/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * * Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // This is an odd place for this, but CvPcb won't link if it's in board_item.cpp like I first // tried it. VECTOR2I BOARD_ITEM::ZeroOffset( 0, 0 ); BOARD::BOARD() : BOARD_ITEM_CONTAINER( (BOARD_ITEM*) nullptr, PCB_T ), m_LegacyDesignSettingsLoaded( false ), m_LegacyCopperEdgeClearanceLoaded( false ), m_LegacyNetclassesLoaded( false ), m_boardUse( BOARD_USE::NORMAL ), m_timeStamp( 1 ), m_paper( PAGE_INFO::A4 ), m_project( nullptr ), m_userUnits( EDA_UNITS::MILLIMETRES ), m_designSettings( new BOARD_DESIGN_SETTINGS( nullptr, "board.design_settings" ) ), m_NetInfo( this ) { // A too small value do not allow connecting 2 shapes (i.e. segments) not exactly connected // A too large value do not allow safely connecting 2 shapes like very short segments. m_outlinesChainingEpsilon = pcbIUScale.mmToIU( DEFAULT_CHAINING_EPSILON_MM ); // we have not loaded a board yet, assume latest until then. m_fileFormatVersionAtLoad = LEGACY_BOARD_FILE_VERSION; for( int layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { m_layers[layer].m_name = GetStandardLayerName( ToLAYER_ID( layer ) ); if( IsCopperLayer( layer ) ) m_layers[layer].m_type = LT_SIGNAL; else m_layers[layer].m_type = LT_UNDEFINED; } m_SolderMask = new ZONE( this ); m_SolderMask->SetLayerSet( LSET().set( F_Mask ).set( B_Mask ) ); int infinity = ( std::numeric_limits::max() / 2 ) - pcbIUScale.mmToIU( 1 ); m_SolderMask->Outline()->NewOutline(); m_SolderMask->Outline()->Append( VECTOR2I( -infinity, -infinity ) ); m_SolderMask->Outline()->Append( VECTOR2I( -infinity, +infinity ) ); m_SolderMask->Outline()->Append( VECTOR2I( +infinity, +infinity ) ); m_SolderMask->Outline()->Append( VECTOR2I( +infinity, -infinity ) ); m_SolderMask->SetMinThickness( 0 ); BOARD_DESIGN_SETTINGS& bds = GetDesignSettings(); // Initialize default netclass. bds.m_NetSettings->m_DefaultNetClass = std::make_shared( NETCLASS::Default ); bds.m_NetSettings->m_DefaultNetClass->SetDescription( _( "This is the default net class." ) ); bds.UseCustomTrackViaSize( false ); // Initialize ratsnest m_connectivity.reset( new CONNECTIVITY_DATA() ); // Set flag bits on these that will only be cleared if these are loaded from a legacy file m_LegacyVisibleLayers.reset().set( Rescue ); m_LegacyVisibleItems.reset().set( GAL_LAYER_INDEX( GAL_LAYER_ID_BITMASK_END ) ); } BOARD::~BOARD() { // Untangle group parents before doing any deleting for( PCB_GROUP* group : m_groups ) { for( BOARD_ITEM* item : group->GetItems() ) item->SetParentGroup( nullptr ); } // Clean up the owned elements DeleteMARKERs(); for( ZONE* zone : m_zones ) delete zone; m_zones.clear(); delete m_SolderMask; for( FOOTPRINT* footprint : m_footprints ) delete footprint; m_footprints.clear(); for( PCB_TRACK* t : m_tracks ) delete t; m_tracks.clear(); for( BOARD_ITEM* d : m_drawings ) delete d; m_drawings.clear(); for( PCB_GROUP* g : m_groups ) delete g; m_groups.clear(); } bool BOARD::BuildConnectivity( PROGRESS_REPORTER* aReporter ) { if( !GetConnectivity()->Build( this, aReporter ) ) return false; UpdateRatsnestExclusions(); return true; } void BOARD::SetProject( PROJECT* aProject, bool aReferenceOnly ) { if( m_project ) ClearProject(); m_project = aProject; if( aProject && !aReferenceOnly ) { PROJECT_FILE& project = aProject->GetProjectFile(); // Link the design settings object to the project file project.m_BoardSettings = &GetDesignSettings(); // Set parent, which also will load the values from JSON stored in the project if we don't // have legacy design settings loaded already project.m_BoardSettings->SetParent( &project, !m_LegacyDesignSettingsLoaded ); // The DesignSettings' netclasses pointer will be pointing to its internal netclasses // list at this point. If we loaded anything into it from a legacy board file then we // want to transfer it over to the project netclasses list. if( m_LegacyNetclassesLoaded ) { std::shared_ptr legacySettings = GetDesignSettings().m_NetSettings; std::shared_ptr& projectSettings = project.NetSettings(); projectSettings->m_DefaultNetClass = legacySettings->m_DefaultNetClass; projectSettings->m_NetClasses = legacySettings->m_NetClasses; projectSettings->m_NetClassPatternAssignments = std::move( legacySettings->m_NetClassPatternAssignments ); projectSettings->m_NetClassPatternAssignmentCache.clear(); } // Now update the DesignSettings' netclass pointer to point into the project. GetDesignSettings().m_NetSettings = project.NetSettings(); } } void BOARD::ClearProject() { if( !m_project ) return; PROJECT_FILE& project = m_project->GetProjectFile(); // Owned by the BOARD if( project.m_BoardSettings ) { project.ReleaseNestedSettings( project.m_BoardSettings ); project.m_BoardSettings = nullptr; } GetDesignSettings().m_NetSettings = nullptr; GetDesignSettings().SetParent( nullptr ); m_project = nullptr; } void BOARD::IncrementTimeStamp() { m_timeStamp++; if( !m_IntersectsAreaCache.empty() || !m_EnclosedByAreaCache.empty() || !m_IntersectsCourtyardCache.empty() || !m_IntersectsFCourtyardCache.empty() || !m_IntersectsBCourtyardCache.empty() || !m_LayerExpressionCache.empty() || !m_ZoneBBoxCache.empty() || m_CopperItemRTreeCache ) { std::unique_lock cacheLock( m_CachesMutex ); m_IntersectsAreaCache.clear(); m_EnclosedByAreaCache.clear(); m_IntersectsCourtyardCache.clear(); m_IntersectsFCourtyardCache.clear(); m_IntersectsBCourtyardCache.clear(); m_LayerExpressionCache.clear(); m_ZoneBBoxCache.clear(); m_CopperItemRTreeCache = nullptr; // These are always regenerated before use, but still probably safer to clear them // while we're here. m_DRCMaxClearance = 0; m_DRCMaxPhysicalClearance = 0; m_DRCZones.clear(); m_DRCCopperZones.clear(); m_ZoneIsolatedIslandsMap.clear(); m_CopperZoneRTreeCache.clear(); } } void BOARD::UpdateRatsnestExclusions() { std::set> m_ratsnestExclusions; for( PCB_MARKER* marker : GetBoard()->Markers() ) { if( marker->GetMarkerType() == MARKER_BASE::MARKER_RATSNEST && marker->IsExcluded() ) { const std::shared_ptr& rcItem = marker->GetRCItem(); m_ratsnestExclusions.emplace( rcItem->GetMainItemID(), rcItem->GetAuxItemID() ); m_ratsnestExclusions.emplace( rcItem->GetAuxItemID(), rcItem->GetMainItemID() ); } } GetConnectivity()->RunOnUnconnectedEdges( [&]( CN_EDGE& aEdge ) { if( aEdge.GetSourceNode() && aEdge.GetTargetNode() && !aEdge.GetSourceNode()->Dirty() && !aEdge.GetTargetNode()->Dirty() ) { std::pair ids = { aEdge.GetSourceNode()->Parent()->m_Uuid, aEdge.GetTargetNode()->Parent()->m_Uuid }; aEdge.SetVisible( m_ratsnestExclusions.count( ids ) == 0 ); } return true; } ); } std::vector BOARD::ResolveDRCExclusions( bool aCreateMarkers ) { for( PCB_MARKER* marker : GetBoard()->Markers() ) { auto i = m_designSettings->m_DrcExclusions.find( marker->Serialize() ); if( i != m_designSettings->m_DrcExclusions.end() ) { marker->SetExcluded( true ); m_designSettings->m_DrcExclusions.erase( i ); } } std::vector newMarkers; if( aCreateMarkers ) { for( const wxString& exclusionData : m_designSettings->m_DrcExclusions ) { PCB_MARKER* marker = PCB_MARKER::Deserialize( exclusionData ); if( !marker ) continue; // Check to see if items still exist for( const KIID& guid : marker->GetRCItem()->GetIDs() ) { if( GetItem( guid ) == DELETED_BOARD_ITEM::GetInstance() ) { delete marker; marker = nullptr; break; } } if( marker ) { marker->SetExcluded( true ); newMarkers.push_back( marker ); } } } m_designSettings->m_DrcExclusions.clear(); return newMarkers; } void BOARD::GetContextualTextVars( wxArrayString* aVars ) const { auto add = [&]( const wxString& aVar ) { if( !alg::contains( *aVars, aVar ) ) aVars->push_back( aVar ); }; add( wxT( "LAYER" ) ); GetTitleBlock().GetContextualTextVars( aVars ); if( GetProject() ) { for( std::pair entry : GetProject()->GetTextVars() ) add( entry.first ); } } bool BOARD::ResolveTextVar( wxString* token, int aDepth ) const { if( token->Contains( ':' ) ) { wxString remainder; wxString ref = token->BeforeFirst( ':', &remainder ); BOARD_ITEM* refItem = GetItem( KIID( ref ) ); if( refItem && refItem->Type() == PCB_FOOTPRINT_T ) { FOOTPRINT* refFP = static_cast( refItem ); if( refFP->ResolveTextVar( &remainder, aDepth + 1 ) ) { *token = remainder; return true; } } } wxString var = *token; if( GetTitleBlock().TextVarResolver( token, m_project ) ) { return true; } else if( m_properties.count( var ) ) { *token = m_properties.at( var ); return true; } if( GetProject() && GetProject()->TextVarResolver( token ) ) return true; return false; } VECTOR2I BOARD::GetPosition() const { return ZeroOffset; } void BOARD::SetPosition( const VECTOR2I& aPos ) { wxLogWarning( wxT( "This should not be called on the BOARD object") ); } void BOARD::Move( const VECTOR2I& aMoveVector ) // overload { INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData ) { if( BOARD_ITEM* board_item = dynamic_cast( item ) ) { // aMoveVector was snapshotted, don't need "data". // Only move the top level group if( !board_item->GetParentGroup() && !board_item->GetParentFootprint() ) board_item->Move( aMoveVector ); } return INSPECT_RESULT::CONTINUE; }; Visit( inspector, nullptr, GENERAL_COLLECTOR::BoardLevelItems ); } TRACKS BOARD::TracksInNet( int aNetCode ) { TRACKS ret; INSPECTOR_FUNC inspector = [aNetCode, &ret]( EDA_ITEM* item, void* testData ) { PCB_TRACK* t = static_cast( item ); if( t->GetNetCode() == aNetCode ) ret.push_back( t ); return INSPECT_RESULT::CONTINUE; }; // visit this BOARD's PCB_TRACKs and PCB_VIAs with above TRACK INSPECTOR which // appends all in aNetCode to ret. Visit( inspector, nullptr, GENERAL_COLLECTOR::Tracks ); return ret; } bool BOARD::SetLayerDescr( PCB_LAYER_ID aIndex, const LAYER& aLayer ) { if( unsigned( aIndex ) < arrayDim( m_layers ) ) { m_layers[ aIndex ] = aLayer; return true; } return false; } PCB_LAYER_ID BOARD::GetLayerID( const wxString& aLayerName ) const { // Check the BOARD physical layer names. for( int layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if ( m_layers[ layer ].m_name == aLayerName || m_layers[ layer ].m_userName == aLayerName ) return ToLAYER_ID( layer ); } // Otherwise fall back to the system standard layer names for virtual layers. for( int layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer ) { if( GetStandardLayerName( ToLAYER_ID( layer ) ) == aLayerName ) return ToLAYER_ID( layer ); } return UNDEFINED_LAYER; } const wxString BOARD::GetLayerName( PCB_LAYER_ID aLayer ) const { // All layer names are stored in the BOARD. if( IsLayerEnabled( aLayer ) ) { // Standard names were set in BOARD::BOARD() but they may be over-ridden by // BOARD::SetLayerName(). For copper layers, return the user defined layer name, // if it was set. Otherwise return the Standard English layer name. if( !m_layers[aLayer].m_userName.IsEmpty() ) return m_layers[aLayer].m_userName; } return GetStandardLayerName( aLayer ); } bool BOARD::SetLayerName( PCB_LAYER_ID aLayer, const wxString& aLayerName ) { wxCHECK( !aLayerName.IsEmpty(), false ); // no quote chars in the name allowed if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND ) return false; if( IsLayerEnabled( aLayer ) ) { m_layers[aLayer].m_userName = aLayerName; return true; } return false; } LAYER_T BOARD::GetLayerType( PCB_LAYER_ID aLayer ) const { if( !IsCopperLayer( aLayer ) ) return LT_SIGNAL; if( IsLayerEnabled( aLayer ) ) return m_layers[aLayer].m_type; return LT_SIGNAL; } bool BOARD::SetLayerType( PCB_LAYER_ID aLayer, LAYER_T aLayerType ) { if( !IsCopperLayer( aLayer ) ) return false; if( IsLayerEnabled( aLayer ) ) { m_layers[aLayer].m_type = aLayerType; return true; } return false; } const char* LAYER::ShowType( LAYER_T aType ) { switch( aType ) { default: case LT_SIGNAL: return "signal"; case LT_POWER: return "power"; case LT_MIXED: return "mixed"; case LT_JUMPER: return "jumper"; } } LAYER_T LAYER::ParseType( const char* aType ) { if( strcmp( aType, "signal" ) == 0 ) return LT_SIGNAL; else if( strcmp( aType, "power" ) == 0 ) return LT_POWER; else if( strcmp( aType, "mixed" ) == 0 ) return LT_MIXED; else if( strcmp( aType, "jumper" ) == 0 ) return LT_JUMPER; else return LT_UNDEFINED; } int BOARD::GetCopperLayerCount() const { return GetDesignSettings().GetCopperLayerCount(); } void BOARD::SetCopperLayerCount( int aCount ) { GetDesignSettings().SetCopperLayerCount( aCount ); } int BOARD::LayerDepth( PCB_LAYER_ID aStartLayer, PCB_LAYER_ID aEndLayer ) const { if( aStartLayer > aEndLayer ) std::swap( aStartLayer, aEndLayer ); if( aEndLayer == B_Cu ) aEndLayer = ToLAYER_ID( F_Cu + GetCopperLayerCount() - 1 ); return aEndLayer - aStartLayer; } LSET BOARD::GetEnabledLayers() const { return GetDesignSettings().GetEnabledLayers(); } bool BOARD::IsLayerVisible( PCB_LAYER_ID aLayer ) const { // If there is no project, assume layer is visible always return GetDesignSettings().IsLayerEnabled( aLayer ) && ( !m_project || m_project->GetLocalSettings().m_VisibleLayers[aLayer] ); } LSET BOARD::GetVisibleLayers() const { return m_project ? m_project->GetLocalSettings().m_VisibleLayers : LSET::AllLayersMask(); } void BOARD::SetEnabledLayers( LSET aLayerSet ) { GetDesignSettings().SetEnabledLayers( aLayerSet ); } bool BOARD::IsLayerEnabled( PCB_LAYER_ID aLayer ) const { return GetDesignSettings().IsLayerEnabled( aLayer ); } void BOARD::SetVisibleLayers( LSET aLayerSet ) { if( m_project ) m_project->GetLocalSettings().m_VisibleLayers = aLayerSet; } void BOARD::SetVisibleElements( const GAL_SET& aSet ) { // Call SetElementVisibility for each item // to ensure specific calculations that can be needed by some items, // just changing the visibility flags could be not sufficient. for( size_t i = 0; i < aSet.size(); i++ ) SetElementVisibility( GAL_LAYER_ID_START + static_cast( i ), aSet[i] ); } void BOARD::SetVisibleAlls() { SetVisibleLayers( LSET().set() ); // Call SetElementVisibility for each item, // to ensure specific calculations that can be needed by some items for( GAL_LAYER_ID ii = GAL_LAYER_ID_START; ii < GAL_LAYER_ID_BITMASK_END; ++ii ) SetElementVisibility( ii, true ); } GAL_SET BOARD::GetVisibleElements() const { return m_project ? m_project->GetLocalSettings().m_VisibleItems : GAL_SET().set(); } bool BOARD::IsElementVisible( GAL_LAYER_ID aLayer ) const { return !m_project || m_project->GetLocalSettings().m_VisibleItems[aLayer - GAL_LAYER_ID_START]; } void BOARD::SetElementVisibility( GAL_LAYER_ID aLayer, bool isEnabled ) { if( m_project ) m_project->GetLocalSettings().m_VisibleItems.set( aLayer - GAL_LAYER_ID_START, isEnabled ); switch( aLayer ) { case LAYER_RATSNEST: { // because we have a tool to show/hide ratsnest relative to a pad or a footprint // so the hide/show option is a per item selection for( PCB_TRACK* track : Tracks() ) track->SetLocalRatsnestVisible( isEnabled ); for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) pad->SetLocalRatsnestVisible( isEnabled ); } for( ZONE* zone : Zones() ) zone->SetLocalRatsnestVisible( isEnabled ); break; } default: ; } } bool BOARD::IsFootprintLayerVisible( PCB_LAYER_ID aLayer ) const { switch( aLayer ) { case F_Cu: return IsElementVisible( LAYER_FOOTPRINTS_FR ); case B_Cu: return IsElementVisible( LAYER_FOOTPRINTS_BK ); default: wxFAIL_MSG( wxT( "BOARD::IsModuleLayerVisible(): bad layer" ) ); return true; } } BOARD_DESIGN_SETTINGS& BOARD::GetDesignSettings() const { return *m_designSettings; } const ZONE_SETTINGS& BOARD::GetZoneSettings() const { return GetDesignSettings().GetDefaultZoneSettings(); } void BOARD::SetZoneSettings( const ZONE_SETTINGS& aSettings ) { GetDesignSettings().SetDefaultZoneSettings( aSettings ); } int BOARD::GetMaxClearanceValue() const { int worstClearance = m_designSettings->GetBiggestClearanceValue(); for( ZONE* zone : m_zones ) worstClearance = std::max( worstClearance, zone->GetLocalClearance() ); for( FOOTPRINT* footprint : m_footprints ) { worstClearance = std::max( worstClearance, footprint->GetLocalClearance() ); for( PAD* pad : footprint->Pads() ) worstClearance = std::max( worstClearance, pad->GetLocalClearance() ); for( ZONE* zone : footprint->Zones() ) worstClearance = std::max( worstClearance, zone->GetLocalClearance() ); } return worstClearance; } void BOARD::CacheTriangulation( PROGRESS_REPORTER* aReporter, const std::vector& aZones ) { std::vector zones = aZones; if( zones.empty() ) zones = m_zones; if( zones.empty() ) return; if( aReporter ) aReporter->Report( _( "Tessellating copper zones..." ) ); thread_pool& tp = GetKiCadThreadPool(); std::vector> returns; returns.reserve( zones.size() ); auto cache_zones = [aReporter]( ZONE* aZone ) -> size_t { if( aReporter && aReporter->IsCancelled() ) return 0; aZone->CacheTriangulation(); if( aReporter ) aReporter->AdvanceProgress(); return 1; }; for( ZONE* zone : zones ) returns.emplace_back( tp.submit( cache_zones, zone ) ); // Finalize the triangulation threads for( const std::future& ret : returns ) { std::future_status status = ret.wait_for( std::chrono::milliseconds( 250 ) ); while( status != std::future_status::ready ) { if( aReporter ) aReporter->KeepRefreshing(); status = ret.wait_for( std::chrono::milliseconds( 250 ) ); } } } void BOARD::Add( BOARD_ITEM* aBoardItem, ADD_MODE aMode, bool aSkipConnectivity ) { if( aBoardItem == nullptr ) { wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem nullptr" ) ); return; } switch( aBoardItem->Type() ) { case PCB_NETINFO_T: m_NetInfo.AppendNet( (NETINFO_ITEM*) aBoardItem ); break; // this one uses a vector case PCB_MARKER_T: m_markers.push_back( (PCB_MARKER*) aBoardItem ); break; // this one uses a vector case PCB_GROUP_T: m_groups.push_back( (PCB_GROUP*) aBoardItem ); break; // this one uses a vector case PCB_ZONE_T: m_zones.push_back( (ZONE*) aBoardItem ); break; case PCB_TRACE_T: case PCB_VIA_T: case PCB_ARC_T: // N.B. This inserts a small memory leak as we lose the if( !IsCopperLayer( aBoardItem->GetLayer() ) ) { wxFAIL_MSG( wxT( "BOARD::Add() Cannot place Track on non-copper layer" ) ); return; } if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_tracks.push_back( static_cast( aBoardItem ) ); else m_tracks.push_front( static_cast( aBoardItem ) ); break; case PCB_FOOTPRINT_T: if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_footprints.push_back( static_cast( aBoardItem ) ); else m_footprints.push_front( static_cast( aBoardItem ) ); break; case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_SHAPE_T: case PCB_BITMAP_T: case PCB_FIELD_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_TARGET_T: if( aMode == ADD_MODE::APPEND || aMode == ADD_MODE::BULK_APPEND ) m_drawings.push_back( aBoardItem ); else m_drawings.push_front( aBoardItem ); break; // other types may use linked list default: { wxString msg; msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ), aBoardItem->Type() ); wxFAIL_MSG( msg ); return; } break; } aBoardItem->SetParent( this ); aBoardItem->ClearEditFlags(); if( !aSkipConnectivity ) m_connectivity->Add( aBoardItem ); if( aMode != ADD_MODE::BULK_INSERT && aMode != ADD_MODE::BULK_APPEND ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemAdded, *this, aBoardItem ); } } void BOARD::FinalizeBulkAdd( std::vector& aNewItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemsAdded, *this, aNewItems ); } void BOARD::FinalizeBulkRemove( std::vector& aRemovedItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemsRemoved, *this, aRemovedItems ); } void BOARD::Remove( BOARD_ITEM* aBoardItem, REMOVE_MODE aRemoveMode ) { // find these calls and fix them! Don't send me no stinking' nullptr. wxASSERT( aBoardItem ); switch( aBoardItem->Type() ) { case PCB_NETINFO_T: { NETINFO_ITEM* item = static_cast( aBoardItem ); NETINFO_ITEM* unconnected = m_NetInfo.GetNetItem( NETINFO_LIST::UNCONNECTED ); for( FOOTPRINT* fp : m_footprints ) { for( PAD* pad : fp->Pads() ) { if( pad->GetNet() == item ) pad->SetNet( unconnected ); } } for( ZONE* zone : m_zones ) { if( zone->GetNet() == item ) zone->SetNet( unconnected ); } for( PCB_TRACK* track : m_tracks ) { if( track->GetNet() == item ) track->SetNet( unconnected ); } m_NetInfo.RemoveNet( item ); break; } case PCB_MARKER_T: alg::delete_matching( m_markers, aBoardItem ); break; case PCB_GROUP_T: alg::delete_matching( m_groups, aBoardItem ); break; case PCB_ZONE_T: alg::delete_matching( m_zones, aBoardItem ); break; case PCB_FOOTPRINT_T: alg::delete_matching( m_footprints, aBoardItem ); break; case PCB_TRACE_T: case PCB_ARC_T: case PCB_VIA_T: alg::delete_matching( m_tracks, aBoardItem ); break; case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_SHAPE_T: case PCB_BITMAP_T: case PCB_FIELD_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_TARGET_T: alg::delete_matching( m_drawings, aBoardItem ); break; // other types may use linked list default: wxFAIL_MSG( wxT( "BOARD::Remove() needs more ::Type() support" ) ); } aBoardItem->SetFlags( STRUCT_DELETED ); PCB_GROUP* parentGroup = aBoardItem->GetParentGroup(); if( parentGroup && !( parentGroup->GetFlags() & STRUCT_DELETED ) ) parentGroup->RemoveItem( aBoardItem ); m_connectivity->Remove( aBoardItem ); if( aRemoveMode != REMOVE_MODE::BULK ) InvokeListeners( &BOARD_LISTENER::OnBoardItemRemoved, *this, aBoardItem ); } wxString BOARD::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const { return wxString::Format( _( "PCB" ) ); } void BOARD::UpdateUserUnits( BOARD_ITEM* aItem, KIGFX::VIEW* aView ) { INSPECTOR_FUNC inspector = [&]( EDA_ITEM* descendant, void* aTestData ) { PCB_DIMENSION_BASE* dimension = static_cast( descendant ); if( dimension->GetUnitsMode() == DIM_UNITS_MODE::AUTOMATIC ) { dimension->UpdateUnits(); if( aView ) aView->Update( dimension ); } return INSPECT_RESULT::CONTINUE; }; aItem->Visit( inspector, nullptr, { PCB_DIM_ALIGNED_T, PCB_DIM_LEADER_T, PCB_DIM_ORTHOGONAL_T, PCB_DIM_CENTER_T, PCB_DIM_RADIAL_T } ); } void BOARD::DeleteMARKERs() { // the vector does not know how to delete the PCB_MARKER, it holds pointers for( PCB_MARKER* marker : m_markers ) delete marker; m_markers.clear(); } void BOARD::DeleteMARKERs( bool aWarningsAndErrors, bool aExclusions ) { // Deleting lots of items from a vector can be very slow. Copy remaining items instead. MARKERS remaining; for( PCB_MARKER* marker : m_markers ) { if( ( marker->GetSeverity() == RPT_SEVERITY_EXCLUSION && aExclusions ) || ( marker->GetSeverity() != RPT_SEVERITY_EXCLUSION && aWarningsAndErrors ) ) { delete marker; } else { remaining.push_back( marker ); } } m_markers = remaining; } void BOARD::DeleteAllFootprints() { for( FOOTPRINT* footprint : m_footprints ) delete footprint; m_footprints.clear(); } BOARD_ITEM* BOARD::GetItem( const KIID& aID ) const { if( aID == niluuid ) return nullptr; for( PCB_TRACK* track : Tracks() ) { if( track->m_Uuid == aID ) return track; } for( FOOTPRINT* footprint : Footprints() ) { if( footprint->m_Uuid == aID ) return footprint; for( PAD* pad : footprint->Pads() ) { if( pad->m_Uuid == aID ) return pad; } if( footprint->Reference().m_Uuid == aID ) return &footprint->Reference(); if( footprint->Value().m_Uuid == aID ) return &footprint->Value(); for( BOARD_ITEM* drawing : footprint->GraphicalItems() ) { if( drawing->m_Uuid == aID ) return drawing; } for( BOARD_ITEM* zone : footprint->Zones() ) { if( zone->m_Uuid == aID ) return zone; } for( PCB_GROUP* group : footprint->Groups() ) { if( group->m_Uuid == aID ) return group; } } for( ZONE* zone : Zones() ) { if( zone->m_Uuid == aID ) return zone; } for( BOARD_ITEM* drawing : Drawings() ) { if( drawing->m_Uuid == aID ) return drawing; } for( PCB_MARKER* marker : m_markers ) { if( marker->m_Uuid == aID ) return marker; } for( PCB_GROUP* group : m_groups ) { if( group->m_Uuid == aID ) return group; } for( NETINFO_ITEM* netInfo : m_NetInfo ) { if( netInfo->m_Uuid == aID ) return netInfo; } if( m_Uuid == aID ) return const_cast( this ); // Not found; weak reference has been deleted. return DELETED_BOARD_ITEM::GetInstance(); } void BOARD::FillItemMap( std::map& aMap ) { // the board itself aMap[ m_Uuid ] = this; for( PCB_TRACK* track : Tracks() ) aMap[ track->m_Uuid ] = track; for( FOOTPRINT* footprint : Footprints() ) { aMap[ footprint->m_Uuid ] = footprint; for( PAD* pad : footprint->Pads() ) aMap[ pad->m_Uuid ] = pad; aMap[ footprint->Reference().m_Uuid ] = &footprint->Reference(); aMap[ footprint->Value().m_Uuid ] = &footprint->Value(); for( BOARD_ITEM* drawing : footprint->GraphicalItems() ) aMap[ drawing->m_Uuid ] = drawing; } for( ZONE* zone : Zones() ) aMap[ zone->m_Uuid ] = zone; for( BOARD_ITEM* drawing : Drawings() ) aMap[ drawing->m_Uuid ] = drawing; for( PCB_MARKER* marker : m_markers ) aMap[ marker->m_Uuid ] = marker; for( PCB_GROUP* group : m_groups ) aMap[ group->m_Uuid ] = group; } wxString BOARD::ConvertCrossReferencesToKIIDs( const wxString& aSource ) const { wxString newbuf; size_t sourceLen = aSource.length(); for( size_t i = 0; i < sourceLen; ++i ) { if( aSource[i] == '$' && i + 1 < sourceLen && aSource[i+1] == '{' ) { wxString token; bool isCrossRef = false; for( i = i + 2; i < sourceLen; ++i ) { if( aSource[i] == '}' ) break; if( aSource[i] == ':' ) isCrossRef = true; token.append( aSource[i] ); } if( isCrossRef ) { wxString remainder; wxString ref = token.BeforeFirst( ':', &remainder ); for( const FOOTPRINT* footprint : Footprints() ) { if( footprint->GetReference().CmpNoCase( ref ) == 0 ) { wxString test( remainder ); if( footprint->ResolveTextVar( &test ) ) token = footprint->m_Uuid.AsString() + wxT( ":" ) + remainder; break; } } } newbuf.append( wxT( "${" ) + token + wxT( "}" ) ); } else { newbuf.append( aSource[i] ); } } return newbuf; } wxString BOARD::ConvertKIIDsToCrossReferences( const wxString& aSource ) const { wxString newbuf; size_t sourceLen = aSource.length(); for( size_t i = 0; i < sourceLen; ++i ) { if( aSource[i] == '$' && i + 1 < sourceLen && aSource[i+1] == '{' ) { wxString token; bool isCrossRef = false; for( i = i + 2; i < sourceLen; ++i ) { if( aSource[i] == '}' ) break; if( aSource[i] == ':' ) isCrossRef = true; token.append( aSource[i] ); } if( isCrossRef ) { wxString remainder; wxString ref = token.BeforeFirst( ':', &remainder ); BOARD_ITEM* refItem = GetItem( KIID( ref ) ); if( refItem && refItem->Type() == PCB_FOOTPRINT_T ) { token = static_cast( refItem )->GetReference() + wxT( ":" ) + remainder; } } newbuf.append( wxT( "${" ) + token + wxT( "}" ) ); } else { newbuf.append( aSource[i] ); } } return newbuf; } unsigned BOARD::GetNodesCount( int aNet ) const { unsigned retval = 0; for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( ( aNet == -1 && pad->GetNetCode() > 0 ) || aNet == pad->GetNetCode() ) retval++; } } return retval; } BOX2I BOARD::ComputeBoundingBox( bool aBoardEdgesOnly ) const { BOX2I bbox; LSET visible = GetVisibleLayers(); bool showHiddenText = IsElementVisible( LAYER_HIDDEN_TEXT ); if( PgmOrNull() && PgmOrNull()->m_Printing ) showHiddenText = false; // If the board is just showing a footprint, we want all footprint layers // included in the bounding box if( IsFootprintHolder() ) visible.set(); if( aBoardEdgesOnly ) visible.set( Edge_Cuts ); // Check shapes, dimensions, texts, and fiducials for( BOARD_ITEM* item : m_drawings ) { if( aBoardEdgesOnly && ( item->GetLayer() != Edge_Cuts || item->Type() != PCB_SHAPE_T ) ) continue; if( ( item->GetLayerSet() & visible ).any() ) bbox.Merge( item->GetBoundingBox() ); } // Check footprints for( FOOTPRINT* footprint : m_footprints ) { if( !( footprint->GetLayerSet() & visible ).any() ) continue; if( aBoardEdgesOnly ) { for( const BOARD_ITEM* edge : footprint->GraphicalItems() ) { if( edge->GetLayer() == Edge_Cuts && edge->Type() == PCB_SHAPE_T ) bbox.Merge( edge->GetBoundingBox() ); } } else { bbox.Merge( footprint->GetBoundingBox( true, showHiddenText ) ); } } if( !aBoardEdgesOnly ) { // Check tracks for( PCB_TRACK* track : m_tracks ) { if( ( track->GetLayerSet() & visible ).any() ) bbox.Merge( track->GetBoundingBox() ); } // Check zones for( ZONE* aZone : m_zones ) { if( ( aZone->GetLayerSet() & visible ).any() ) bbox.Merge( aZone->GetBoundingBox() ); } } return bbox; } void BOARD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector& aList ) { int padCount = 0; int viaCount = 0; int trackSegmentCount = 0; std::set netCodes; int unconnected = GetConnectivity()->GetUnconnectedCount( true ); for( PCB_TRACK* item : m_tracks ) { if( item->Type() == PCB_VIA_T ) viaCount++; else trackSegmentCount++; if( item->GetNetCode() > 0 ) netCodes.insert( item->GetNetCode() ); } for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) { padCount++; if( pad->GetNetCode() > 0 ) netCodes.insert( pad->GetNetCode() ); } } aList.emplace_back( _( "Pads" ), wxString::Format( wxT( "%d" ), padCount ) ); aList.emplace_back( _( "Vias" ), wxString::Format( wxT( "%d" ), viaCount ) ); aList.emplace_back( _( "Track Segments" ), wxString::Format( wxT( "%d" ), trackSegmentCount ) ); aList.emplace_back( _( "Nets" ), wxString::Format( wxT( "%d" ), (int) netCodes.size() ) ); aList.emplace_back( _( "Unrouted" ), wxString::Format( wxT( "%d" ), unconnected ) ); } INSPECT_RESULT BOARD::Visit( INSPECTOR inspector, void* testData, const std::vector& scanTypes ) { #if 0 && defined(DEBUG) std::cout << GetClass().mb_str() << ' '; #endif bool footprintsScanned = false; bool drawingsScanned = false; bool tracksScanned = false; for( KICAD_T scanType : scanTypes ) { switch( scanType ) { case PCB_T: if( inspector( this, testData ) == INSPECT_RESULT::QUIT ) return INSPECT_RESULT::QUIT; break; /* * Instances of the requested KICAD_T live in a list, either one that I manage, or one * that my footprints manage. If it's a type managed by class FOOTPRINT, then simply * pass it on to each footprint's Visit() function via IterateForward( m_footprints, ... ). */ case PCB_FOOTPRINT_T: case PCB_PAD_T: case PCB_SHAPE_T: case PCB_BITMAP_T: case PCB_FIELD_T: case PCB_TEXT_T: case PCB_TEXTBOX_T: case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: case PCB_TARGET_T: if( !footprintsScanned ) { if( IterateForward( m_footprints, inspector, testData, scanTypes ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; } footprintsScanned = true; } if( !drawingsScanned ) { if( IterateForward( m_drawings, inspector, testData, scanTypes ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; } drawingsScanned = true; } break; case PCB_VIA_T: case PCB_TRACE_T: case PCB_ARC_T: if( !tracksScanned ) { if( IterateForward( m_tracks, inspector, testData, scanTypes ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; } tracksScanned = true; } break; case PCB_MARKER_T: for( PCB_MARKER* marker : m_markers ) { if( marker->Visit( inspector, testData, { scanType } ) == INSPECT_RESULT::QUIT ) return INSPECT_RESULT::QUIT; } break; case PCB_ZONE_T: if( !footprintsScanned ) { if( IterateForward( m_footprints, inspector, testData, scanTypes ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; } footprintsScanned = true; } for( ZONE* zone : m_zones) { if( zone->Visit( inspector, testData, { scanType } ) == INSPECT_RESULT::QUIT ) return INSPECT_RESULT::QUIT; } break; case PCB_GROUP_T: if( IterateForward( m_groups, inspector, testData, { scanType } ) == INSPECT_RESULT::QUIT ) { return INSPECT_RESULT::QUIT; } break; default: break; } } return INSPECT_RESULT::CONTINUE; } NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const { // the first valid netcode is 1 and the last is m_NetInfo.GetCount()-1. // zero is reserved for "no connection" and is not actually a net. // nullptr is returned for non valid netcodes wxASSERT( m_NetInfo.GetNetCount() > 0 ); if( aNetcode == NETINFO_LIST::UNCONNECTED && m_NetInfo.GetNetCount() == 0 ) return NETINFO_LIST::OrphanedItem(); else return m_NetInfo.GetNetItem( aNetcode ); } NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const { return m_NetInfo.GetNetItem( aNetname ); } FOOTPRINT* BOARD::FindFootprintByReference( const wxString& aReference ) const { for( FOOTPRINT* footprint : m_footprints ) { if( aReference == footprint->GetReference() ) return footprint; } return nullptr; } FOOTPRINT* BOARD::FindFootprintByPath( const KIID_PATH& aPath ) const { for( FOOTPRINT* footprint : m_footprints ) { if( footprint->GetPath() == aPath ) return footprint; } return nullptr; } std::set BOARD::GetNetClassAssignmentCandidates() const { std::set names; for( const NETINFO_ITEM* net : m_NetInfo ) { if( !net->GetNetname().IsEmpty() ) names.insert( net->GetNetname() ); } return names; } void BOARD::SynchronizeProperties() { wxCHECK( m_project, /*void*/ ); if( !m_project->IsNullProject() ) SetProperties( m_project->GetTextVars() ); } void BOARD::SynchronizeNetsAndNetClasses( bool aResetTrackAndViaSizes ) { if( !m_project ) return; BOARD_DESIGN_SETTINGS& bds = GetDesignSettings(); std::shared_ptr& defaultNetClass = bds.m_NetSettings->m_DefaultNetClass; for( NETINFO_ITEM* net : m_NetInfo ) net->SetNetClass( bds.m_NetSettings->GetEffectiveNetClass( net->GetNetname() ) ); if( aResetTrackAndViaSizes ) { // Set initial values for custom track width & via size to match the default // netclass settings bds.UseCustomTrackViaSize( false ); bds.SetCustomTrackWidth( defaultNetClass->GetTrackWidth() ); bds.SetCustomViaSize( defaultNetClass->GetViaDiameter() ); bds.SetCustomViaDrill( defaultNetClass->GetViaDrill() ); bds.SetCustomDiffPairWidth( defaultNetClass->GetDiffPairWidth() ); bds.SetCustomDiffPairGap( defaultNetClass->GetDiffPairGap() ); bds.SetCustomDiffPairViaGap( defaultNetClass->GetDiffPairViaGap() ); } InvokeListeners( &BOARD_LISTENER::OnBoardNetSettingsChanged, *this ); } int BOARD::SetAreasNetCodesFromNetNames() { int error_count = 0; for( ZONE* zone : Zones() ) { if( !zone->IsOnCopperLayer() ) { zone->SetNetCode( NETINFO_LIST::UNCONNECTED ); continue; } if( zone->GetNetCode() != 0 ) // i.e. if this zone is connected to a net { const NETINFO_ITEM* net = zone->GetNet(); if( net ) { zone->SetNetCode( net->GetNetCode() ); } else { error_count++; // keep Net Name and set m_NetCode to -1 : error flag. zone->SetNetCode( -1 ); } } } return error_count; } PAD* BOARD::GetPad( const VECTOR2I& aPosition, LSET aLayerSet ) const { if( !aLayerSet.any() ) aLayerSet = LSET::AllCuMask(); for( FOOTPRINT* footprint : m_footprints ) { PAD* pad = nullptr; if( footprint->HitTest( aPosition ) ) pad = footprint->GetPad( aPosition, aLayerSet ); if( pad ) return pad; } return nullptr; } PAD* BOARD::GetPad( const PCB_TRACK* aTrace, ENDPOINT_T aEndPoint ) const { const VECTOR2I& aPosition = aTrace->GetEndPoint( aEndPoint ); LSET lset( aTrace->GetLayer() ); return GetPad( aPosition, lset ); } PAD* BOARD::GetPadFast( const VECTOR2I& aPosition, LSET aLayerSet ) const { for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) { if( pad->GetPosition() != aPosition ) continue; // Pad found, it must be on the correct layer if( ( pad->GetLayerSet() & aLayerSet ).any() ) return pad; } } return nullptr; } PAD* BOARD::GetPad( std::vector& aPadList, const VECTOR2I& aPosition, LSET aLayerSet ) const { // Search aPadList for aPosition // aPadList is sorted by X then Y values, and a fast binary search is used int idxmax = aPadList.size() - 1; int delta = aPadList.size(); int idx = 0; // Starting index is the beginning of list while( delta ) { // Calculate half size of remaining interval to test. // Ensure the computed value is not truncated (too small) if( (delta & 1) && ( delta > 1 ) ) delta++; delta /= 2; PAD* pad = aPadList[idx]; if( pad->GetPosition() == aPosition ) // candidate found { // The pad must match the layer mask: if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; // More than one pad can be at aPosition // search for a pad at aPosition that matched this mask // search next for( int ii = idx+1; ii <= idxmax; ii++ ) { pad = aPadList[ii]; if( pad->GetPosition() != aPosition ) break; if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; } // search previous for( int ii = idx - 1 ;ii >=0; ii-- ) { pad = aPadList[ii]; if( pad->GetPosition() != aPosition ) break; if( ( aLayerSet & pad->GetLayerSet() ).any() ) return pad; } // Not found: return nullptr; } if( pad->GetPosition().x == aPosition.x ) // Must search considering Y coordinate { if( pad->GetPosition().y < aPosition.y ) // Must search after this item { idx += delta; if( idx > idxmax ) idx = idxmax; } else // Must search before this item { idx -= delta; if( idx < 0 ) idx = 0; } } else if( pad->GetPosition().x < aPosition.x ) // Must search after this item { idx += delta; if( idx > idxmax ) idx = idxmax; } else // Must search before this item { idx -= delta; if( idx < 0 ) idx = 0; } } return nullptr; } /** * Used by #GetSortedPadListByXCoord to sort a pad list by X coordinate value. * * This function is used to build ordered pads lists */ bool sortPadsByXthenYCoord( PAD* const & aLH, PAD* const & aRH ) { if( aLH->GetPosition().x == aRH->GetPosition().x ) return aLH->GetPosition().y < aRH->GetPosition().y; return aLH->GetPosition().x < aRH->GetPosition().x; } void BOARD::GetSortedPadListByXthenYCoord( std::vector& aVector, int aNetCode ) const { for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads( ) ) { if( aNetCode < 0 || pad->GetNetCode() == aNetCode ) aVector.push_back( pad ); } } std::sort( aVector.begin(), aVector.end(), sortPadsByXthenYCoord ); } std::tuple BOARD::GetTrackLength( const PCB_TRACK& aTrack ) const { int count = 0; double length = 0.0; double package_length = 0.0; auto connectivity = GetBoard()->GetConnectivity(); BOARD_STACKUP& stackup = GetDesignSettings().GetStackupDescriptor(); bool useHeight = GetDesignSettings().m_UseHeightForLengthCalcs; for( BOARD_CONNECTED_ITEM* item : connectivity->GetConnectedItems( static_cast( &aTrack ), { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T } ) ) { count++; if( PCB_TRACK* track = dynamic_cast( item ) ) { if( track->Type() == PCB_VIA_T && useHeight ) { PCB_VIA* via = static_cast( track ); length += stackup.GetLayerDistance( via->TopLayer(), via->BottomLayer() ); continue; } else if( track->Type() == PCB_ARC_T ) { // Note: we don't apply the clip-to-pad optimization if an arc ends in a pad // Room for future improvement. length += track->GetLength(); continue; } bool inPad = false; SEG trackSeg( track->GetStart(), track->GetEnd() ); double segLen = trackSeg.Length(); double segInPadLen = 0; for( auto pad_it : connectivity->GetConnectedPads( item ) ) { PAD* pad = static_cast( pad_it ); bool hitStart = pad->HitTest( track->GetStart(), track->GetWidth() / 2 ); bool hitEnd = pad->HitTest( track->GetEnd(), track->GetWidth() / 2 ); if( hitStart && hitEnd ) { inPad = true; break; } else if( hitStart || hitEnd ) { VECTOR2I loc; // We may not collide even if we passed the bounding-box hit test if( pad->GetEffectivePolygon()->Collide( trackSeg, 0, nullptr, &loc ) ) { // Part 1: length of the seg to the intersection with the pad poly if( hitStart ) trackSeg.A = loc; else trackSeg.B = loc; segLen = trackSeg.Length(); // Part 2: length from the intersection to the pad anchor segInPadLen += ( loc - pad->GetPosition() ).EuclideanNorm(); } } } if( !inPad ) length += segLen + segInPadLen; } else if( PAD* pad = dynamic_cast( item ) ) { package_length += pad->GetPadToDieLength(); } } return std::make_tuple( count, length, package_length ); } FOOTPRINT* BOARD::GetFootprint( const VECTOR2I& aPosition, PCB_LAYER_ID aActiveLayer, bool aVisibleOnly, bool aIgnoreLocked ) const { FOOTPRINT* footprint = nullptr; FOOTPRINT* alt_footprint = nullptr; int min_dim = 0x7FFFFFFF; int alt_min_dim = 0x7FFFFFFF; bool current_layer_back = IsBackLayer( aActiveLayer ); for( FOOTPRINT* candidate : m_footprints ) { // is the ref point within the footprint's bounds? if( !candidate->HitTest( aPosition ) ) continue; // if caller wants to ignore locked footprints, and this one is locked, skip it. if( aIgnoreLocked && candidate->IsLocked() ) continue; PCB_LAYER_ID layer = candidate->GetLayer(); // Filter non visible footprints if requested if( !aVisibleOnly || IsFootprintLayerVisible( layer ) ) { BOX2I bb = candidate->GetBoundingBox( false, false ); int offx = bb.GetX() + bb.GetWidth() / 2; int offy = bb.GetY() + bb.GetHeight() / 2; // off x & offy point to the middle of the box. int dist = ( aPosition.x - offx ) * ( aPosition.x - offx ) + ( aPosition.y - offy ) * ( aPosition.y - offy ); if( current_layer_back == IsBackLayer( layer ) ) { if( dist <= min_dim ) { // better footprint shown on the active side footprint = candidate; min_dim = dist; } } else if( aVisibleOnly && IsFootprintLayerVisible( layer ) ) { if( dist <= alt_min_dim ) { // better footprint shown on the other side alt_footprint = candidate; alt_min_dim = dist; } } } } if( footprint ) return footprint; if( alt_footprint) return alt_footprint; return nullptr; } std::list BOARD::GetZoneList( bool aIncludeZonesInFootprints ) const { std::list zones; for( ZONE* zone : Zones() ) zones.push_back( zone ); if( aIncludeZonesInFootprints ) { for( FOOTPRINT* footprint : m_footprints ) { for( ZONE* zone : footprint->Zones() ) zones.push_back( zone ); } } return zones; } ZONE* BOARD::AddArea( PICKED_ITEMS_LIST* aNewZonesList, int aNetcode, PCB_LAYER_ID aLayer, VECTOR2I aStartPointPosition, ZONE_BORDER_DISPLAY_STYLE aHatch ) { ZONE* new_area = new ZONE( this ); new_area->SetNetCode( aNetcode ); new_area->SetLayer( aLayer ); m_zones.push_back( new_area ); new_area->SetHatchStyle( (ZONE_BORDER_DISPLAY_STYLE) aHatch ); // Add the first corner to the new zone new_area->AppendCorner( aStartPointPosition, -1 ); if( aNewZonesList ) { ITEM_PICKER picker( nullptr, new_area, UNDO_REDO::NEWITEM ); aNewZonesList->PushItem( picker ); } return new_area; } bool BOARD::GetBoardPolygonOutlines( SHAPE_POLY_SET& aOutlines, OUTLINE_ERROR_HANDLER* aErrorHandler, bool aAllowUseArcsInPolygons ) { // max dist from one endPt to next startPt: use the current value int chainingEpsilon = GetOutlinesChainingEpsilon(); bool success = BuildBoardPolygonOutlines( this, aOutlines, GetDesignSettings().m_MaxError, chainingEpsilon, aErrorHandler, aAllowUseArcsInPolygons ); // Make polygon strictly simple to avoid issues (especially in 3D viewer) aOutlines.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); return success; } const std::vector BOARD::GetPads() const { std::vector allPads; for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) allPads.push_back( pad ); } return allPads; } const std::vector BOARD::AllConnectedItems() { std::vector items; for( PCB_TRACK* track : Tracks() ) items.push_back( track ); for( FOOTPRINT* footprint : Footprints() ) { for( PAD* pad : footprint->Pads() ) items.push_back( pad ); } for( ZONE* zone : Zones() ) items.push_back( zone ); return items; } void BOARD::MapNets( const BOARD* aDestBoard ) { for( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) { NETINFO_ITEM* netInfo = aDestBoard->FindNet( item->GetNetname() ); if( netInfo ) item->SetNet( netInfo ); else item->SetNetCode( 0 ); } } void BOARD::SanitizeNetcodes() { for ( BOARD_CONNECTED_ITEM* item : AllConnectedItems() ) { if( FindNet( item->GetNetCode() ) == nullptr ) item->SetNetCode( NETINFO_LIST::ORPHANED ); } } void BOARD::AddListener( BOARD_LISTENER* aListener ) { if( !alg::contains( m_listeners, aListener ) ) m_listeners.push_back( aListener ); } void BOARD::RemoveListener( BOARD_LISTENER* aListener ) { auto i = std::find( m_listeners.begin(), m_listeners.end(), aListener ); if( i != m_listeners.end() ) { std::iter_swap( i, m_listeners.end() - 1 ); m_listeners.pop_back(); } } void BOARD::RemoveAllListeners() { m_listeners.clear(); } void BOARD::OnItemChanged( BOARD_ITEM* aItem ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemChanged, *this, aItem ); } void BOARD::OnItemsChanged( std::vector& aItems ) { InvokeListeners( &BOARD_LISTENER::OnBoardItemsChanged, *this, aItems ); } void BOARD::OnRatsnestChanged() { InvokeListeners( &BOARD_LISTENER::OnBoardRatsnestChanged, *this ); } void BOARD::ResetNetHighLight() { m_highLight.Clear(); m_highLightPrevious.Clear(); InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } void BOARD::SetHighLightNet( int aNetCode, bool aMulti ) { if( !m_highLight.m_netCodes.count( aNetCode ) ) { if( !aMulti ) m_highLight.m_netCodes.clear(); m_highLight.m_netCodes.insert( aNetCode ); InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } } void BOARD::HighLightON( bool aValue ) { if( m_highLight.m_highLightOn != aValue ) { m_highLight.m_highLightOn = aValue; InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this ); } } wxString BOARD::GroupsSanityCheck( bool repair ) { if( repair ) { while( GroupsSanityCheckInternal( repair ) != wxEmptyString ) {}; return wxEmptyString; } return GroupsSanityCheckInternal( repair ); } wxString BOARD::GroupsSanityCheckInternal( bool repair ) { // Cycle detection // // Each group has at most one parent group. // So we start at group 0 and traverse the parent chain, marking groups seen along the way. // If we ever see a group that we've already marked, that's a cycle. // If we reach the end of the chain, we know all groups in that chain are not part of any cycle. // // Algorithm below is linear in the # of groups because each group is visited only once. // There may be extra time taken due to the container access calls and iterators. // // Groups we know are cycle free std::unordered_set knownCycleFreeGroups; // Groups in the current chain we're exploring. std::unordered_set currentChainGroups; // Groups we haven't checked yet. std::unordered_set toCheckGroups; // Initialize set of groups to check that could participate in a cycle. for( PCB_GROUP* group : Groups() ) toCheckGroups.insert( group); while( !toCheckGroups.empty() ) { currentChainGroups.clear(); PCB_GROUP* group = *toCheckGroups.begin(); while( true ) { if( currentChainGroups.find( group ) != currentChainGroups.end() ) { if( repair ) Remove( group ); return "Cycle detected in group membership"; } else if( knownCycleFreeGroups.find( group ) != knownCycleFreeGroups.end() ) { // Parent is a group we know does not lead to a cycle break; } currentChainGroups.insert( group ); // We haven't visited currIdx yet, so it must be in toCheckGroups toCheckGroups.erase( group ); group = group->GetParentGroup(); if( !group ) { // end of chain and no cycles found in this chain break; } } // No cycles found in chain, so add it to set of groups we know don't participate // in a cycle. knownCycleFreeGroups.insert( currentChainGroups.begin(), currentChainGroups.end() ); } // Success return ""; } BOARD::GroupLegalOpsField BOARD::GroupLegalOps( const PCB_SELECTION& selection ) const { bool hasGroup = false; bool hasMember = false; for( EDA_ITEM* item : selection ) { if( BOARD_ITEM* board_item = dynamic_cast( item ) ) { if( board_item->Type() == PCB_GROUP_T ) hasGroup = true; if( board_item->GetParentGroup() ) hasMember = true; } } GroupLegalOpsField legalOps; legalOps.create = true; legalOps.removeItems = hasMember; legalOps.ungroup = hasGroup; return legalOps; } bool BOARD::cmp_items::operator() ( const BOARD_ITEM* a, const BOARD_ITEM* b ) const { if( a->Type() != b->Type() ) return a->Type() < b->Type(); if( a->GetLayer() != b->GetLayer() ) return a->GetLayer() < b->GetLayer(); if( a->GetPosition().x != b->GetPosition().x ) return a->GetPosition().x < b->GetPosition().x; if( a->GetPosition().y != b->GetPosition().y ) return a->GetPosition().y < b->GetPosition().y; if( a->m_Uuid != b->m_Uuid ) // shopuld be always the case foer valid boards return a->m_Uuid < b->m_Uuid; return a < b; } bool BOARD::cmp_drawings::operator()( const BOARD_ITEM* aFirst, const BOARD_ITEM* aSecond ) const { if( aFirst->Type() != aSecond->Type() ) return aFirst->Type() < aSecond->Type(); if( aFirst->GetLayer() != aSecond->GetLayer() ) return aFirst->GetLayer() < aSecond->GetLayer(); if( aFirst->Type() == PCB_SHAPE_T ) { const PCB_SHAPE* shape = static_cast( aFirst ); const PCB_SHAPE* other = static_cast( aSecond ); return shape->Compare( other ); } else if( aFirst->Type() == PCB_TEXT_T || aFirst->Type() == PCB_FIELD_T ) { const PCB_TEXT* text = static_cast( aFirst ); const PCB_TEXT* other = static_cast( aSecond ); return text->Compare( other ); } else if( aFirst->Type() == PCB_TEXTBOX_T ) { const PCB_TEXTBOX* textbox = static_cast( aFirst ); const PCB_TEXTBOX* other = static_cast( aSecond ); return textbox->PCB_SHAPE::Compare( other ) && textbox->EDA_TEXT::Compare( other ); } return aFirst->m_Uuid < aSecond->m_Uuid; } void BOARD::ConvertBrdLayerToPolygonalContours( PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aOutlines ) const { int maxError = GetDesignSettings().m_MaxError; // convert tracks and vias: for( const PCB_TRACK* track : m_tracks ) { if( !track->IsOnLayer( aLayer ) ) continue; track->TransformShapeToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); } // convert pads and other copper items in footprints for( const FOOTPRINT* footprint : m_footprints ) { footprint->TransformPadsToPolySet( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); footprint->TransformFPShapesToPolySet( aOutlines, aLayer, 0, maxError, ERROR_INSIDE, true, /* include text */ true, /* include shapes */ false /* include private items */ ); for( const ZONE* zone : footprint->Zones() ) { if( zone->GetLayerSet().test( aLayer ) ) zone->TransformSolidAreasShapesToPolygon( aLayer, aOutlines ); } } // convert copper zones for( const ZONE* zone : Zones() ) { if( zone->GetLayerSet().test( aLayer ) ) zone->TransformSolidAreasShapesToPolygon( aLayer, aOutlines ); } // convert graphic items on copper layers (texts) for( const BOARD_ITEM* item : m_drawings ) { if( !item->IsOnLayer( aLayer ) ) continue; switch( item->Type() ) { case PCB_SHAPE_T: { const PCB_SHAPE* shape = static_cast( item ); shape->TransformShapeToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); break; } case PCB_FIELD_T: case PCB_TEXT_T: { const PCB_TEXT* text = static_cast( item ); text->TransformTextToPolySet( aOutlines, 0, maxError, ERROR_INSIDE ); break; } case PCB_TEXTBOX_T: { const PCB_TEXTBOX* textbox = static_cast( item ); // plot border textbox->PCB_SHAPE::TransformShapeToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); // plot text textbox->TransformTextToPolySet( aOutlines, 0, maxError, ERROR_INSIDE ); break; } case PCB_DIM_ALIGNED_T: case PCB_DIM_CENTER_T: case PCB_DIM_RADIAL_T: case PCB_DIM_ORTHOGONAL_T: case PCB_DIM_LEADER_T: { const PCB_DIMENSION_BASE* dim = static_cast( item ); dim->TransformShapeToPolygon( aOutlines, aLayer, 0, maxError, ERROR_INSIDE ); dim->TransformTextToPolySet( aOutlines, 0, maxError, ERROR_INSIDE ); break; } default: break; } } } const std::set BOARD::GetItemSet() { std::set items; #define INSERT_ITEMS( collection ) \ for( BOARD_ITEM * item : collection ) \ items.insert( item ); INSERT_ITEMS( m_tracks ) INSERT_ITEMS( m_footprints ) INSERT_ITEMS( m_drawings ) INSERT_ITEMS( m_zones ) INSERT_ITEMS( m_markers ) #undef INSERT_ITEMS return items; }