/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2014 CERN * Copyright (C) 2018-2023 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "pcb_grid_helper.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // for KiROUND #include #include #include #include #include PCB_GRID_HELPER::PCB_GRID_HELPER( TOOL_MANAGER* aToolMgr, MAGNETIC_SETTINGS* aMagneticSettings ) : GRID_HELPER( aToolMgr ), m_magneticSettings( aMagneticSettings ) { KIGFX::VIEW* view = m_toolMgr->GetView(); KIGFX::RENDER_SETTINGS* settings = view->GetPainter()->GetSettings(); KIGFX::COLOR4D auxItemsColor = settings->GetLayerColor( LAYER_AUX_ITEMS ); KIGFX::COLOR4D umbilicalColor = settings->GetLayerColor( LAYER_ANCHOR ); m_viewAxis.SetSize( 20000 ); m_viewAxis.SetStyle( KIGFX::ORIGIN_VIEWITEM::CROSS ); m_viewAxis.SetColor( auxItemsColor.WithAlpha( 0.4 ) ); m_viewAxis.SetDrawAtZero( true ); view->Add( &m_viewAxis ); view->SetVisible( &m_viewAxis, false ); m_viewSnapPoint.SetStyle( KIGFX::ORIGIN_VIEWITEM::CIRCLE_CROSS ); m_viewSnapPoint.SetColor( auxItemsColor ); m_viewSnapPoint.SetDrawAtZero( true ); view->Add( &m_viewSnapPoint ); view->SetVisible( &m_viewSnapPoint, false ); m_viewSnapLine.SetStyle( KIGFX::ORIGIN_VIEWITEM::DASH_LINE ); m_viewSnapLine.SetColor( umbilicalColor ); m_viewSnapLine.SetDrawAtZero( true ); view->Add( &m_viewSnapLine ); view->SetVisible( &m_viewSnapLine, false ); } PCB_GRID_HELPER::~PCB_GRID_HELPER() { KIGFX::VIEW* view = m_toolMgr->GetView(); view->Remove( &m_viewAxis ); view->Remove( &m_viewSnapPoint ); view->Remove( &m_viewSnapLine ); } VECTOR2I PCB_GRID_HELPER::AlignToSegment( const VECTOR2I& aPoint, const SEG& aSeg ) { const int c_gridSnapEpsilon_sq = 4; VECTOR2I aligned = Align( aPoint ); if( !m_enableSnap ) return aligned; std::vector points; const SEG testSegments[] = { SEG( aligned, aligned + VECTOR2( 1, 0 ) ), SEG( aligned, aligned + VECTOR2( 0, 1 ) ), SEG( aligned, aligned + VECTOR2( 1, 1 ) ), SEG( aligned, aligned + VECTOR2( 1, -1 ) ) }; for( const SEG& seg : testSegments ) { OPT_VECTOR2I vec = aSeg.IntersectLines( seg ); if( vec && aSeg.SquaredDistance( *vec ) <= c_gridSnapEpsilon_sq ) points.push_back( *vec ); } VECTOR2I nearest = aligned; SEG::ecoord min_d_sq = VECTOR2I::ECOORD_MAX; // Snap by distance between pointer and endpoints for( const VECTOR2I& pt : { aSeg.A, aSeg.B } ) { SEG::ecoord d_sq = ( pt - aPoint ).SquaredEuclideanNorm(); if( d_sq < min_d_sq ) { min_d_sq = d_sq; nearest = pt; } } // Snap by distance between aligned cursor and intersections for( const VECTOR2I& pt : points ) { SEG::ecoord d_sq = ( pt - aligned ).SquaredEuclideanNorm(); if( d_sq < min_d_sq ) { min_d_sq = d_sq; nearest = pt; } } return nearest; } VECTOR2I PCB_GRID_HELPER::AlignToArc( const VECTOR2I& aPoint, const SHAPE_ARC& aArc ) { VECTOR2I aligned = Align( aPoint ); if( !m_enableSnap ) return aligned; std::vector points; aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 1, 0 ) ), &points ); aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 0, 1 ) ), &points ); aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 1, 1 ) ), &points ); aArc.IntersectLine( SEG( aligned, aligned + VECTOR2( 1, -1 ) ), &points ); VECTOR2I nearest = aligned; SEG::ecoord min_d_sq = VECTOR2I::ECOORD_MAX; // Snap by distance between pointer and endpoints for( const VECTOR2I& pt : { aArc.GetP0(), aArc.GetP1() } ) { SEG::ecoord d_sq = ( pt - aPoint ).SquaredEuclideanNorm(); if( d_sq < min_d_sq ) { min_d_sq = d_sq; nearest = pt; } } // Snap by distance between aligned cursor and intersections for( const VECTOR2I& pt : points ) { SEG::ecoord d_sq = ( pt - aligned ).SquaredEuclideanNorm(); if( d_sq < min_d_sq ) { min_d_sq = d_sq; nearest = pt; } } return nearest; } VECTOR2I PCB_GRID_HELPER::AlignToNearestPad( const VECTOR2I& aMousePos, PADS& aPads ) { clearAnchors(); for( BOARD_ITEM* item : aPads ) computeAnchors( item, aMousePos, true ); double minDist = std::numeric_limits::max(); ANCHOR* nearestOrigin = nullptr; for( ANCHOR& a : m_anchors ) { BOARD_ITEM* item = static_cast( a.item ); if( ( ORIGIN & a.flags ) != ORIGIN ) continue; if( !item->HitTest( aMousePos ) ) continue; double dist = a.Distance( aMousePos ); if( dist < minDist ) { minDist = dist; nearestOrigin = &a; } } return nearestOrigin ? nearestOrigin->pos : aMousePos; } VECTOR2I PCB_GRID_HELPER::BestDragOrigin( const VECTOR2I &aMousePos, std::vector& aItems, GRID_HELPER_GRIDS aGrid, const SELECTION_FILTER_OPTIONS* aSelectionFilter ) { clearAnchors(); for( BOARD_ITEM* item : aItems ) computeAnchors( item, aMousePos, true, aSelectionFilter ); double worldScale = m_toolMgr->GetView()->GetGAL()->GetWorldScale(); double lineSnapMinCornerDistance = 50.0 / worldScale; ANCHOR* nearestOutline = nearestAnchor( aMousePos, OUTLINE, LSET::AllLayersMask() ); ANCHOR* nearestCorner = nearestAnchor( aMousePos, CORNER, LSET::AllLayersMask() ); ANCHOR* nearestOrigin = nearestAnchor( aMousePos, ORIGIN, LSET::AllLayersMask() ); ANCHOR* best = nullptr; double minDist = std::numeric_limits::max(); if( nearestOrigin ) { minDist = nearestOrigin->Distance( aMousePos ); best = nearestOrigin; } if( nearestCorner ) { double dist = nearestCorner->Distance( aMousePos ); if( dist < minDist ) { minDist = dist; best = nearestCorner; } } if( nearestOutline ) { double dist = nearestOutline->Distance( aMousePos ); if( minDist > lineSnapMinCornerDistance && dist < minDist ) best = nearestOutline; } return best ? best->pos : aMousePos; } VECTOR2I PCB_GRID_HELPER::BestSnapAnchor( const VECTOR2I& aOrigin, BOARD_ITEM* aReferenceItem, GRID_HELPER_GRIDS aGrid ) { LSET layers; std::vector item; if( aReferenceItem ) { layers = aReferenceItem->GetLayerSet(); item.push_back( aReferenceItem ); } else { layers = LSET::AllLayersMask(); } return BestSnapAnchor( aOrigin, layers, aGrid, item ); } VECTOR2I PCB_GRID_HELPER::BestSnapAnchor( const VECTOR2I& aOrigin, const LSET& aLayers, GRID_HELPER_GRIDS aGrid, const std::vector& aSkip ) { // Tuning constant: snap radius in screen space const int snapSize = 25; // Snapping distance is in screen space, clamped to the current grid to ensure that the grid // points that are visible can always be snapped to. // see https://gitlab.com/kicad/code/kicad/-/issues/5638 // see https://gitlab.com/kicad/code/kicad/-/issues/7125 // see https://gitlab.com/kicad/code/kicad/-/issues/12303 double snapScale = snapSize / m_toolMgr->GetView()->GetGAL()->GetWorldScale(); // warning: GetVisibleGrid().x sometimes returns a value > INT_MAX. Intermediate calculation // needs double. int snapRange = KiROUND( m_enableGrid ? std::min( snapScale, GetVisibleGrid().x ) : snapScale ); int snapDist = snapRange; //Respect limits of coordinates representation BOX2I bb; bb.SetOrigin( GetClampedCoords( VECTOR2D( aOrigin ) - snapRange / 2.0 ) ); bb.SetEnd( GetClampedCoords( VECTOR2D( aOrigin ) + snapRange / 2.0 ) ); clearAnchors(); for( BOARD_ITEM* item : queryVisible( bb, aSkip ) ) computeAnchors( item, aOrigin ); ANCHOR* nearest = nearestAnchor( aOrigin, SNAPPABLE, aLayers ); VECTOR2I nearestGrid = Align( aOrigin, aGrid ); if( nearest ) snapDist = nearest->Distance( aOrigin ); // Existing snap lines need priority over new snaps if( m_snapItem && m_enableSnapLine && m_enableSnap ) { bool snapLine = false; int x_dist = std::abs( m_viewSnapLine.GetPosition().x - aOrigin.x ); int y_dist = std::abs( m_viewSnapLine.GetPosition().y - aOrigin.y ); /// Allows de-snapping from the line if you are closer to another snap point if( x_dist < snapRange && ( !nearest || snapDist > snapRange ) ) { nearestGrid.x = m_viewSnapLine.GetPosition().x; snapLine = true; } if( y_dist < snapRange && ( !nearest || snapDist > snapRange ) ) { nearestGrid.y = m_viewSnapLine.GetPosition().y; snapLine = true; } if( snapLine && m_skipPoint != VECTOR2I( m_viewSnapLine.GetPosition() ) ) { m_viewSnapLine.SetEndPosition( nearestGrid ); if( m_toolMgr->GetView()->IsVisible( &m_viewSnapLine ) ) m_toolMgr->GetView()->Update( &m_viewSnapLine, KIGFX::GEOMETRY ); else m_toolMgr->GetView()->SetVisible( &m_viewSnapLine, true ); return nearestGrid; } } if( nearest && m_enableSnap ) { if( nearest->Distance( aOrigin ) <= snapRange ) { m_viewSnapPoint.SetPosition( nearest->pos ); m_viewSnapLine.SetPosition( nearest->pos ); m_toolMgr->GetView()->SetVisible( &m_viewSnapLine, false ); if( m_toolMgr->GetView()->IsVisible( &m_viewSnapPoint ) ) m_toolMgr->GetView()->Update( &m_viewSnapPoint, KIGFX::GEOMETRY); else m_toolMgr->GetView()->SetVisible( &m_viewSnapPoint, true ); m_snapItem = nearest; return nearest->pos; } } m_snapItem = nullptr; m_toolMgr->GetView()->SetVisible( &m_viewSnapPoint, false ); m_toolMgr->GetView()->SetVisible( &m_viewSnapLine, false ); return nearestGrid; } BOARD_ITEM* PCB_GRID_HELPER::GetSnapped() const { if( !m_snapItem ) return nullptr; return static_cast( m_snapItem->item ); } GRID_HELPER_GRIDS PCB_GRID_HELPER::GetItemGrid( const EDA_ITEM* aItem ) const { if( !aItem ) return GRID_CURRENT; switch( aItem->Type() ) { case PCB_FOOTPRINT_T: case PCB_PAD_T: return GRID_CONNECTABLE; case PCB_TEXT_T: case PCB_FIELD_T: return GRID_TEXT; case PCB_SHAPE_T: case PCB_DIMENSION_T: case PCB_BITMAP_T: case PCB_TEXTBOX_T: return GRID_GRAPHICS; case PCB_TRACE_T: case PCB_ARC_T: return GRID_WIRES; case PCB_VIA_T: return GRID_VIAS; default: return GRID_CURRENT; } } VECTOR2D PCB_GRID_HELPER::GetGridSize( GRID_HELPER_GRIDS aGrid ) const { const GRID_SETTINGS& grid = m_toolMgr->GetSettings()->m_Window.grid; int idx = -1; VECTOR2D g = m_toolMgr->GetView()->GetGAL()->GetGridSize(); if( !grid.overrides_enabled ) return g; switch( aGrid ) { case GRID_CONNECTABLE: if( grid.override_connected ) idx = grid.override_connected_idx; break; case GRID_WIRES: if( grid.override_wires ) idx = grid.override_wires_idx; break; case GRID_VIAS: if( grid.override_vias ) idx = grid.override_vias_idx; break; case GRID_TEXT: if( grid.override_text ) idx = grid.override_text_idx; break; case GRID_GRAPHICS: if( grid.override_graphics ) idx = grid.override_graphics_idx; break; default: break; } if( idx >= 0 && idx < (int) grid.grids.size() ) g = grid.grids[idx].ToDouble( pcbIUScale ); return g; } std::set PCB_GRID_HELPER::queryVisible( const BOX2I& aArea, const std::vector& aSkip ) const { std::set items; std::vector selectedItems; PCB_TOOL_BASE* currentTool = static_cast( m_toolMgr->GetCurrentTool() ); KIGFX::VIEW* view = m_toolMgr->GetView(); RENDER_SETTINGS* settings = view->GetPainter()->GetSettings(); const std::set& activeLayers = settings->GetHighContrastLayers(); bool isHighContrast = settings->GetHighContrast(); view->Query( aArea, selectedItems ); for( const auto& [ viewItem, layer ] : selectedItems ) { BOARD_ITEM* boardItem = static_cast( viewItem ); if( currentTool->IsFootprintEditor() ) { // If we are in the footprint editor, don't use the footprint itself if( boardItem->Type() == PCB_FOOTPRINT_T ) continue; } else { // If we are not in the footprint editor, don't use footprint-editor-private items if( FOOTPRINT* parentFP = boardItem->GetParentFootprint() ) { if( IsPcbLayer( layer ) && parentFP->GetPrivateLayers().test( layer ) ) continue; } } // The boardItem must be visible and on an active layer if( view->IsVisible( boardItem ) && ( !isHighContrast || activeLayers.count( layer ) ) && boardItem->ViewGetLOD( layer, view ) < view->GetScale() ) { items.insert ( boardItem ); } } std::function skipItem = [&]( BOARD_ITEM* aItem ) { items.erase( aItem ); aItem->RunOnChildren( [&]( BOARD_ITEM* aChild ) { skipItem( aChild ); } ); }; for( BOARD_ITEM* item : aSkip ) skipItem( item ); return items; } void PCB_GRID_HELPER::computeAnchors( BOARD_ITEM* aItem, const VECTOR2I& aRefPos, bool aFrom, const SELECTION_FILTER_OPTIONS* aSelectionFilter ) { KIGFX::VIEW* view = m_toolMgr->GetView(); RENDER_SETTINGS* settings = view->GetPainter()->GetSettings(); const std::set& activeLayers = settings->GetHighContrastLayers(); bool isHighContrast = settings->GetHighContrast(); // As defaults, these are probably reasonable to avoid spamming key points const OVAL_KEY_POINT_FLAGS ovalKeyPointFlags = OVAL_CENTER | OVAL_CAP_TIPS | OVAL_SIDE_MIDPOINTS | OVAL_CARDINAL_EXTREMES; // The key points of a circle centred around (0, 0) with the given radius const auto getCircleKeyPoints = [] ( int radius ) { return std::vector{ {0, 0}, { -radius, 0 }, { radius, 0 }, { 0, -radius }, { 0, radius } }; }; auto handlePadShape = [&]( PAD* aPad ) { addAnchor( aPad->GetPosition(), ORIGIN | SNAPPABLE, aPad ); /// If we are getting a drag point, we don't want to center the edge of pads if( aFrom ) return; switch( aPad->GetShape() ) { case PAD_SHAPE::CIRCLE: { int r = aPad->GetSizeX() / 2; VECTOR2I center = aPad->ShapePos(); const std::vector circle_pts = getCircleKeyPoints( r ); for ( const VECTOR2I& pt: circle_pts ) { // Transform to the pad positon addAnchor( center + pt, OUTLINE | SNAPPABLE, aPad ); } break; } case PAD_SHAPE::OVAL: { const VECTOR2I pos = aPad->ShapePos(); const std::vector oval_pts = GetOvalKeyPoints( aPad->GetSize(), aPad->GetOrientation(), ovalKeyPointFlags ); for ( const VECTOR2I& pt: oval_pts ) { // Transform to the pad positon addAnchor( pos + pt, OUTLINE | SNAPPABLE, aPad ); } break; } case PAD_SHAPE::RECTANGLE: case PAD_SHAPE::TRAPEZOID: case PAD_SHAPE::ROUNDRECT: case PAD_SHAPE::CHAMFERED_RECT: { VECTOR2I half_size( aPad->GetSize() / 2 ); VECTOR2I trap_delta( 0, 0 ); if( aPad->GetShape() == PAD_SHAPE::TRAPEZOID ) trap_delta = aPad->GetDelta() / 2; SHAPE_LINE_CHAIN corners; corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x ); corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x ); corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x ); corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x ); corners.SetClosed( true ); corners.Rotate( aPad->GetOrientation() ); corners.Move( aPad->ShapePos() ); for( size_t ii = 0; ii < corners.GetSegmentCount(); ++ii ) { const SEG& seg = corners.GetSegment( ii ); addAnchor( seg.A, OUTLINE | SNAPPABLE, aPad ); addAnchor( seg.Center(), OUTLINE | SNAPPABLE, aPad ); if( ii == corners.GetSegmentCount() - 1 ) addAnchor( seg.B, OUTLINE | SNAPPABLE, aPad ); } break; } default: { const auto& outline = aPad->GetEffectivePolygon( ERROR_INSIDE ); if( !outline->IsEmpty() ) { for( const VECTOR2I& pt : outline->Outline( 0 ).CPoints() ) addAnchor( pt, OUTLINE | SNAPPABLE, aPad ); } break; } } if (aPad->HasHole()) { // Holes are at the pad centre (it's the shape that may be offset) const VECTOR2I hole_pos = aPad->GetPosition(); const VECTOR2I hole_size = aPad->GetDrillSize(); std::vector snap_pts; if ( hole_size.x == hole_size.y ) { // Circle snap_pts = getCircleKeyPoints( hole_size.x / 2 ); } else { // Oval // For now there's no way to have an off-angle hole, so this is the // same as the pad. In future, this may not be true: // https://gitlab.com/kicad/code/kicad/-/issues/4124 const EDA_ANGLE hole_orientation = aPad->GetOrientation(); snap_pts = GetOvalKeyPoints( hole_size, hole_orientation, ovalKeyPointFlags ); } for (const auto& snap_pt : snap_pts) { addAnchor( hole_pos + snap_pt, OUTLINE | SNAPPABLE, aPad ); } } }; auto handleShape = [&]( PCB_SHAPE* shape ) { VECTOR2I start = shape->GetStart(); VECTOR2I end = shape->GetEnd(); switch( shape->GetShape() ) { case SHAPE_T::CIRCLE: { int r = ( start - end ).EuclideanNorm(); addAnchor( start, ORIGIN | SNAPPABLE, shape ); addAnchor( start + VECTOR2I( -r, 0 ), OUTLINE | SNAPPABLE, shape ); addAnchor( start + VECTOR2I( r, 0 ), OUTLINE | SNAPPABLE, shape ); addAnchor( start + VECTOR2I( 0, -r ), OUTLINE | SNAPPABLE, shape ); addAnchor( start + VECTOR2I( 0, r ), OUTLINE | SNAPPABLE, shape ); break; } case SHAPE_T::ARC: addAnchor( shape->GetStart(), CORNER | SNAPPABLE, shape ); addAnchor( shape->GetEnd(), CORNER | SNAPPABLE, shape ); addAnchor( shape->GetArcMid(), CORNER | SNAPPABLE, shape ); addAnchor( shape->GetCenter(), ORIGIN | SNAPPABLE, shape ); break; case SHAPE_T::RECTANGLE: { VECTOR2I point2( end.x, start.y ); VECTOR2I point3( start.x, end.y ); SEG first( start, point2 ); SEG second( point2, end ); SEG third( end, point3 ); SEG fourth( point3, start ); addAnchor( first.A, CORNER | SNAPPABLE, shape ); addAnchor( first.Center(), CORNER | SNAPPABLE, shape ); addAnchor( second.A, CORNER | SNAPPABLE, shape ); addAnchor( second.Center(), CORNER | SNAPPABLE, shape ); addAnchor( third.A, CORNER | SNAPPABLE, shape ); addAnchor( third.Center(), CORNER | SNAPPABLE, shape ); addAnchor( fourth.A, CORNER | SNAPPABLE, shape ); addAnchor( fourth.Center(), CORNER | SNAPPABLE, shape ); break; } case SHAPE_T::SEGMENT: addAnchor( start, CORNER | SNAPPABLE, shape ); addAnchor( end, CORNER | SNAPPABLE, shape ); addAnchor( shape->GetCenter(), CORNER | SNAPPABLE, shape ); break; case SHAPE_T::POLY: { SHAPE_LINE_CHAIN lc; lc.SetClosed( true ); std::vector poly; shape->DupPolyPointsList( poly ); for( const VECTOR2I& p : poly ) { addAnchor( p, CORNER | SNAPPABLE, shape ); lc.Append( p ); } addAnchor( lc.NearestPoint( aRefPos ), OUTLINE, aItem ); break; } case SHAPE_T::BEZIER: addAnchor( start, CORNER | SNAPPABLE, shape ); addAnchor( end, CORNER | SNAPPABLE, shape ); KI_FALLTHROUGH; default: addAnchor( shape->GetPosition(), ORIGIN | SNAPPABLE, shape ); break; } }; switch( aItem->Type() ) { case PCB_FOOTPRINT_T: { FOOTPRINT* footprint = static_cast( aItem ); for( PAD* pad : footprint->Pads() ) { if( aFrom ) { if( aSelectionFilter && !aSelectionFilter->pads ) continue; } else { if( m_magneticSettings->pads != MAGNETIC_OPTIONS::CAPTURE_ALWAYS ) continue; } if( !view->IsVisible( pad ) || !pad->GetBoundingBox().Contains( aRefPos ) ) continue; // Getting pads from a footprint requires re-checking that the pads are shown bool onActiveLayer = !isHighContrast; bool isLODVisible = false; for( PCB_LAYER_ID layer : pad->GetLayerSet().Seq() ) { if( !onActiveLayer && activeLayers.count( layer ) ) onActiveLayer = true; if( !isLODVisible && pad->ViewGetLOD( layer, view ) < view->GetScale() ) isLODVisible = true; if( onActiveLayer && isLODVisible ) { handlePadShape( pad ); break; } } } if( aFrom && aSelectionFilter && !aSelectionFilter->footprints ) break; // if the cursor is not over a pad, then drag the footprint by its origin VECTOR2I position = footprint->GetPosition(); addAnchor( position, ORIGIN | SNAPPABLE, footprint ); // Add the footprint center point if it is markedly different from the origin VECTOR2I center = footprint->GetBoundingBox( false, false ).Centre(); VECTOR2I grid( GetGrid() ); if( ( center - position ).SquaredEuclideanNorm() > grid.SquaredEuclideanNorm() ) addAnchor( center, ORIGIN | SNAPPABLE, footprint ); break; } case PCB_PAD_T: if( aFrom ) { if( aSelectionFilter && !aSelectionFilter->pads ) break; } else { if( m_magneticSettings->pads != MAGNETIC_OPTIONS::CAPTURE_ALWAYS ) break; } handlePadShape( static_cast( aItem ) ); break; case PCB_TEXTBOX_T: if( aFrom ) { if( aSelectionFilter && !aSelectionFilter->text ) break; } else { if( !m_magneticSettings->graphics ) break; } handleShape( static_cast( aItem ) ); break; case PCB_SHAPE_T: if( aFrom ) { if( aSelectionFilter && !aSelectionFilter->graphics ) break; } else { if( !m_magneticSettings->graphics ) break; } handleShape( static_cast( aItem ) ); break; case PCB_TRACE_T: case PCB_ARC_T: { if( aFrom ) { if( aSelectionFilter && !aSelectionFilter->tracks ) break; } else { if( m_magneticSettings->tracks != MAGNETIC_OPTIONS::CAPTURE_ALWAYS ) break; } PCB_TRACK* track = static_cast( aItem ); addAnchor( track->GetStart(), CORNER | SNAPPABLE, track ); addAnchor( track->GetEnd(), CORNER | SNAPPABLE, track ); addAnchor( track->GetCenter(), ORIGIN, track); break; } case PCB_MARKER_T: case PCB_TARGET_T: addAnchor( aItem->GetPosition(), ORIGIN | CORNER | SNAPPABLE, aItem ); break; case PCB_VIA_T: if( aFrom ) { if( aSelectionFilter && !aSelectionFilter->vias ) break; } else { if( m_magneticSettings->tracks != MAGNETIC_OPTIONS::CAPTURE_ALWAYS ) break; } addAnchor( aItem->GetPosition(), ORIGIN | CORNER | SNAPPABLE, aItem ); break; case PCB_ZONE_T: { if( aFrom && aSelectionFilter && !aSelectionFilter->zones ) break; const SHAPE_POLY_SET* outline = static_cast( aItem )->Outline(); SHAPE_LINE_CHAIN lc; lc.SetClosed( true ); for( auto iter = outline->CIterateWithHoles(); iter; iter++ ) { addAnchor( *iter, CORNER | SNAPPABLE, aItem ); lc.Append( *iter ); } addAnchor( lc.NearestPoint( aRefPos ), OUTLINE, aItem ); break; } case PCB_DIM_ALIGNED_T: case PCB_DIM_ORTHOGONAL_T: { if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions ) break; const PCB_DIM_ALIGNED* dim = static_cast( aItem ); addAnchor( dim->GetCrossbarStart(), CORNER | SNAPPABLE, aItem ); addAnchor( dim->GetCrossbarEnd(), CORNER | SNAPPABLE, aItem ); addAnchor( dim->GetStart(), CORNER | SNAPPABLE, aItem ); addAnchor( dim->GetEnd(), CORNER | SNAPPABLE, aItem ); break; } case PCB_DIM_CENTER_T: { if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions ) break; const PCB_DIM_CENTER* dim = static_cast( aItem ); addAnchor( dim->GetStart(), CORNER | SNAPPABLE, aItem ); addAnchor( dim->GetEnd(), CORNER | SNAPPABLE, aItem ); VECTOR2I start( dim->GetStart() ); VECTOR2I radial( dim->GetEnd() - dim->GetStart() ); for( int i = 0; i < 2; i++ ) { RotatePoint( radial, -ANGLE_90 ); addAnchor( start + radial, CORNER | SNAPPABLE, aItem ); } break; } case PCB_DIM_RADIAL_T: { if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions ) break; const PCB_DIM_RADIAL* radialDim = static_cast( aItem ); addAnchor( radialDim->GetStart(), CORNER | SNAPPABLE, aItem ); addAnchor( radialDim->GetEnd(), CORNER | SNAPPABLE, aItem ); addAnchor( radialDim->GetKnee(), CORNER | SNAPPABLE, aItem ); addAnchor( radialDim->GetTextPos(), CORNER | SNAPPABLE, aItem ); break; } case PCB_DIM_LEADER_T: { if( aFrom && aSelectionFilter && !aSelectionFilter->dimensions ) break; const PCB_DIM_LEADER* leader = static_cast( aItem ); addAnchor( leader->GetStart(), CORNER | SNAPPABLE, aItem ); addAnchor( leader->GetEnd(), CORNER | SNAPPABLE, aItem ); addAnchor( leader->GetTextPos(), CORNER | SNAPPABLE, aItem ); break; } case PCB_FIELD_T: case PCB_TEXT_T: if( aFrom && aSelectionFilter && !aSelectionFilter->text ) break; addAnchor( aItem->GetPosition(), ORIGIN, aItem ); break; case PCB_GROUP_T: { const PCB_GROUP* group = static_cast( aItem ); for( BOARD_ITEM* item : group->GetItems() ) computeAnchors( item, aRefPos, aFrom ); break; } default: break; } } PCB_GRID_HELPER::ANCHOR* PCB_GRID_HELPER::nearestAnchor( const VECTOR2I& aPos, int aFlags, LSET aMatchLayers ) { double minDist = std::numeric_limits::max(); ANCHOR* best = nullptr; for( ANCHOR& a : m_anchors ) { BOARD_ITEM* item = static_cast( a.item ); if( !m_magneticSettings->allLayers && ( ( aMatchLayers & item->GetLayerSet() ) == 0 ) ) continue; if( ( aFlags & a.flags ) != aFlags ) continue; double dist = a.Distance( aPos ); if( dist < minDist ) { minDist = dist; best = &a; } } return best; }