/* * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors * http://code.google.com/p/poly2tri/ * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of Poly2Tri nor the names of its contributors may be * used to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "sweep.h" #include "sweep_context.h" #include "advancing_front.h" #include "../common/utils.h" namespace p2t { // Triangulate simple polygon with holes void Sweep::Triangulate( SweepContext& tcx ) { tcx.InitTriangulation(); tcx.CreateAdvancingFront( nodes_ ); // Sweep points; build mesh SweepPoints( tcx ); // Clean up FinalizationPolygon( tcx ); } void Sweep::SweepPoints( SweepContext& tcx ) { for( int jj = 1; jj < tcx.point_count(); jj++ ) { Point& point = *tcx.GetPoint( jj ); Node* node = &PointEvent( tcx, point ); for( unsigned int i = 0; i < point.edge_list.size(); i++ ) { EdgeEvent( tcx, point.edge_list[i], node ); } } } void Sweep::FinalizationPolygon( SweepContext& tcx ) { // Get an Internal triangle to start with Triangle* t = tcx.front()->head()->next->triangle; Point* p = tcx.front()->head()->next->point; while( !t->GetConstrainedEdgeCW( *p ) ) { t = t->NeighborCCW( *p ); } // Collect interior triangles constrained by edges tcx.MeshClean( *t ); } Node& Sweep::PointEvent( SweepContext& tcx, Point& point ) { Node& node = tcx.LocateNode( point ); Node& new_node = NewFrontTriangle( tcx, point, node ); // Only need to check +epsilon since point never have smaller // x value than node due to how we fetch nodes from the front if( point.x <= node.point->x + EPSILON ) { Fill( tcx, node ); } // tcx.AddNode(new_node); FillAdvancingFront( tcx, new_node ); return new_node; } void Sweep::EdgeEvent( SweepContext& tcx, Edge* edge, Node* node ) { tcx.edge_event.constrained_edge = edge; tcx.edge_event.right = (edge->p->x > edge->q->x); if( IsEdgeSideOfTriangle( *node->triangle, *edge->p, *edge->q ) ) { return; } // For now we will do all needed filling // TODO: integrate with flip process might give some better performance // but for now this avoid the issue with cases that needs both flips and fills FillEdgeEvent( tcx, edge, node ); EdgeEvent( tcx, *edge->p, *edge->q, node->triangle, *edge->q ); } void Sweep::EdgeEvent( SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point ) { if( IsEdgeSideOfTriangle( *triangle, ep, eq ) ) { return; } Point* p1 = triangle->PointCCW( point ); Orientation o1 = Orient2d( eq, *p1, ep ); if( o1 == COLLINEAR ) { if( triangle->Contains( &eq, p1 ) ) { triangle->MarkConstrainedEdge( &eq, p1 ); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.edge_event.constrained_edge->q = p1; triangle = &triangle->NeighborAcross( point ); EdgeEvent( tcx, ep, *p1, triangle, *p1 ); } else { std::runtime_error( "EdgeEvent - collinear points not supported" ); assert( 0 ); } return; } Point* p2 = triangle->PointCW( point ); Orientation o2 = Orient2d( eq, *p2, ep ); if( o2 == COLLINEAR ) { if( triangle->Contains( &eq, p2 ) ) { triangle->MarkConstrainedEdge( &eq, p2 ); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.edge_event.constrained_edge->q = p2; triangle = &triangle->NeighborAcross( point ); EdgeEvent( tcx, ep, *p2, triangle, *p2 ); } else { std::runtime_error( "EdgeEvent - collinear points not supported" ); assert( 0 ); } return; } if( o1 == o2 ) { // Need to decide if we are rotating CW or CCW to get to a triangle // that will cross edge if( o1 == CW ) { triangle = triangle->NeighborCCW( point ); } else { triangle = triangle->NeighborCW( point ); } EdgeEvent( tcx, ep, eq, triangle, point ); } else { // This triangle crosses constraint so lets flippin start! FlipEdgeEvent( tcx, ep, eq, triangle, point ); } } bool Sweep::IsEdgeSideOfTriangle( Triangle& triangle, Point& ep, Point& eq ) { int index = triangle.EdgeIndex( &ep, &eq ); if( index != -1 ) { triangle.MarkConstrainedEdge( index ); Triangle* t = triangle.GetNeighbor( index ); if( t ) { t->MarkConstrainedEdge( &ep, &eq ); } return true; } return false; } Node& Sweep::NewFrontTriangle( SweepContext& tcx, Point& point, Node& node ) { Triangle* triangle = new Triangle( point, *node.point, *node.next->point ); triangle->MarkNeighbor( *node.triangle ); tcx.AddToMap( triangle ); Node* new_node = new Node( point ); nodes_.push_back( new_node ); new_node->next = node.next; new_node->prev = &node; node.next->prev = new_node; node.next = new_node; if( !Legalize( tcx, *triangle ) ) { tcx.MapTriangleToNodes( *triangle ); } return *new_node; } void Sweep::Fill( SweepContext& tcx, Node& node ) { Triangle* triangle = new Triangle( *node.prev->point, *node.point, *node.next->point ); // TODO: should copy the constrained_edge value from neighbor triangles // for now constrained_edge values are copied during the legalize triangle->MarkNeighbor( *node.prev->triangle ); triangle->MarkNeighbor( *node.triangle ); tcx.AddToMap( triangle ); // Update the advancing front node.prev->next = node.next; node.next->prev = node.prev; // If it was legalized the triangle has already been mapped if( !Legalize( tcx, *triangle ) ) { tcx.MapTriangleToNodes( *triangle ); } } void Sweep::FillAdvancingFront( SweepContext& tcx, Node& n ) { // Fill right holes Node* node = n.next; while( node->next ) { // if HoleAngle exceeds 90 degrees then break. if( LargeHole_DontFill( node ) ) break; Fill( tcx, *node ); node = node->next; } // Fill left holes node = n.prev; while( node->prev ) { // if HoleAngle exceeds 90 degrees then break. if( LargeHole_DontFill( node ) ) break; Fill( tcx, *node ); node = node->prev; } // Fill right basins if( n.next && n.next->next ) { double angle = BasinAngle( n ); if( angle < PI_3div4 ) { FillBasin( tcx, n ); } } } // True if HoleAngle exceeds 90 degrees. bool Sweep::LargeHole_DontFill( Node* node ) { Node* nextNode = node->next; Node* prevNode = node->prev; if( !AngleExceeds90Degrees( node->point, nextNode->point, prevNode->point ) ) return false; // Check additional points on front. Node* next2Node = nextNode->next; // "..Plus.." because only want angles on same side as point being added. if( (next2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative( node->point, next2Node->point, prevNode->point ) ) return false; Node* prev2Node = prevNode->prev; // "..Plus.." because only want angles on same side as point being added. if( (prev2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative( node->point, nextNode->point, prev2Node->point ) ) return false; return true; } bool Sweep::AngleExceeds90Degrees( Point* origin, Point* pa, Point* pb ) { double angle = Angle( *origin, *pa, *pb ); bool exceeds90Degrees = ( (angle > PI_div2) || (angle < -PI_div2) ); return exceeds90Degrees; } bool Sweep::AngleExceedsPlus90DegreesOrIsNegative( Point* origin, Point* pa, Point* pb ) { double angle = Angle( *origin, *pa, *pb ); bool exceedsPlus90DegreesOrIsNegative = (angle > PI_div2) || (angle < 0); return exceedsPlus90DegreesOrIsNegative; } double Sweep::Angle( Point& origin, Point& pa, Point& pb ) { /* Complex plane * ab = cosA +i*sinA * ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx) * atan2(y,x) computes the principal value of the argument function * applied to the complex number x+iy * Where x = ax*bx + ay*by * y = ax*by - ay*bx */ double px = origin.x; double py = origin.y; double ax = pa.x - px; double ay = pa.y - py; double bx = pb.x - px; double by = pb.y - py; double x = ax * by - ay * bx; double y = ax * bx + ay * by; double angle = atan2( x, y ); return angle; } double Sweep::BasinAngle( Node& node ) { double ax = node.point->x - node.next->next->point->x; double ay = node.point->y - node.next->next->point->y; return atan2( ay, ax ); } double Sweep::HoleAngle( Node& node ) { /* Complex plane * ab = cosA +i*sinA * ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx) * atan2(y,x) computes the principal value of the argument function * applied to the complex number x+iy * Where x = ax*bx + ay*by * y = ax*by - ay*bx */ double ax = node.next->point->x - node.point->x; double ay = node.next->point->y - node.point->y; double bx = node.prev->point->x - node.point->x; double by = node.prev->point->y - node.point->y; return atan2( ax * by - ay * bx, ax * bx + ay * by ); } bool Sweep::Legalize( SweepContext& tcx, Triangle& t ) { // To legalize a triangle we start by finding if any of the three edges // violate the Delaunay condition for( int i = 0; i < 3; i++ ) { if( t.delaunay_edge[i] ) continue; Triangle* ot = t.GetNeighbor( i ); if( ot ) { Point* p = t.GetPoint( i ); Point* op = ot->OppositePoint( t, *p ); int oi = ot->Index( op ); // If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization) // then we should not try to legalize if( ot->constrained_edge[oi] || ot->delaunay_edge[oi] ) { t.constrained_edge[i] = ot->constrained_edge[oi]; continue; } bool inside = Incircle( *p, *t.PointCCW( *p ), *t.PointCW( *p ), *op ); if( inside ) { // Lets mark this shared edge as Delaunay t.delaunay_edge[i] = true; ot->delaunay_edge[oi] = true; // Lets rotate shared edge one vertex CW to legalize it RotateTrianglePair( t, *p, *ot, *op ); // We now got one valid Delaunay Edge shared by two triangles // This gives us 4 new edges to check for Delaunay // Make sure that triangle to node mapping is done only one time for a specific triangle bool not_legalized = !Legalize( tcx, t ); if( not_legalized ) { tcx.MapTriangleToNodes( t ); } not_legalized = !Legalize( tcx, *ot ); if( not_legalized ) tcx.MapTriangleToNodes( *ot ); // Reset the Delaunay edges, since they only are valid Delaunay edges // until we add a new triangle or point. // XXX: need to think about this. Can these edges be tried after we // return to previous recursive level? t.delaunay_edge[i] = false; ot->delaunay_edge[oi] = false; // If triangle have been legalized no need to check the other edges since // the recursive legalization will handles those so we can end here. return true; } } } return false; } bool Sweep::Incircle( Point& pa, Point& pb, Point& pc, Point& pd ) { double adx = pa.x - pd.x; double ady = pa.y - pd.y; double bdx = pb.x - pd.x; double bdy = pb.y - pd.y; double adxbdy = adx * bdy; double bdxady = bdx * ady; double oabd = adxbdy - bdxady; if( oabd <= 0 ) return false; double cdx = pc.x - pd.x; double cdy = pc.y - pd.y; double cdxady = cdx * ady; double adxcdy = adx * cdy; double ocad = cdxady - adxcdy; if( ocad <= 0 ) return false; double bdxcdy = bdx * cdy; double cdxbdy = cdx * bdy; double alift = adx * adx + ady * ady; double blift = bdx * bdx + bdy * bdy; double clift = cdx * cdx + cdy * cdy; double det = alift * (bdxcdy - cdxbdy) + blift * ocad + clift * oabd; return det > 0; } void Sweep::RotateTrianglePair( Triangle& t, Point& p, Triangle& ot, Point& op ) { Triangle* n1, * n2, * n3, * n4; n1 = t.NeighborCCW( p ); n2 = t.NeighborCW( p ); n3 = ot.NeighborCCW( op ); n4 = ot.NeighborCW( op ); bool ce1, ce2, ce3, ce4; ce1 = t.GetConstrainedEdgeCCW( p ); ce2 = t.GetConstrainedEdgeCW( p ); ce3 = ot.GetConstrainedEdgeCCW( op ); ce4 = ot.GetConstrainedEdgeCW( op ); bool de1, de2, de3, de4; de1 = t.GetDelunayEdgeCCW( p ); de2 = t.GetDelunayEdgeCW( p ); de3 = ot.GetDelunayEdgeCCW( op ); de4 = ot.GetDelunayEdgeCW( op ); t.Legalize( p, op ); ot.Legalize( op, p ); // Remap delaunay_edge ot.SetDelunayEdgeCCW( p, de1 ); t.SetDelunayEdgeCW( p, de2 ); t.SetDelunayEdgeCCW( op, de3 ); ot.SetDelunayEdgeCW( op, de4 ); // Remap constrained_edge ot.SetConstrainedEdgeCCW( p, ce1 ); t.SetConstrainedEdgeCW( p, ce2 ); t.SetConstrainedEdgeCCW( op, ce3 ); ot.SetConstrainedEdgeCW( op, ce4 ); // Remap neighbors // XXX: might optimize the markNeighbor by keeping track of // what side should be assigned to what neighbor after the // rotation. Now mark neighbor does lots of testing to find // the right side. t.ClearNeighbors(); ot.ClearNeighbors(); if( n1 ) ot.MarkNeighbor( *n1 ); if( n2 ) t.MarkNeighbor( *n2 ); if( n3 ) t.MarkNeighbor( *n3 ); if( n4 ) ot.MarkNeighbor( *n4 ); t.MarkNeighbor( ot ); } void Sweep::FillBasin( SweepContext& tcx, Node& node ) { if( Orient2d( *node.point, *node.next->point, *node.next->next->point ) == CCW ) { tcx.basin.left_node = node.next->next; } else { tcx.basin.left_node = node.next; } // Find the bottom and right node tcx.basin.bottom_node = tcx.basin.left_node; while( tcx.basin.bottom_node->next && tcx.basin.bottom_node->point->y >= tcx.basin.bottom_node->next->point->y ) { tcx.basin.bottom_node = tcx.basin.bottom_node->next; } if( tcx.basin.bottom_node == tcx.basin.left_node ) { // No valid basin return; } tcx.basin.right_node = tcx.basin.bottom_node; while( tcx.basin.right_node->next && tcx.basin.right_node->point->y < tcx.basin.right_node->next->point->y ) { tcx.basin.right_node = tcx.basin.right_node->next; } if( tcx.basin.right_node == tcx.basin.bottom_node ) { // No valid basins return; } tcx.basin.width = tcx.basin.right_node->point->x - tcx.basin.left_node->point->x; tcx.basin.left_highest = tcx.basin.left_node->point->y > tcx.basin.right_node->point->y; FillBasinReq( tcx, tcx.basin.bottom_node ); } void Sweep::FillBasinReq( SweepContext& tcx, Node* node ) { // if shallow stop filling if( IsShallow( tcx, *node ) ) { return; } Fill( tcx, *node ); if( node->prev == tcx.basin.left_node && node->next == tcx.basin.right_node ) { return; } else if( node->prev == tcx.basin.left_node ) { Orientation o = Orient2d( *node->point, *node->next->point, *node->next->next->point ); if( o == CW ) { return; } node = node->next; } else if( node->next == tcx.basin.right_node ) { Orientation o = Orient2d( *node->point, *node->prev->point, *node->prev->prev->point ); if( o == CCW ) { return; } node = node->prev; } else { // Continue with the neighbor node with lowest Y value if( node->prev->point->y < node->next->point->y ) { node = node->prev; } else { node = node->next; } } FillBasinReq( tcx, node ); } bool Sweep::IsShallow( SweepContext& tcx, Node& node ) { double height; if( tcx.basin.left_highest ) { height = tcx.basin.left_node->point->y - node.point->y; } else { height = tcx.basin.right_node->point->y - node.point->y; } // if shallow stop filling if( tcx.basin.width > height ) { return true; } return false; } void Sweep::FillEdgeEvent( SweepContext& tcx, Edge* edge, Node* node ) { if( tcx.edge_event.right ) { FillRightAboveEdgeEvent( tcx, edge, node ); } else { FillLeftAboveEdgeEvent( tcx, edge, node ); } } void Sweep::FillRightAboveEdgeEvent( SweepContext& tcx, Edge* edge, Node* node ) { while( node->next->point->x < edge->p->x ) { // Check if next node is below the edge if( Orient2d( *edge->q, *node->next->point, *edge->p ) == CCW ) { FillRightBelowEdgeEvent( tcx, edge, *node ); } else { node = node->next; } } } void Sweep::FillRightBelowEdgeEvent( SweepContext& tcx, Edge* edge, Node& node ) { if( node.point->x < edge->p->x ) { if( Orient2d( *node.point, *node.next->point, *node.next->next->point ) == CCW ) { // Concave FillRightConcaveEdgeEvent( tcx, edge, node ); } else { // Convex FillRightConvexEdgeEvent( tcx, edge, node ); // Retry this one FillRightBelowEdgeEvent( tcx, edge, node ); } } } void Sweep::FillRightConcaveEdgeEvent( SweepContext& tcx, Edge* edge, Node& node ) { Fill( tcx, *node.next ); if( node.next->point != edge->p ) { // Next above or below edge? if( Orient2d( *edge->q, *node.next->point, *edge->p ) == CCW ) { // Below if( Orient2d( *node.point, *node.next->point, *node.next->next->point ) == CCW ) { // Next is concave FillRightConcaveEdgeEvent( tcx, edge, node ); } else { // Next is convex } } } } void Sweep::FillRightConvexEdgeEvent( SweepContext& tcx, Edge* edge, Node& node ) { // Next concave or convex? if( Orient2d( *node.next->point, *node.next->next->point, *node.next->next->next->point ) == CCW ) { // Concave FillRightConcaveEdgeEvent( tcx, edge, *node.next ); } else { // Convex // Next above or below edge? if( Orient2d( *edge->q, *node.next->next->point, *edge->p ) == CCW ) { // Below FillRightConvexEdgeEvent( tcx, edge, *node.next ); } else { // Above } } } void Sweep::FillLeftAboveEdgeEvent( SweepContext& tcx, Edge* edge, Node* node ) { while( node->prev->point->x > edge->p->x ) { // Check if next node is below the edge if( Orient2d( *edge->q, *node->prev->point, *edge->p ) == CW ) { FillLeftBelowEdgeEvent( tcx, edge, *node ); } else { node = node->prev; } } } void Sweep::FillLeftBelowEdgeEvent( SweepContext& tcx, Edge* edge, Node& node ) { if( node.point->x > edge->p->x ) { if( Orient2d( *node.point, *node.prev->point, *node.prev->prev->point ) == CW ) { // Concave FillLeftConcaveEdgeEvent( tcx, edge, node ); } else { // Convex FillLeftConvexEdgeEvent( tcx, edge, node ); // Retry this one FillLeftBelowEdgeEvent( tcx, edge, node ); } } } void Sweep::FillLeftConvexEdgeEvent( SweepContext& tcx, Edge* edge, Node& node ) { // Next concave or convex? if( Orient2d( *node.prev->point, *node.prev->prev->point, *node.prev->prev->prev->point ) == CW ) { // Concave FillLeftConcaveEdgeEvent( tcx, edge, *node.prev ); } else { // Convex // Next above or below edge? if( Orient2d( *edge->q, *node.prev->prev->point, *edge->p ) == CW ) { // Below FillLeftConvexEdgeEvent( tcx, edge, *node.prev ); } else { // Above } } } void Sweep::FillLeftConcaveEdgeEvent( SweepContext& tcx, Edge* edge, Node& node ) { Fill( tcx, *node.prev ); if( node.prev->point != edge->p ) { // Next above or below edge? if( Orient2d( *edge->q, *node.prev->point, *edge->p ) == CW ) { // Below if( Orient2d( *node.point, *node.prev->point, *node.prev->prev->point ) == CW ) { // Next is concave FillLeftConcaveEdgeEvent( tcx, edge, node ); } else { // Next is convex } } } } void Sweep::FlipEdgeEvent( SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p ) { Triangle& ot = t->NeighborAcross( p ); Point& op = *ot.OppositePoint( *t, p ); if( InScanArea( p, *t->PointCCW( p ), *t->PointCW( p ), op ) ) { // Lets rotate shared edge one vertex CW RotateTrianglePair( *t, p, ot, op ); tcx.MapTriangleToNodes( *t ); tcx.MapTriangleToNodes( ot ); if( p == eq && op == ep ) { if( eq == *tcx.edge_event.constrained_edge->q && ep == *tcx.edge_event.constrained_edge->p ) { t->MarkConstrainedEdge( &ep, &eq ); ot.MarkConstrainedEdge( &ep, &eq ); Legalize( tcx, *t ); Legalize( tcx, ot ); } else { // XXX: I think one of the triangles should be legalized here? } } else { Orientation o = Orient2d( eq, op, ep ); t = &NextFlipTriangle( tcx, (int) o, *t, ot, p, op ); FlipEdgeEvent( tcx, ep, eq, t, p ); } } else { Point& newP = NextFlipPoint( ep, eq, ot, op ); FlipScanEdgeEvent( tcx, ep, eq, *t, ot, newP ); EdgeEvent( tcx, ep, eq, t, p ); } } Triangle& Sweep::NextFlipTriangle( SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op ) { if( o == CCW ) { // ot is not crossing edge after flip int edge_index = ot.EdgeIndex( &p, &op ); ot.delaunay_edge[edge_index] = true; Legalize( tcx, ot ); ot.ClearDelunayEdges(); return t; } // t is not crossing edge after flip int edge_index = t.EdgeIndex( &p, &op ); t.delaunay_edge[edge_index] = true; Legalize( tcx, t ); t.ClearDelunayEdges(); return ot; } Point& Sweep::NextFlipPoint( Point& ep, Point& eq, Triangle& ot, Point& op ) { Orientation o2d = Orient2d( eq, op, ep ); if( o2d == CW ) { // Right return *ot.PointCCW( op ); } else if( o2d == CCW ) { // Left return *ot.PointCW( op ); } // throw new RuntimeException("[Unsupported] Opposing point on constrained edge"); assert( 0 ); // Never executed, due tu assert( 0 ). Just to avoid compil warning return ep; } void Sweep::FlipScanEdgeEvent( SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p ) { Triangle& ot = t.NeighborAcross( p ); Point& op = *ot.OppositePoint( t, p ); if( InScanArea( eq, *flip_triangle.PointCCW( eq ), *flip_triangle.PointCW( eq ), op ) ) { // flip with new edge op->eq FlipEdgeEvent( tcx, eq, op, &ot, op ); // TODO: Actually I just figured out that it should be possible to // improve this by getting the next ot and op before the the above // flip and continue the flipScanEdgeEvent here // set new ot and op here and loop back to inScanArea test // also need to set a new flip_triangle first // Turns out at first glance that this is somewhat complicated // so it will have to wait. } else { Point& newP = NextFlipPoint( ep, eq, ot, op ); FlipScanEdgeEvent( tcx, ep, eq, flip_triangle, ot, newP ); } } Sweep::~Sweep() { // Clean up memory for( unsigned i = 0; i < nodes_.size(); i++ ) { delete nodes_[i]; } } }