPlotter->GetColorMode() || color == COLOR4D::UNSPECIFIED ) color = aPlotter->RenderSettings()->GetLayerColor( LAYER_DEVICE ); if( lineStyle == PLOT_DASH_TYPE::DEFAULT ) lineStyle = PLOT_DASH_TYPE::SOLID; if( m_fill == FILL_T::FILLED_SHAPE ) fill = m_fill; else fill = FILL_T::NO_FILL; penWidth = GetEffectivePenWidth( aPlotter->RenderSettings() ); } COLOR4D bg = aPlotter->RenderSettings()->GetBackgroundColor(); if( bg == COLOR4D::UNSPECIFIED || !aPlotter->GetColorMode() ) bg = COLOR4D::WHITE; if( aDimmed ) color = color.Mix( bg, 0.5f ); aPlotter->SetColor( color ); aPlotter->SetDash( penWidth, lineStyle ); switch( GetShape() ) { case SHAPE_T::ARC: { // In some plotters (not all) the arc is approximated by segments, and // a error max is needed. We try to approximate by 360/5 segments by 360 deg int arc2segment_error = CircleToEndSegmentDeltaRadius( GetRadius(), 360/5 ); aPlotter->Arc( center, start, end, fill, penWidth, arc2segment_error ); } break; case SHAPE_T::CIRCLE: aPlotter->Circle( center, GetRadius() * 2, fill, penWidth ); break; case SHAPE_T::RECT: aPlotter->Rect( start, end, fill, penWidth ); break; case SHAPE_T::POLY: case SHAPE_T::BEZIER: aPlotter->PlotPoly( cornerList, fill, penWidth ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } aPlotter->SetDash( penWidth, PLOT_DASH_TYPE::SOLID ); } int LIB_SHAPE::GetPenWidth() const { return GetWidth(); } void LIB_SHAPE::print( const RENDER_SETTINGS* aSettings, const VECTOR2I& aOffset, void* aData, const TRANSFORM& aTransform, bool aDimmed ) { if( IsPrivate() ) return; bool forceNoFill = static_cast( aData ); int penWidth = GetEffectivePenWidth( aSettings ); if( forceNoFill && IsFilled() && penWidth == 0 ) return; wxDC* DC = aSettings->GetPrintDC(); VECTOR2I pt1 = aTransform.TransformCoordinate( m_start ) + aOffset; VECTOR2I pt2 = aTransform.TransformCoordinate( m_end ) + aOffset; VECTOR2I c; COLOR4D color = GetStroke().GetColor(); if( color == COLOR4D::UNSPECIFIED ) color = aSettings->GetLayerColor( LAYER_DEVICE ); COLOR4D bg = aSettings->GetBackgroundColor(); if( bg == COLOR4D::UNSPECIFIED || GetGRForceBlackPenState() ) bg = COLOR4D::WHITE; if( aDimmed ) color = color.Mix( bg, 0.5f ); unsigned ptCount = 0; VECTOR2I* buffer = nullptr; if( GetShape() == SHAPE_T::POLY ) { const SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 ); ptCount = poly.GetPointCount(); buffer = new VECTOR2I[ptCount]; for( unsigned ii = 0; ii < ptCount; ++ii ) buffer[ii] = aTransform.TransformCoordinate( poly.CPoint( ii ) ) + aOffset; } else if( GetShape() == SHAPE_T::BEZIER ) { ptCount = m_bezierPoints.size(); buffer = new VECTOR2I[ptCount]; for( size_t ii = 0; ii < ptCount; ++ii ) buffer[ii] = aTransform.TransformCoordinate( m_bezierPoints[ii] ) + aOffset; } else if( GetShape() == SHAPE_T::ARC ) { c = aTransform.TransformCoordinate( getCenter() ) + aOffset; EDA_ANGLE t1, t2; CalcArcAngles( t1, t2 ); // N.B. The order of evaluation is critical here as MapAngles will modify t1, t2 // and the Normalize routine depends on these modifications for the correct output bool transformed = aTransform.MapAngles( &t1, &t2 ); EDA_ANGLE arc_angle = ( t1 - t2 ).Normalize180(); bool transformed2 = ( arc_angle > ANGLE_0 ) && ( arc_angle < ANGLE_180 ); if( transformed == transformed2 ) std::swap( pt1, pt2 ); } COLOR4D fillColor = COLOR4D::UNSPECIFIED; if( !forceNoFill ) { if( GetFillMode() == FILL_T::FILLED_SHAPE ) fillColor = color; else if( GetFillMode() == FILL_T::FILLED_WITH_BG_BODYCOLOR ) fillColor = aSettings->GetLayerColor( LAYER_DEVICE_BACKGROUND ); else if( GetFillMode() == FILL_T::FILLED_WITH_COLOR ) fillColor = GetFillColor(); } if( fillColor != COLOR4D::UNSPECIFIED ) { switch( GetShape() ) { case SHAPE_T::ARC: GRFilledArc( DC, pt1, pt2, c, 0, fillColor, fillColor ); break; case SHAPE_T::CIRCLE: GRFilledCircle( DC, pt1, GetRadius(), 0, fillColor, fillColor ); break; case SHAPE_T::RECT: GRFilledRect( DC, pt1, pt2, 0, fillColor, fillColor ); break; case SHAPE_T::POLY: GRPoly( DC, ptCount, buffer, true, 0, fillColor, fillColor ); break; case SHAPE_T::BEZIER: GRPoly( DC, ptCount, buffer, true, 0, fillColor, fillColor ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } } penWidth = std::max( penWidth, aSettings->GetDefaultPenWidth() ); if( GetEffectiveLineStyle() == PLOT_DASH_TYPE::SOLID ) { switch( GetShape() ) { case SHAPE_T::ARC: GRArc( DC, pt1, pt2, c, penWidth, color ); break; case SHAPE_T::CIRCLE: GRCircle( DC, pt1, GetRadius(), penWidth, color ); break; case SHAPE_T::RECT: GRRect( DC, pt1, pt2, penWidth, color ); break; case SHAPE_T::POLY: GRPoly( DC, ptCount, buffer, false, penWidth, color, color ); break; case SHAPE_T::BEZIER: GRPoly( DC, ptCount, buffer, false, penWidth, color, color ); break; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } } else { std::vector shapes = MakeEffectiveShapes( true ); for( SHAPE* shape : shapes ) { STROKE_PARAMS::Stroke( shape, GetEffectiveLineStyle(), penWidth, aSettings, [&]( const VECTOR2I& a, const VECTOR2I& b ) { VECTOR2I pts = aTransform.TransformCoordinate( a ) + aOffset; VECTOR2I pte = aTransform.TransformCoordinate( b ) + aOffset; GRLine( DC, pts.x, pts.y, pte.x, pte.y, penWidth, color ); } ); } for( SHAPE* shape : shapes ) delete shape; } delete[] buffer; } const BOX2I LIB_SHAPE::GetBoundingBox() const { BOX2I bbox = getBoundingBox(); bbox.RevertYAxis(); return bbox; } void LIB_SHAPE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { LIB_ITEM::GetMsgPanelInfo( aFrame, aList ); ShapeGetMsgPanelInfo( aFrame, aList ); } wxString LIB_SHAPE::GetSelectMenuText( UNITS_PROVIDER* aUnitsProvider ) const { switch( GetShape() ) { case SHAPE_T::ARC: return wxString::Format( _( "Arc, radius %s" ), aUnitsProvider->MessageTextFromValue( GetRadius() ) ); case SHAPE_T::CIRCLE: return wxString::Format( _( "Circle, radius %s" ), aUnitsProvider->MessageTextFromValue( GetRadius() ) ); case SHAPE_T::RECT: return wxString::Format( _( "Rectangle, width %s height %s" ), aUnitsProvider->MessageTextFromValue( std::abs( m_start.x - m_end.x ) ), aUnitsProvider->MessageTextFromValue( std::abs( m_start.y - m_end.y ) ) ); case SHAPE_T::POLY: return wxString::Format( _( "Polyline, %d points" ), int( m_poly.Outline( 0 ).GetPointCount() ) ); case SHAPE_T::BEZIER: return wxString::Format( _( "Bezier Curve, %d points" ), int( m_bezierPoints.size() ) ); default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return wxEmptyString; } } BITMAPS LIB_SHAPE::GetMenuImage() const { switch( GetShape() ) { case SHAPE_T::SEGMENT: return BITMAPS::add_line; case SHAPE_T::ARC: return BITMAPS::add_arc; case SHAPE_T::CIRCLE: return BITMAPS::add_circle; case SHAPE_T::RECT: return BITMAPS::add_rectangle; case SHAPE_T::POLY: return BITMAPS::add_graphical_segments; default: UNIMPLEMENTED_FOR( SHAPE_T_asString() ); return BITMAPS::question_mark; } } void LIB_SHAPE::AddPoint( const VECTOR2I& aPosition ) { if( GetShape() == SHAPE_T::POLY ) { if( m_poly.IsEmpty() ) m_poly.NewOutline(); m_poly.Outline( 0 ).Append( aPosition, true ); } else { UNIMPLEMENTED_FOR( SHAPE_T_asString() ); } } void LIB_SHAPE::ViewGetLayers( int aLayers[], int& aCount ) const { aCount = 3; aLayers[0] = IsPrivate() ? LAYER_PRIVATE_NOTES : LAYER_DEVICE; aLayers[1] = IsPrivate() ? LAYER_NOTES_BACKGROUND : LAYER_DEVICE_BACKGROUND; aLayers[2] = LAYER_SELECTION_SHADOWS; }