/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2016 CERN * Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pns_kicad_iface.h" #include "pns_arc.h" #include "pns_routing_settings.h" #include "pns_sizes_settings.h" #include "pns_item.h" #include "pns_solid.h" #include "pns_segment.h" #include "pns_node.h" #include "pns_router.h" #include "pns_debug_decorator.h" #include "router_preview_item.h" typedef VECTOR2I::extended_type ecoord; struct CLEARANCE_CACHE_KEY { const PNS::ITEM* A; const PNS::ITEM* B; bool Flag; bool operator==(const CLEARANCE_CACHE_KEY& other) const { return A == other.A && B == other.B && Flag == other.Flag; } }; namespace std { template <> struct hash { std::size_t operator()( const CLEARANCE_CACHE_KEY& k ) const { return hash()( k.A ) ^ hash()( k.B ) ^ hash()( k.Flag ); } }; } class PNS_PCBNEW_RULE_RESOLVER : public PNS::RULE_RESOLVER { public: PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface ); virtual ~PNS_PCBNEW_RULE_RESOLVER(); virtual int Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon = true ) override; virtual int HoleClearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon = true ) override; virtual int HoleToHoleClearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon = true ) override; virtual int DpCoupledNet( int aNet ) override; virtual int DpNetPolarity( int aNet ) override; virtual bool DpNetPair( const PNS::ITEM* aItem, int& aNetP, int& aNetN ) override; virtual bool IsDiffPair( const PNS::ITEM* aA, const PNS::ITEM* aB ) override; virtual bool IsInNetTie( const PNS::ITEM* aA ) override; virtual bool IsNetTieExclusion( const PNS::ITEM* aItem, const VECTOR2I& aCollisionPos, const PNS::ITEM* aCollidingItem ) override; virtual bool QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB, int aLayer, PNS::CONSTRAINT* aConstraint ) override; virtual wxString NetName( int aNet ) override; int ClearanceEpsilon() const { return m_clearanceEpsilon; } void ClearCacheForItem( const PNS::ITEM* aItem ) override; void ClearCaches() override; private: int holeRadius( const PNS::ITEM* aItem ) const; /** * Checks for netnamed differential pairs. * This accepts nets named suffixed by 'P', 'N', '+', '-', as well as additional * numbers and underscores following the suffix. So NET_P_123 is a valid positive net * name matched to NET_N_123. * @param aNetName Input net name to check for DP naming * @param aComplementNet Generated net name for the pair * @return -1 if found the negative pair, +1 if found the positive pair, 0 otherwise */ int matchDpSuffix( const wxString& aNetName, wxString& aComplementNet ); private: PNS::ROUTER_IFACE* m_routerIface; BOARD* m_board; PCB_TRACK m_dummyTracks[2]; PCB_ARC m_dummyArcs[2]; PCB_VIA m_dummyVias[2]; int m_clearanceEpsilon; std::unordered_map m_clearanceCache; std::unordered_map m_holeClearanceCache; std::unordered_map m_holeToHoleClearanceCache; }; PNS_PCBNEW_RULE_RESOLVER::PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface ) : m_routerIface( aRouterIface ), m_board( aBoard ), m_dummyTracks{ { aBoard }, { aBoard } }, m_dummyArcs{ { aBoard }, { aBoard } }, m_dummyVias{ { aBoard }, { aBoard } } { if( aBoard ) m_clearanceEpsilon = aBoard->GetDesignSettings().GetDRCEpsilon(); else m_clearanceEpsilon = 0; } PNS_PCBNEW_RULE_RESOLVER::~PNS_PCBNEW_RULE_RESOLVER() { } int PNS_PCBNEW_RULE_RESOLVER::holeRadius( const PNS::ITEM* aItem ) const { if( aItem->Kind() == PNS::ITEM::SOLID_T ) { const PAD* pad = dynamic_cast( aItem->Parent() ); if( pad && pad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) return pad->GetDrillSize().x / 2; } else if( aItem->Kind() == PNS::ITEM::VIA_T ) { const PCB_VIA* via = dynamic_cast( aItem->Parent() ); if( via ) return via->GetDrillValue() / 2; } return 0; } bool PNS_PCBNEW_RULE_RESOLVER::IsDiffPair( const PNS::ITEM* aA, const PNS::ITEM* aB ) { int net_p, net_n; if( !DpNetPair( aA, net_p, net_n ) ) return false; if( aA->Net() == net_p && aB->Net() == net_n ) return true; if( aB->Net() == net_p && aA->Net() == net_n ) return true; return false; } bool PNS_PCBNEW_RULE_RESOLVER::IsInNetTie( const PNS::ITEM* aA ) { BOARD_ITEM* item = aA->Parent(); BOARD_ITEM* parentFootprint = item ? item->GetParentFootprint() : nullptr; if( parentFootprint ) return static_cast( parentFootprint )->IsNetTie(); return false; } bool PNS_PCBNEW_RULE_RESOLVER::IsNetTieExclusion( const PNS::ITEM* aItem, const VECTOR2I& aCollisionPos, const PNS::ITEM* aCollidingItem ) { wxCHECK( aItem && aCollidingItem, false ); std::shared_ptr drcEngine = m_board->GetDesignSettings().m_DRCEngine; BOARD_ITEM* collidingItem = aCollidingItem->Parent(); FOOTPRINT* collidingFp = static_cast( collidingItem->GetParentFootprint() ); FOOTPRINT* itemFp = aItem->Parent() ? static_cast( aItem->Parent()->GetParentFootprint() ) : nullptr; if( collidingFp && itemFp && ( collidingFp == itemFp ) && itemFp->IsNetTie() ) { // Two items colliding from the same net tie footprint are not checked return true; } if( drcEngine ) { return drcEngine->IsNetTieExclusion( aItem->Net(), ToLAYER_ID( aItem->Layer() ), aCollisionPos, collidingItem ); } return false; } bool isCopper( const PNS::ITEM* aItem ) { BOARD_ITEM* parent = aItem->Parent(); if( parent && parent->Type() == PCB_PAD_T ) { PAD* pad = static_cast( parent ); if( !pad->IsOnCopperLayer() ) return false; if( pad->GetAttribute() != PAD_ATTRIB::NPTH ) return true; // round NPTH with a hole size >= pad size are not on a copper layer // All other NPTH are seen on copper layers // This is a basic criteria, but probably enough for a NPTH if( pad->GetShape() == PAD_SHAPE::CIRCLE ) { if( pad->GetSize().x <= pad->GetDrillSize().x ) return false; } return true; } return true; } bool isEdge( const PNS::ITEM* aItem ) { const BOARD_ITEM *parent = aItem->Parent(); return parent && ( parent->IsOnLayer( Edge_Cuts ) || parent->IsOnLayer( Margin ) ); } bool PNS_PCBNEW_RULE_RESOLVER::QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB, int aLayer, PNS::CONSTRAINT* aConstraint ) { std::shared_ptr drcEngine = m_board->GetDesignSettings().m_DRCEngine; if( !drcEngine ) return false; DRC_CONSTRAINT_T hostType; switch ( aType ) { case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: hostType = CLEARANCE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_WIDTH: hostType = TRACK_WIDTH_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: hostType = DIFF_PAIR_GAP_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_LENGTH: hostType = LENGTH_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: hostType = VIA_DIAMETER_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: hostType = HOLE_SIZE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE: hostType = HOLE_CLEARANCE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE: hostType = EDGE_CLEARANCE_CONSTRAINT; break; case PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE: hostType = HOLE_TO_HOLE_CONSTRAINT; break; default: return false; // should not happen } BOARD_ITEM* parentA = aItemA ? aItemA->Parent() : nullptr; BOARD_ITEM* parentB = aItemB ? aItemB->Parent() : nullptr; DRC_CONSTRAINT hostConstraint; // A track being routed may not have a BOARD_ITEM associated yet. if( aItemA && !parentA ) { switch( aItemA->Kind() ) { case PNS::ITEM::ARC_T: parentA = &m_dummyArcs[0]; break; case PNS::ITEM::VIA_T: parentA = &m_dummyVias[0]; break; case PNS::ITEM::SEGMENT_T: parentA = &m_dummyTracks[0]; break; case PNS::ITEM::LINE_T: parentA = &m_dummyTracks[0]; break; default: break; } if( parentA ) { parentA->SetLayer( ToLAYER_ID( aLayer ) ); static_cast( parentA )->SetNetCode( aItemA->Net(), true ); } } if( aItemB && !parentB ) { switch( aItemB->Kind() ) { case PNS::ITEM::ARC_T: parentB = &m_dummyArcs[1]; break; case PNS::ITEM::VIA_T: parentB = &m_dummyVias[1]; break; case PNS::ITEM::SEGMENT_T: parentB = &m_dummyTracks[1]; break; case PNS::ITEM::LINE_T: parentB = &m_dummyTracks[1]; break; default: break; } if( parentB ) { parentB->SetLayer( ToLAYER_ID( aLayer ) ); static_cast( parentB )->SetNetCode( aItemB->Net(), true ); } } if( parentA ) hostConstraint = drcEngine->EvalRules( hostType, parentA, parentB, ToLAYER_ID( aLayer ) ); if( hostConstraint.IsNull() ) return false; if( hostConstraint.GetSeverity() == RPT_SEVERITY_IGNORE ) { aConstraint->m_Value.SetMin( -1 ); aConstraint->m_RuleName = hostConstraint.GetName(); aConstraint->m_Type = aType; return true; } switch ( aType ) { case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_WIDTH: case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: case PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE: case PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE: aConstraint->m_Value = hostConstraint.GetValue(); aConstraint->m_RuleName = hostConstraint.GetName(); aConstraint->m_Type = aType; return true; default: return false; } } void PNS_PCBNEW_RULE_RESOLVER::ClearCacheForItem( const PNS::ITEM* aItem ) { CLEARANCE_CACHE_KEY key = { aItem, nullptr, false }; m_clearanceCache.erase( key ); key.Flag = true; m_clearanceCache.erase( key ); } void PNS_PCBNEW_RULE_RESOLVER::ClearCaches() { m_clearanceCache.clear(); m_holeClearanceCache.clear(); m_holeToHoleClearanceCache.clear(); } int PNS_PCBNEW_RULE_RESOLVER::Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon ) { CLEARANCE_CACHE_KEY key = { aA, aB, aUseClearanceEpsilon }; auto it = m_clearanceCache.find( key ); if( it != m_clearanceCache.end() ) return it->second; PNS::CONSTRAINT constraint; int rv = 0; LAYER_RANGE layers; if( !aB ) layers = aA->Layers(); else if( isEdge( aA ) ) layers = aB->Layers(); else if( isEdge( aB ) ) layers = aA->Layers(); else layers = aA->Layers().Intersection( aB->Layers() ); // Normalize layer range (no -1 magic numbers) layers = layers.Intersection( LAYER_RANGE( PCBNEW_LAYER_ID_START, PCB_LAYER_ID_COUNT - 1 ) ); for( int layer = layers.Start(); layer <= layers.End(); ++layer ) { if( isCopper( aA ) && ( !aB || isCopper( aB ) ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } } if( isEdge( aA ) || ( aB && isEdge( aB ) ) ) { if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE, aA, aB, layer, &constraint ) ) { if( constraint.m_Value.Min() > rv ) rv = constraint.m_Value.Min(); } } } if( aUseClearanceEpsilon && rv > 0 ) rv = std::max( 0, rv - m_clearanceEpsilon ); m_clearanceCache[ key ] = rv; return rv; } int PNS_PCBNEW_RULE_RESOLVER::HoleClearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon ) { CLEARANCE_CACHE_KEY key = { aA, aB, aUseClearanceEpsilon }; auto it = m_holeClearanceCache.find( key ); if( it != m_holeClearanceCache.end() ) return it->second; PNS::CONSTRAINT constraint; int rv = 0; int layer; if( !aA->Layers().IsMultilayer() || !aB || aB->Layers().IsMultilayer() ) layer = aA->Layer(); else layer = aB->Layer(); if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE, aA, aB, layer, &constraint ) ) rv = constraint.m_Value.Min(); #define HAS_PLATED_HOLE( a ) ( a )->IsRoutable() if( IsCopperLayer( layer ) && ( HAS_PLATED_HOLE( aA ) || HAS_PLATED_HOLE( aB ) ) && QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aA, aB, layer, &constraint ) && constraint.m_Value.Min() > rv ) { rv = constraint.m_Value.Min(); } if( aUseClearanceEpsilon && rv > 0 ) rv = std::max( 0, rv - m_clearanceEpsilon ); m_holeClearanceCache[ key ] = rv; return rv; } int PNS_PCBNEW_RULE_RESOLVER::HoleToHoleClearance( const PNS::ITEM* aA, const PNS::ITEM* aB, bool aUseClearanceEpsilon ) { CLEARANCE_CACHE_KEY key = { aA, aB, aUseClearanceEpsilon }; auto it = m_holeToHoleClearanceCache.find( key ); if( it != m_holeToHoleClearanceCache.end() ) return it->second; PNS::CONSTRAINT constraint; int rv = 0; int layer; if( !aA->Layers().IsMultilayer() || !aB || aB->Layers().IsMultilayer() ) layer = aA->Layer(); else layer = aB->Layer(); if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, aA, aB, layer, &constraint ) ) rv = constraint.m_Value.Min(); if( aUseClearanceEpsilon && rv > 0 ) rv = std::max( 0, rv - m_clearanceEpsilon ); m_holeToHoleClearanceCache[ key ] = rv; return rv; } bool PNS_KICAD_IFACE_BASE::inheritTrackWidth( PNS::ITEM* aItem, int* aInheritedWidth ) { VECTOR2I p; assert( aItem->Owner() != nullptr ); auto tryGetTrackWidth = []( PNS::ITEM* aPnsItem ) -> int { switch( aPnsItem->Kind() ) { case PNS::ITEM::SEGMENT_T: return static_cast( aPnsItem )->Width(); case PNS::ITEM::ARC_T: return static_cast( aPnsItem )->Width(); default: return -1; } }; int itemTrackWidth = tryGetTrackWidth( aItem ); if( itemTrackWidth > 0 ) { *aInheritedWidth = itemTrackWidth; return true; } switch( aItem->Kind() ) { case PNS::ITEM::VIA_T: p = static_cast( aItem )->Pos(); break; case PNS::ITEM::SOLID_T: p = static_cast( aItem )->Pos(); break; default: return false; } PNS::JOINT* jt = static_cast( aItem->Owner() )->FindJoint( p, aItem ); assert( jt != nullptr ); int mval = INT_MAX; PNS::ITEM_SET linkedSegs = jt->Links(); linkedSegs.ExcludeItem( aItem ).FilterKinds( PNS::ITEM::SEGMENT_T | PNS::ITEM::ARC_T ); for( PNS::ITEM* item : linkedSegs.Items() ) { int w = tryGetTrackWidth( item ); assert( w > 0 ); mval = std::min( w, mval ); } if( mval == INT_MAX ) return false; *aInheritedWidth = mval; return true; } bool PNS_KICAD_IFACE_BASE::ImportSizes( PNS::SIZES_SETTINGS& aSizes, PNS::ITEM* aStartItem, int aNet ) { BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); PNS::CONSTRAINT constraint; if( aStartItem && m_startLayer < 0 ) m_startLayer = aStartItem->Layer(); aSizes.SetClearance( bds.m_MinClearance ); aSizes.SetMinClearance( bds.m_MinClearance ); aSizes.SetClearanceSource( _( "board minimum clearance" ) ); if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aStartItem, nullptr, m_startLayer, &constraint ) ) { if( constraint.m_Value.Min() > bds.m_MinClearance ) { aSizes.SetClearance( constraint.m_Value.Min() ); aSizes.SetClearanceSource( constraint.m_RuleName ); } } int trackWidth = bds.m_TrackMinWidth; bool found = false; aSizes.SetWidthSource( _( "board minimum track width" ) ); if( bds.m_UseConnectedTrackWidth && !bds.m_TempOverrideTrackWidth && aStartItem != nullptr ) { found = inheritTrackWidth( aStartItem, &trackWidth ); if( found ) aSizes.SetWidthSource( _( "existing track" ) ); } if( !found && bds.UseNetClassTrack() && aStartItem ) { if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr, m_startLayer, &constraint ) ) { trackWidth = std::max( trackWidth, constraint.m_Value.Opt() ); found = true; if( trackWidth == constraint.m_Value.Opt() ) aSizes.SetWidthSource( constraint.m_RuleName ); } } if( !found ) { trackWidth = std::max( trackWidth, bds.GetCurrentTrackWidth() ); if( bds.UseNetClassTrack() ) aSizes.SetWidthSource( _( "netclass 'Default'" ) ); else if( trackWidth == bds.GetCurrentTrackWidth() ) aSizes.SetWidthSource( _( "user choice" ) ); } aSizes.SetTrackWidth( trackWidth ); aSizes.SetTrackWidthIsExplicit( !bds.m_UseConnectedTrackWidth || bds.m_TempOverrideTrackWidth ); int viaDiameter = bds.m_ViasMinSize; int viaDrill = bds.m_MinThroughDrill; if( bds.UseNetClassVia() && aStartItem ) // netclass value { if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER, aStartItem, nullptr, m_startLayer, &constraint ) ) { viaDiameter = std::max( viaDiameter, constraint.m_Value.Opt() ); } if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_HOLE, aStartItem, nullptr, m_startLayer, &constraint ) ) { viaDrill = std::max( viaDrill, constraint.m_Value.Opt() ); } } else { viaDiameter = bds.GetCurrentViaSize(); viaDrill = bds.GetCurrentViaDrill(); } aSizes.SetViaDiameter( viaDiameter ); aSizes.SetViaDrill( viaDrill ); int diffPairWidth = bds.m_TrackMinWidth; int diffPairGap = bds.m_MinClearance; int diffPairViaGap = bds.m_MinClearance; aSizes.SetDiffPairWidthSource( _( "board minimum track width" ) ); aSizes.SetDiffPairGapSource( _( "board minimum clearance" ) ); found = false; // First try to pick up diff pair width from starting track, if enabled if( bds.m_UseConnectedTrackWidth && aStartItem ) found = inheritTrackWidth( aStartItem, &diffPairWidth ); // Next, pick up gap from netclass, and width also if we didn't get a starting width above if( bds.UseNetClassDiffPair() && aStartItem ) { if( !found && m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr, m_startLayer, &constraint ) ) { diffPairWidth = std::max( diffPairWidth, constraint.m_Value.Opt() ); if( diffPairWidth == constraint.m_Value.Opt() ) aSizes.SetDiffPairWidthSource( constraint.m_RuleName ); } if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP, aStartItem, nullptr, m_startLayer, &constraint ) ) { diffPairGap = std::max( diffPairGap, constraint.m_Value.Opt() ); diffPairViaGap = std::max( diffPairViaGap, constraint.m_Value.Opt() ); if( diffPairGap == constraint.m_Value.Opt() ) aSizes.SetDiffPairGapSource( constraint.m_RuleName ); } } else { diffPairWidth = bds.GetCurrentDiffPairWidth(); diffPairGap = bds.GetCurrentDiffPairGap(); diffPairViaGap = bds.GetCurrentDiffPairViaGap(); aSizes.SetDiffPairWidthSource( _( "user choice" ) ); aSizes.SetDiffPairGapSource( _( "user choice" ) ); } aSizes.SetDiffPairWidth( diffPairWidth ); aSizes.SetDiffPairGap( diffPairGap ); aSizes.SetDiffPairViaGap( diffPairViaGap ); aSizes.SetDiffPairViaGapSameAsTraceGap( false ); int holeToHoleMin = bds.m_HoleToHoleMin; PNS::VIA dummyVia, coupledVia; if( aStartItem ) { dummyVia.SetNet( aStartItem->Net() ); coupledVia.SetNet( m_ruleResolver->DpCoupledNet( aStartItem->Net() ) ); } if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, &dummyVia, &dummyVia, UNDEFINED_LAYER, &constraint ) ) { holeToHoleMin = constraint.m_Value.Min(); } aSizes.SetHoleToHole( holeToHoleMin ); if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, &dummyVia, &coupledVia, UNDEFINED_LAYER, &constraint ) ) { holeToHoleMin = constraint.m_Value.Min(); } aSizes.SetDiffPairHoleToHole( holeToHoleMin ); return true; } int PNS_KICAD_IFACE_BASE::StackupHeight( int aFirstLayer, int aSecondLayer ) const { if( !m_board || !m_board->GetDesignSettings().m_UseHeightForLengthCalcs ) return 0; BOARD_STACKUP& stackup = m_board->GetDesignSettings().GetStackupDescriptor(); return stackup.GetLayerDistance( ToLAYER_ID( aFirstLayer ), ToLAYER_ID( aSecondLayer ) ); } int PNS_PCBNEW_RULE_RESOLVER::matchDpSuffix( const wxString& aNetName, wxString& aComplementNet ) { int rv = 0; int count = 0; for( auto it = aNetName.rbegin(); it != aNetName.rend() && rv == 0; ++it, ++count ) { int ch = *it; if( ( ch >= '0' && ch <= '9' ) || ch == '_' ) { continue; } else if( ch == '+' ) { aComplementNet = wxT( "-" ); rv = 1; } else if( ch == '-' ) { aComplementNet = wxT( "+" ); rv = -1; } else if( ch == 'N' ) { aComplementNet = wxT( "P" ); rv = -1; } else if ( ch == 'P' ) { aComplementNet = wxT( "N" ); rv = 1; } else { break; } } if( rv != 0 && count >= 1 ) { aComplementNet = aNetName.Left( aNetName.length() - count ) + aComplementNet + aNetName.Right( count - 1 ); } return rv; } int PNS_PCBNEW_RULE_RESOLVER::DpCoupledNet( int aNet ) { wxString refName = m_board->FindNet( aNet )->GetNetname(); wxString coupledNetName; if( matchDpSuffix( refName, coupledNetName ) ) { NETINFO_ITEM* net = m_board->FindNet( coupledNetName ); if( !net ) return -1; return net->GetNetCode(); } return -1; } wxString PNS_PCBNEW_RULE_RESOLVER::NetName( int aNet ) { return m_board->FindNet( aNet )->GetNetname(); } int PNS_PCBNEW_RULE_RESOLVER::DpNetPolarity( int aNet ) { wxString refName = m_board->FindNet( aNet )->GetNetname(); wxString dummy1; return matchDpSuffix( refName, dummy1 ); } bool PNS_PCBNEW_RULE_RESOLVER::DpNetPair( const PNS::ITEM* aItem, int& aNetP, int& aNetN ) { if( !aItem || !aItem->Parent() || !aItem->Parent()->IsConnected() ) return false; BOARD_CONNECTED_ITEM* cItem = static_cast( aItem->Parent() ); NETINFO_ITEM* netInfo = cItem->GetNet(); if( !netInfo ) return false; wxString netNameP = netInfo->GetNetname(); wxString netNameN, netNameCoupled; int r = matchDpSuffix( netNameP, netNameCoupled ); if( r == 0 ) { return false; } else if( r == 1 ) { netNameN = netNameCoupled; } else { netNameN = netNameP; netNameP = netNameCoupled; } NETINFO_ITEM* netInfoP = m_board->FindNet( netNameP ); NETINFO_ITEM* netInfoN = m_board->FindNet( netNameN ); if( !netInfoP || !netInfoN ) return false; aNetP = netInfoP->GetNetCode(); aNetN = netInfoN->GetNetCode(); return true; } class PNS_PCBNEW_DEBUG_DECORATOR: public PNS::DEBUG_DECORATOR { public: PNS_PCBNEW_DEBUG_DECORATOR( KIGFX::VIEW* aView = nullptr ) : PNS::DEBUG_DECORATOR(), m_view( nullptr ), m_items( nullptr ), m_depth( 0 ) { SetView( aView ); } ~PNS_PCBNEW_DEBUG_DECORATOR() { PNS_PCBNEW_DEBUG_DECORATOR::Clear(); delete m_items; } void SetView( KIGFX::VIEW* aView ) { Clear(); delete m_items; m_items = nullptr; m_view = aView; if( m_view == nullptr ) return; if( m_view->GetGAL() ) m_depth = m_view->GetGAL()->GetMinDepth(); m_items = new KIGFX::VIEW_GROUP( m_view ); m_items->SetLayer( LAYER_SELECT_OVERLAY ) ; m_view->Add( m_items ); } void AddPoint( const VECTOR2I& aP, const KIGFX::COLOR4D& aColor, int aSize, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override { SHAPE_LINE_CHAIN sh; sh.SetWidth( 10000 ); sh.Append( aP.x - aSize, aP.y - aSize ); sh.Append( aP.x + aSize, aP.y + aSize ); sh.Append( aP.x, aP.y ); sh.Append( aP.x - aSize, aP.y + aSize ); sh.Append( aP.x + aSize, aP.y - aSize ); AddShape( &sh, aColor, sh.Width(), aName, aSrcLoc ); } void AddItem( const PNS::ITEM* aItem, const KIGFX::COLOR4D& aColor, int aOverrideWidth = 0, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) { if( !m_view || !aItem ) return; ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view ); pitem->SetColor( aColor.WithAlpha( 0.5 ) ); pitem->SetWidth( aOverrideWidth ); pitem->SetDepth( nextDepth() ); m_items->Add( pitem ); m_view->Update( m_items ); } void AddShape( const BOX2I& aBox, const KIGFX::COLOR4D& aColor, int aOverrideWidth = 0, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) override { SHAPE_LINE_CHAIN l; l.SetWidth( aOverrideWidth ); VECTOR2I o = aBox.GetOrigin(); VECTOR2I s = aBox.GetSize(); l.Append( o ); l.Append( o.x + s.x, o.y ); l.Append( o.x + s.x, o.y + s.y ); l.Append( o.x, o.y + s.y ); l.Append( o ); AddShape( &l, aColor, aOverrideWidth, aName, aSrcLoc ); } void AddShape( const SHAPE* aShape, const KIGFX::COLOR4D& aColor, int aOverrideWidth = 0, const wxString& aName = wxT( "" ), const SRC_LOCATION_INFO& aSrcLoc = SRC_LOCATION_INFO() ) { if( !m_view || !aShape ) return; ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( *aShape, m_view ); pitem->SetColor( aColor.WithAlpha( 0.5 ) ); pitem->SetWidth( aOverrideWidth ); pitem->SetDepth( nextDepth() ); m_items->Add( pitem ); m_view->Update( m_items ); } void Clear() override { if( m_view && m_items ) { m_items->FreeItems(); m_view->Update( m_items ); if( m_view->GetGAL() ) m_depth = m_view->GetGAL()->GetMinDepth(); } } private: double nextDepth() { // Use different depths so that the transculent shapes won't overwrite each other. m_depth++; if( m_depth >= 0 && m_view->GetGAL() ) m_depth = m_view->GetGAL()->GetMinDepth(); return m_depth; } KIGFX::VIEW* m_view; KIGFX::VIEW_GROUP* m_items; double m_depth; }; PNS::DEBUG_DECORATOR* PNS_KICAD_IFACE_BASE::GetDebugDecorator() { return m_debugDecorator; } PNS_KICAD_IFACE_BASE::PNS_KICAD_IFACE_BASE() { m_ruleResolver = nullptr; m_board = nullptr; m_world = nullptr; m_debugDecorator = nullptr; m_startLayer = -1; } PNS_KICAD_IFACE::PNS_KICAD_IFACE() { m_tool = nullptr; m_view = nullptr; m_previewItems = nullptr; m_commitFlags = 0; } PNS_KICAD_IFACE_BASE::~PNS_KICAD_IFACE_BASE() { } PNS_KICAD_IFACE::~PNS_KICAD_IFACE() { delete m_ruleResolver; delete m_debugDecorator; if( m_previewItems ) { m_previewItems->FreeItems(); delete m_previewItems; } } std::unique_ptr PNS_KICAD_IFACE_BASE::syncPad( PAD* aPad ) { LAYER_RANGE layers( 0, MAX_CU_LAYERS - 1 ); // ignore non-copper pads except for those with holes if( ( aPad->GetLayerSet() & LSET::AllCuMask() ).none() && aPad->GetDrillSize().x == 0 ) return nullptr; switch( aPad->GetAttribute() ) { case PAD_ATTRIB::PTH: case PAD_ATTRIB::NPTH: break; case PAD_ATTRIB::CONN: case PAD_ATTRIB::SMD: { LSET lmsk = aPad->GetLayerSet(); bool is_copper = false; for( int i = 0; i < MAX_CU_LAYERS; i++ ) { if( lmsk[i] ) { is_copper = true; if( aPad->GetAttribute() != PAD_ATTRIB::NPTH ) layers = LAYER_RANGE( i ); break; } } if( !is_copper ) return nullptr; break; } default: wxLogTrace( wxT( "PNS" ), wxT( "unsupported pad type 0x%x" ), aPad->GetAttribute() ); return nullptr; } std::unique_ptr solid = std::make_unique(); if( aPad->GetAttribute() == PAD_ATTRIB::NPTH ) solid->SetRoutable( false ); solid->SetLayers( layers ); solid->SetNet( aPad->GetNetCode() ); solid->SetParent( aPad ); solid->SetPadToDie( aPad->GetPadToDieLength() ); solid->SetOrientation( aPad->GetOrientation() ); if( aPad->IsFreePad() ) solid->SetIsFreePad(); VECTOR2I wx_c = aPad->ShapePos(); VECTOR2I offset = aPad->GetOffset(); VECTOR2I c( wx_c.x, wx_c.y ); RotatePoint( offset, aPad->GetOrientation() ); solid->SetPos( VECTOR2I( c.x - offset.x, c.y - offset.y ) ); solid->SetOffset( VECTOR2I( offset.x, offset.y ) ); if( aPad->GetDrillSize().x > 0 ) solid->SetHole( aPad->GetEffectiveHoleShape()->Clone() ); // We generate a single SOLID for a pad, so we have to treat it as ALWAYS_FLASHED and then // perform layer-specific flashing tests internally. std::shared_ptr shape = aPad->GetEffectiveShape( UNDEFINED_LAYER, FLASHING::ALWAYS_FLASHED ); if( shape->HasIndexableSubshapes() && shape->GetIndexableSubshapeCount() == 1 ) { std::vector subshapes; shape->GetIndexableSubshapes( subshapes ); solid->SetShape( subshapes[0]->Clone() ); } else { solid->SetShape( shape->Clone() ); } return solid; } std::unique_ptr PNS_KICAD_IFACE_BASE::syncTrack( PCB_TRACK* aTrack ) { auto segment = std::make_unique( SEG( aTrack->GetStart(), aTrack->GetEnd() ), aTrack->GetNetCode() ); segment->SetWidth( aTrack->GetWidth() ); segment->SetLayers( LAYER_RANGE( aTrack->GetLayer() ) ); segment->SetParent( aTrack ); if( aTrack->IsLocked() ) segment->Mark( PNS::MK_LOCKED ); return segment; } std::unique_ptr PNS_KICAD_IFACE_BASE::syncArc( PCB_ARC* aArc ) { auto arc = std::make_unique( SHAPE_ARC( aArc->GetStart(), aArc->GetMid(), aArc->GetEnd(), aArc->GetWidth() ), aArc->GetNetCode() ); arc->SetLayers( LAYER_RANGE( aArc->GetLayer() ) ); arc->SetParent( aArc ); if( aArc->IsLocked() ) arc->Mark( PNS::MK_LOCKED ); return arc; } std::unique_ptr PNS_KICAD_IFACE_BASE::syncVia( PCB_VIA* aVia ) { PCB_LAYER_ID top, bottom; aVia->LayerPair( &top, &bottom ); auto via = std::make_unique( aVia->GetPosition(), LAYER_RANGE( aVia->TopLayer(), aVia->BottomLayer() ), aVia->GetWidth(), aVia->GetDrillValue(), aVia->GetNetCode(), aVia->GetViaType() ); via->SetParent( aVia ); if( aVia->IsLocked() ) via->Mark( PNS::MK_LOCKED ); via->SetIsFree( aVia->GetIsFree() ); BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings(); via->SetHole( SHAPE_CIRCLE( aVia->GetPosition(), aVia->GetDrillValue() / 2 ) ); return via; } bool PNS_KICAD_IFACE_BASE::syncZone( PNS::NODE* aWorld, ZONE* aZone, SHAPE_POLY_SET* aBoardOutline ) { SHAPE_POLY_SET* poly; if( !aZone->GetIsRuleArea() && aZone->GetZoneName().IsEmpty() ) return false; // TODO handle aZone->GetDoNotAllowVias() // TODO handle rules which disallow tracks & vias if( !aZone->GetIsRuleArea() || !aZone->GetDoNotAllowTracks() ) return false; LSET layers = aZone->GetLayerSet(); poly = aZone->Outline(); poly->CacheTriangulation( false ); if( !poly->IsTriangulationUpToDate() ) { UNITS_PROVIDER unitsProvider( pcbIUScale, GetUnits() ); KIDIALOG dlg( nullptr, wxString::Format( _( "%s is malformed." ), aZone->GetItemDescription( &unitsProvider ) ), KIDIALOG::KD_WARNING ); dlg.ShowDetailedText( wxString::Format( _( "This zone cannot be handled by the router.\n" "Please verify it is not a self-intersecting " "polygon." ) ) ); dlg.DoNotShowCheckbox( __FILE__, __LINE__ ); dlg.ShowModal(); return false; } for( int layer = F_Cu; layer <= B_Cu; layer++ ) { if( !layers[ layer ] ) continue; for( int outline = 0; outline < poly->OutlineCount(); outline++ ) { const SHAPE_POLY_SET::TRIANGULATED_POLYGON* tri = poly->TriangulatedPolygon( outline ); for( size_t i = 0; i < tri->GetTriangleCount(); i++) { VECTOR2I a, b, c; tri->GetTriangle( i, a, b, c ); SHAPE_SIMPLE* triShape = new SHAPE_SIMPLE; triShape->Append( a ); triShape->Append( b ); triShape->Append( c ); std::unique_ptr solid = std::make_unique(); solid->SetLayer( layer ); solid->SetNet( -1 ); solid->SetParent( aZone ); solid->SetShape( triShape ); solid->SetIsCompoundShapePrimitive(); solid->SetRoutable( false ); aWorld->Add( std::move( solid ) ); } } } return true; } bool PNS_KICAD_IFACE_BASE::syncTextItem( PNS::NODE* aWorld, EDA_TEXT* aText, PCB_LAYER_ID aLayer ) { if( !IsCopperLayer( aLayer ) ) return false; std::unique_ptr solid = std::make_unique(); solid->SetLayer( aLayer ); solid->SetNet( -1 ); solid->SetParent( dynamic_cast( aText ) ); PCB_TEXT* pcb_text = dynamic_cast( aText ); if( pcb_text && pcb_text->IsKnockout() ) { TEXT_ATTRIBUTES attrs = pcb_text->GetAttributes(); SHAPE_POLY_SET buffer; int margin = attrs.m_StrokeWidth * 1.5 + GetKnockoutTextMargin( attrs.m_Size, attrs.m_StrokeWidth ); pcb_text->TransformBoundingBoxToPolygon( &buffer, margin ); // buffer should contain a single rectangular polygon SHAPE_SIMPLE* rectShape = new SHAPE_SIMPLE; for( int ii = 0; ii < buffer.Outline(0).PointCount(); ii++ ) { VECTOR2I point = buffer.Outline(0).CPoint(ii); rectShape->Append( point ); } solid->SetShape( rectShape ); } else solid->SetShape( aText->GetEffectiveTextShape()->Clone() ); solid->SetRoutable( false ); aWorld->Add( std::move( solid ) ); return true; /* A coarser (but faster) method: SHAPE_POLY_SET outline; SHAPE_SIMPLE* shape = new SHAPE_SIMPLE(); aText->TransformBoundingBoxToPolygon( &outline, 0 ); for( auto iter = outline.CIterate( 0 ); iter; iter++ ) shape->Append( *iter ); solid->SetShape( shape ); solid->SetLayer( aLayer ); solid->SetNet( -1 ); solid->SetParent( nullptr ); solid->SetRoutable( false ); aWorld->Add( std::move( solid ) ); return true; */ } bool PNS_KICAD_IFACE_BASE::syncGraphicalItem( PNS::NODE* aWorld, PCB_SHAPE* aItem ) { if( aItem->GetLayer() == Edge_Cuts || aItem->GetLayer() == Margin || IsCopperLayer( aItem->GetLayer() ) ) { std::vector shapes = aItem->MakeEffectiveShapes(); for( SHAPE* shape : shapes ) { std::unique_ptr solid = std::make_unique(); if( aItem->GetLayer() == Edge_Cuts || aItem->GetLayer() == Margin ) solid->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) ); else solid->SetLayer( aItem->GetLayer() ); if( aItem->GetLayer() == Edge_Cuts ) { switch( shape->Type() ) { case SH_SEGMENT: static_cast( shape )->SetWidth( 0 ); break; case SH_ARC: static_cast( shape )->SetWidth( 0 ); break; case SH_LINE_CHAIN: static_cast( shape )->SetWidth( 0 ); break; default: /* remaining shapes don't have width */ break; } } solid->SetNet( -1 ); solid->SetParent( aItem ); solid->SetShape( shape ); // takes ownership if( shapes.size() > 1 ) solid->SetIsCompoundShapePrimitive(); solid->SetRoutable( false ); aWorld->Add( std::move( solid ) ); } return true; } return false; } void PNS_KICAD_IFACE_BASE::SetBoard( BOARD* aBoard ) { m_board = aBoard; wxLogTrace( wxT( "PNS" ), wxT( "m_board = %p" ), m_board ); } bool PNS_KICAD_IFACE::IsAnyLayerVisible( const LAYER_RANGE& aLayer ) const { if( !m_view ) return false; for( int i = aLayer.Start(); i <= aLayer.End(); i++ ) { if( m_view->IsLayerVisible( i ) ) return true; } return false; } bool PNS_KICAD_IFACE_BASE::IsFlashedOnLayer( const PNS::ITEM* aItem, int aLayer ) const { /// Default is all layers if( aLayer < 0 ) return true; if( aItem->Parent() ) { switch( aItem->Parent()->Type() ) { case PCB_VIA_T: { const PCB_VIA* via = static_cast( aItem->Parent() ); return via->FlashLayer( ToLAYER_ID( aLayer ) ); } case PCB_PAD_T: { const PAD* pad = static_cast( aItem->Parent() ); return pad->FlashLayer( ToLAYER_ID( aLayer ) ); } default: break; } } return aItem->Layers().Overlaps( aLayer ); } bool PNS_KICAD_IFACE::IsItemVisible( const PNS::ITEM* aItem ) const { // by default, all items are visible (new ones created by the router have parent == NULL // as they have not been committed yet to the BOARD) if( !m_view || !aItem->Parent() ) return true; BOARD_ITEM* item = aItem->Parent(); bool isOnVisibleLayer = true; RENDER_SETTINGS* settings = m_view->GetPainter()->GetSettings(); if( settings->GetHighContrast() ) isOnVisibleLayer = item->IsOnLayer( settings->GetPrimaryHighContrastLayer() ); if( m_view->IsVisible( item ) && isOnVisibleLayer ) { for( PCB_LAYER_ID layer : item->GetLayerSet().Seq() ) { if( item->ViewGetLOD( layer, m_view ) < m_view->GetScale() ) return true; } } // Items hidden in the router are not hidden on the board if( m_hiddenItems.find( item ) != m_hiddenItems.end() ) return true; return false; } void PNS_KICAD_IFACE_BASE::SyncWorld( PNS::NODE *aWorld ) { if( !m_board ) { wxLogTrace( wxT( "PNS" ), wxT( "No board attached, aborting sync." ) ); return; } int worstClearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); m_world = aWorld; for( BOARD_ITEM* gitem : m_board->Drawings() ) { if ( gitem->Type() == PCB_SHAPE_T || gitem->Type() == PCB_TEXTBOX_T ) { syncGraphicalItem( aWorld, static_cast( gitem ) ); } else if( gitem->Type() == PCB_TEXT_T ) { syncTextItem( aWorld, static_cast( gitem ), gitem->GetLayer() ); } } SHAPE_POLY_SET buffer; SHAPE_POLY_SET* boardOutline = nullptr; if( m_board->GetBoardPolygonOutlines( buffer ) ) boardOutline = &buffer; for( ZONE* zone : m_board->Zones() ) { syncZone( aWorld, zone, boardOutline ); } for( FOOTPRINT* footprint : m_board->Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( std::unique_ptr solid = syncPad( pad ) ) aWorld->Add( std::move( solid ) ); worstClearance = std::max( worstClearance, pad->GetLocalClearance() ); if( pad->GetProperty() == PAD_PROP::CASTELLATED ) { std::unique_ptr hole; hole.reset( pad->GetEffectiveHoleShape()->Clone() ); aWorld->AddEdgeExclusion( std::move( hole ) ); } } syncTextItem( aWorld, &footprint->Reference(), footprint->Reference().GetLayer() ); syncTextItem( aWorld, &footprint->Value(), footprint->Value().GetLayer() ); for( FP_ZONE* zone : footprint->Zones() ) syncZone( aWorld, zone, boardOutline ); for( BOARD_ITEM* mgitem : footprint->GraphicalItems() ) { if( mgitem->Type() == PCB_FP_SHAPE_T || mgitem->Type() == PCB_FP_TEXTBOX_T ) { syncGraphicalItem( aWorld, static_cast( mgitem ) ); } else if( mgitem->Type() == PCB_FP_TEXT_T ) { syncTextItem( aWorld, static_cast( mgitem ), mgitem->GetLayer() ); } } } for( PCB_TRACK* t : m_board->Tracks() ) { KICAD_T type = t->Type(); if( type == PCB_TRACE_T ) { if( auto segment = syncTrack( t ) ) aWorld->Add( std::move( segment ) ); } else if( type == PCB_ARC_T ) { if( auto arc = syncArc( static_cast( t ) ) ) aWorld->Add( std::move( arc ) ); } else if( type == PCB_VIA_T ) { if( auto via = syncVia( static_cast( t ) ) ) aWorld->Add( std::move( via ) ); } } // NB: if this were ever to become a long-lived object we would need to dirty its // clearance cache here.... delete m_ruleResolver; m_ruleResolver = new PNS_PCBNEW_RULE_RESOLVER( m_board, this ); aWorld->SetRuleResolver( m_ruleResolver ); aWorld->SetMaxClearance( worstClearance + m_ruleResolver->ClearanceEpsilon() ); } void PNS_KICAD_IFACE::EraseView() { for( auto item : m_hiddenItems ) m_view->SetVisible( item, true ); m_hiddenItems.clear(); if( m_previewItems ) { m_previewItems->FreeItems(); m_view->Update( m_previewItems ); } if( m_debugDecorator ) m_debugDecorator->Clear(); } void PNS_KICAD_IFACE_BASE::SetDebugDecorator( PNS::DEBUG_DECORATOR *aDec ) { m_debugDecorator = aDec; } void PNS_KICAD_IFACE::DisplayItem( const PNS::ITEM* aItem, int aClearance, bool aEdit, bool aIsHeadTrace ) { if( aItem->IsVirtual() ) return; ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view ); // Note: SEGMENT_T is used for placed tracks; LINE_T is used for the routing head static int tracks = PNS::ITEM::SEGMENT_T | PNS::ITEM::ARC_T | PNS::ITEM::LINE_T; static int tracksOrVias = tracks | PNS::ITEM::VIA_T; if( aClearance >= 0 ) { pitem->SetClearance( aClearance ); auto* settings = static_cast( m_tool->GetManager()->GetSettings() ); switch( settings->m_Display.m_TrackClearance ) { case SHOW_WITH_VIA_ALWAYS: case SHOW_WITH_VIA_WHILE_ROUTING_OR_DRAGGING: pitem->ShowClearance( aItem->OfKind( tracksOrVias ) ); break; case SHOW_WITH_VIA_WHILE_ROUTING: pitem->ShowClearance( aItem->OfKind( tracksOrVias ) && !aEdit ); break; case SHOW_WHILE_ROUTING: pitem->ShowClearance( aItem->OfKind( tracks ) && !aEdit ); break; default: pitem->ShowClearance( false ); break; } } if( aIsHeadTrace ) { pitem->SetIsHeadTrace( true ); pitem->Update( aItem ); } m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); } void PNS_KICAD_IFACE::DisplayPathLine( const SHAPE_LINE_CHAIN& aLine, int aImportance ) { ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aLine, m_view ); pitem->SetDepth( ROUTER_PREVIEW_ITEM::PathOverlayDepth ); COLOR4D color; if( aImportance >= 1 ) color = COLOR4D( 1.0, 1.0, 0.0, 0.6 ); else if( aImportance == 0 ) color = COLOR4D( 0.7, 0.7, 0.7, 0.6 ); pitem->SetColor( color ); m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); } void PNS_KICAD_IFACE::DisplayRatline( const SHAPE_LINE_CHAIN& aRatline, int aNetCode ) { ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aRatline, m_view ); KIGFX::RENDER_SETTINGS* renderSettings = m_view->GetPainter()->GetSettings(); KIGFX::PCB_RENDER_SETTINGS* rs = static_cast( renderSettings ); bool colorByNet = rs->GetNetColorMode() != NET_COLOR_MODE::OFF; COLOR4D defaultColor = rs->GetColor( nullptr, LAYER_RATSNEST ); COLOR4D color = defaultColor; std::shared_ptr connectivity = m_board->GetConnectivity(); std::set highlightedNets = rs->GetHighlightNetCodes(); std::map& netColors = rs->GetNetColorMap(); std::map& ncColors = rs->GetNetclassColorMap(); const std::map& ncMap = connectivity->GetNetclassMap(); if( colorByNet && netColors.count( aNetCode ) ) color = netColors.at( aNetCode ); else if( colorByNet && ncMap.count( aNetCode ) && ncColors.count( ncMap.at( aNetCode ) ) ) color = ncColors.at( ncMap.at( aNetCode ) ); else color = defaultColor; if( color == COLOR4D::UNSPECIFIED ) color = defaultColor; pitem->SetColor( color.Brightened( 0.5 ).WithAlpha( std::min( 1.0, color.a + 0.4 ) ) ); m_previewItems->Add( pitem ); m_view->Update( m_previewItems ); } void PNS_KICAD_IFACE::HideItem( PNS::ITEM* aItem ) { BOARD_ITEM* parent = aItem->Parent(); if( parent ) { if( m_view->IsVisible( parent ) ) m_hiddenItems.insert( parent ); m_view->SetVisible( parent, false ); m_view->Update( parent, KIGFX::APPEARANCE ); } } void PNS_KICAD_IFACE_BASE::RemoveItem( PNS::ITEM* aItem ) { } void PNS_KICAD_IFACE::RemoveItem( PNS::ITEM* aItem ) { BOARD_ITEM* parent = aItem->Parent(); if( aItem->OfKind( PNS::ITEM::SOLID_T ) ) { PAD* pad = static_cast( parent ); VECTOR2I pos = static_cast( aItem )->Pos(); m_fpOffsets[ pad ].p_old = pos; return; } if( parent ) { m_commit->Remove( parent ); } } void PNS_KICAD_IFACE_BASE::UpdateItem( PNS::ITEM* aItem ) { } void PNS_KICAD_IFACE::UpdateItem( PNS::ITEM* aItem ) { BOARD_ITEM* board_item = aItem->Parent(); m_commit->Modify( board_item ); switch( aItem->Kind() ) { case PNS::ITEM::ARC_T: { PNS::ARC* arc = static_cast( aItem ); PCB_ARC* arc_board = static_cast( board_item ); const SHAPE_ARC* arc_shape = static_cast( arc->Shape() ); arc_board->SetStart( wxPoint( arc_shape->GetP0() ) ); arc_board->SetEnd( wxPoint( arc_shape->GetP1() ) ); arc_board->SetMid( wxPoint( arc_shape->GetArcMid() ) ); arc_board->SetWidth( arc->Width() ); break; } case PNS::ITEM::SEGMENT_T: { PNS::SEGMENT* seg = static_cast( aItem ); PCB_TRACK* track = static_cast( board_item ); const SEG& s = seg->Seg(); track->SetStart( wxPoint( s.A.x, s.A.y ) ); track->SetEnd( wxPoint( s.B.x, s.B.y ) ); track->SetWidth( seg->Width() ); break; } case PNS::ITEM::VIA_T: { PCB_VIA* via_board = static_cast( board_item ); PNS::VIA* via = static_cast( aItem ); via_board->SetPosition( wxPoint( via->Pos().x, via->Pos().y ) ); via_board->SetWidth( via->Diameter() ); via_board->SetDrill( via->Drill() ); via_board->SetNetCode( via->Net() > 0 ? via->Net() : 0 ); via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair() via_board->SetIsFree( via->IsFree() ); via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ), ToLAYER_ID( via->Layers().End() ) ); break; } case PNS::ITEM::SOLID_T: { PAD* pad = static_cast( aItem->Parent() ); VECTOR2I pos = static_cast( aItem )->Pos(); m_fpOffsets[ pad ].p_old = pad->GetPosition(); m_fpOffsets[ pad ].p_new = pos; break; } default: break; } } void PNS_KICAD_IFACE_BASE::AddItem( PNS::ITEM* aItem ) { } void PNS_KICAD_IFACE::AddItem( PNS::ITEM* aItem ) { BOARD_CONNECTED_ITEM* newBI = nullptr; switch( aItem->Kind() ) { case PNS::ITEM::ARC_T: { PNS::ARC* arc = static_cast( aItem ); PCB_ARC* new_arc = new PCB_ARC( m_board, static_cast( arc->Shape() ) ); new_arc->SetWidth( arc->Width() ); new_arc->SetLayer( ToLAYER_ID( arc->Layers().Start() ) ); new_arc->SetNetCode( std::max( 0, arc->Net() ) ); newBI = new_arc; break; } case PNS::ITEM::SEGMENT_T: { PNS::SEGMENT* seg = static_cast( aItem ); PCB_TRACK* track = new PCB_TRACK( m_board ); const SEG& s = seg->Seg(); track->SetStart( wxPoint( s.A.x, s.A.y ) ); track->SetEnd( wxPoint( s.B.x, s.B.y ) ); track->SetWidth( seg->Width() ); track->SetLayer( ToLAYER_ID( seg->Layers().Start() ) ); track->SetNetCode( seg->Net() > 0 ? seg->Net() : 0 ); newBI = track; break; } case PNS::ITEM::VIA_T: { PCB_VIA* via_board = new PCB_VIA( m_board ); PNS::VIA* via = static_cast( aItem ); via_board->SetPosition( wxPoint( via->Pos().x, via->Pos().y ) ); via_board->SetWidth( via->Diameter() ); via_board->SetDrill( via->Drill() ); via_board->SetNetCode( via->Net() > 0 ? via->Net() : 0 ); via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair() via_board->SetIsFree( via->IsFree() ); via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ), ToLAYER_ID( via->Layers().End() ) ); newBI = via_board; break; } case PNS::ITEM::SOLID_T: { PAD* pad = static_cast( aItem->Parent() ); VECTOR2I pos = static_cast( aItem )->Pos(); m_fpOffsets[ pad ].p_new = pos; return; } default: break; } if( newBI ) { //newBI->SetLocalRatsnestVisible( m_dispOptions->m_ShowGlobalRatsnest ); aItem->SetParent( newBI ); newBI->ClearFlags(); m_commit->Add( newBI ); } } void PNS_KICAD_IFACE::Commit() { std::set processedFootprints; EraseView(); for( const std::pair& fpOffset : m_fpOffsets ) { VECTOR2I offset = fpOffset.second.p_new - fpOffset.second.p_old; FOOTPRINT* footprint = fpOffset.first->GetParent(); VECTOR2I p_orig = footprint->GetPosition(); VECTOR2I p_new = p_orig + offset; if( processedFootprints.find( footprint ) != processedFootprints.end() ) continue; processedFootprints.insert( footprint ); m_commit->Modify( footprint ); footprint->SetPosition( p_new ); } m_fpOffsets.clear(); m_commit->Push( _( "Interactive Router" ), m_commitFlags ); m_commit = std::make_unique( m_tool ); } EDA_UNITS PNS_KICAD_IFACE::GetUnits() const { return static_cast( m_tool->GetManager()->GetSettings()->m_System.units ); } void PNS_KICAD_IFACE::SetView( KIGFX::VIEW* aView ) { wxLogTrace( wxT( "PNS" ), wxT( "SetView %p" ), aView ); if( m_previewItems ) { m_previewItems->FreeItems(); delete m_previewItems; } m_view = aView; m_previewItems = new KIGFX::VIEW_GROUP( m_view ); m_previewItems->SetLayer( LAYER_SELECT_OVERLAY ) ; if(m_view) m_view->Add( m_previewItems ); delete m_debugDecorator; auto dec = new PNS_PCBNEW_DEBUG_DECORATOR(); m_debugDecorator = dec; dec->SetDebugEnabled( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics ); if( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics ) dec->SetView( m_view ); } void PNS_KICAD_IFACE::UpdateNet( int aNetCode ) { wxLogTrace( wxT( "PNS" ), wxT( "Update-net %d" ), aNetCode ); } PNS::RULE_RESOLVER* PNS_KICAD_IFACE_BASE::GetRuleResolver() { return m_ruleResolver; } void PNS_KICAD_IFACE::SetHostTool( PCB_TOOL_BASE* aTool ) { m_tool = aTool; m_commit = std::make_unique( m_tool ); }