/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2020 Mario Luzeiro * Copyright (C) 2015-2021 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "material.h" #include <3d_math.h> #include int MATERIAL::m_defaultRefractionRayCount = 4; int MATERIAL::m_defaultReflectionRayCount = 3; int MATERIAL::m_defaultRefractionRecursionCount = 2; int MATERIAL::m_defaultFeflectionRecursionCount = 3; // This may be a good value if based on nr of lights // that contribute to the illumination of that point #define AMBIENT_FACTOR (1.0f / 6.0f) #define SPECULAR_FACTOR 1.0f MATERIAL::MATERIAL() { m_ambientColor = SFVEC3F( 0.2f, 0.2f, 0.2f ); m_emissiveColor = SFVEC3F( 0.0f, 0.0f, 0.0f ); m_specularColor = SFVEC3F( 1.0f, 1.0f, 1.0f ); m_reflectivity = 50.2f; m_transparency = 0.0f; // completely opaque m_castShadows = true; m_reflection = 0.0f; m_absorbance = 1.0f; m_refractionRayCount = m_defaultRefractionRayCount; m_reflectionRayCount = m_defaultReflectionRayCount; m_refractionRecursionCount = m_defaultRefractionRecursionCount; m_reflectionRecursionCount = m_defaultFeflectionRecursionCount; m_generator = nullptr; } MATERIAL::MATERIAL( const SFVEC3F& aAmbient, const SFVEC3F& aEmissive, const SFVEC3F& aSpecular, float aShinness, float aTransparency, float aReflection ) { wxASSERT( aReflection >= 0.0f ); wxASSERT( aReflection <= 1.0f ); wxASSERT( aTransparency >= 0.0f ); wxASSERT( aTransparency <= 1.0f ); wxASSERT( aShinness >= 0.0f ); wxASSERT( aShinness <= 180.0f ); m_ambientColor = aAmbient * SFVEC3F(AMBIENT_FACTOR); m_emissiveColor = aEmissive; m_specularColor = aSpecular; m_reflectivity = aShinness; m_transparency = glm::clamp( aTransparency, 0.0f, 1.0f ); m_absorbance = 1.0f; m_reflection = aReflection; m_castShadows = true; m_refractionRayCount = m_defaultRefractionRayCount; m_reflectionRayCount = m_defaultReflectionRayCount; m_refractionRecursionCount = m_defaultRefractionRecursionCount; m_reflectionRecursionCount = m_defaultFeflectionRecursionCount; m_generator = nullptr; } void MATERIAL::Generate( SFVEC3F& aNormal, const RAY& aRay, const HITINFO& aHitInfo ) const { if( m_generator ) { aNormal = aNormal + m_generator->Generate( aRay, aHitInfo ); aNormal = glm::normalize( aNormal ); } } // https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model SFVEC3F BLINN_PHONG_MATERIAL::Shade( const RAY& aRay, const HITINFO& aHitInfo, float NdotL, const SFVEC3F& aDiffuseObjColor, const SFVEC3F& aDirToLight, const SFVEC3F& aLightColor, float aShadowAttenuationFactor ) const { wxASSERT( NdotL >= FLT_EPSILON ); // This is a hack to get some kind of fake ambient illumination // There is no logic behind this, just pure artistic experimentation if( aShadowAttenuationFactor > FLT_EPSILON ) { // Calculate the diffuse light factoring in light color, // power and the attenuation const SFVEC3F diffuse = NdotL * aLightColor; // Calculate the half vector between the light vector and the view vector. const SFVEC3F H = glm::normalize( aDirToLight - aRay.m_Dir ); //Intensity of the specular light const float NdotH = glm::dot( H, aHitInfo.m_HitNormal ); const float intensitySpecular = glm::pow( glm::max( NdotH, 0.0f ), m_reflectivity ); return m_ambientColor + aShadowAttenuationFactor * ( diffuse * aDiffuseObjColor + SPECULAR_FACTOR * aLightColor * intensitySpecular * m_specularColor ); } return m_ambientColor; } MATERIAL_GENERATOR::MATERIAL_GENERATOR() { } static PerlinNoise s_perlinNoise = PerlinNoise( 0 ); BOARD_NORMAL::BOARD_NORMAL( float aScale ) : MATERIAL_GENERATOR() { m_scale = ( 2.0f * glm::pi() ) / aScale; } SFVEC3F BOARD_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const { const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale; // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJzaW4oc2luKHNpbih4KSoxLjkpKjEuNSkiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjEwMDAsIndpbmRvdyI6WyItMC45NjIxMDU3MDgwNzg1MjYyIiwiNy45NzE0MjYyNjc2MDE0MyIsIi0yLjUxNzYyMDM1MTQ4MjQ0OSIsIjIuOTc5OTM3Nzg3Mzk3NTMwMyJdLCJzaXplIjpbNjQ2LDM5Nl19XQ-- // Implement a texture as the "measling crazing blistering" method of FR4 const float x = glm::sin( glm::sin( hitPos.x ) * 1.5f ) * 0.06f; const float y = glm::sin( glm::sin( hitPos.y ) * 1.5f ) * 0.03f; const float z = -(x + y) + glm::sin( hitPos.z ) * 0.06f; const float noise1 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 0.7f ) - 0.5f; const float noise2 = s_perlinNoise.noise( hitPos.x * 0.7f, hitPos.y * 1.0f ) - 0.5f; const float noise3 = s_perlinNoise.noise( hitPos.x * 0.3f, hitPos.z * 1.0f ) - 0.5f; return ( SFVEC3F( noise1, noise2, -( noise3 ) ) * 0.3f + SFVEC3F( x, y, z ) ); } COPPER_NORMAL::COPPER_NORMAL( float aScale, const MATERIAL_GENERATOR* aBoardNormalGenerator ) { m_board_normal_generator = aBoardNormalGenerator; m_scale = 1.0f / aScale; } SFVEC3F COPPER_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const { if( m_board_normal_generator ) { const SFVEC3F boardNormal = m_board_normal_generator->Generate( aRay, aHitInfo ); SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale; const float noise = ( s_perlinNoise.noise( hitPos.x + boardNormal.y + aRay.m_Origin.x * 0.2f, hitPos.y + boardNormal.x ) - 0.5f ) * 2.0f; float scratchPattern = ( s_perlinNoise.noise( noise + hitPos.x / 100.0f, hitPos.y * 100.0f ) - 0.5f ); const float x = scratchPattern * 0.14f; const float y = (noise + noise * scratchPattern) * 0.14f; return SFVEC3F( x, y, - ( x + y ) ) + boardNormal * 0.25f; } else { return SFVEC3F( 0.0f ); } } SOLDER_MASK_NORMAL::SOLDER_MASK_NORMAL( const MATERIAL_GENERATOR* aCopperNormalGenerator ) { m_copper_normal_generator = aCopperNormalGenerator; } SFVEC3F SOLDER_MASK_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const { if( m_copper_normal_generator ) { const SFVEC3F copperNormal = m_copper_normal_generator->Generate( aRay, aHitInfo ); return copperNormal * 0.05f; } else { return SFVEC3F( 0.0f ); } } SFVEC3F PLATED_COPPER_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const { SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale; const float noise1 = ( s_perlinNoise.noise( hitPos.x, hitPos.y ) - 0.5f ); const float noise2 = ( s_perlinNoise.noise( hitPos.y, hitPos.x ) - 0.5f ); return SFVEC3F( noise1, noise2, -( noise1 + noise2 ) ) * 0.02f; } PLASTIC_NORMAL::PLASTIC_NORMAL( float aScale ) { m_scale = 1.0f / aScale; } SFVEC3F PLASTIC_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const { const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale; const float noise1 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 1.1f, hitPos.z * 1.2f ) - 0.5f; const float noise2 = s_perlinNoise.noise( hitPos.x * 1.3f, hitPos.y * 1.0f, hitPos.z * 1.5f ) - 0.5f; const float noise3 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 1.0f, hitPos.z * 1.8f ) - 0.5f; const float distanceReduction = 1.0f / ( aHitInfo.m_tHit + 0.5f ); return SFVEC3F( noise1, noise2, noise3 ) * SFVEC3F( distanceReduction ); } PLASTIC_SHINE_NORMAL::PLASTIC_SHINE_NORMAL( float aScale ) { m_scale = 1.0f / aScale; } SFVEC3F PLASTIC_SHINE_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const { const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale; const float noise1 = s_perlinNoise.noise( hitPos.x * 0.01f, hitPos.y * 0.01f, hitPos.z * 0.01f ) - 0.5f; const float noise2 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 1.0f, hitPos.z * 1.6f ) - 0.5f; float noise3 = s_perlinNoise.noise( hitPos.x * 1.5f, hitPos.y * 1.5f, hitPos.z * 1.0f ) - 0.5f; noise3 = noise3 * noise3 * noise3; return SFVEC3F( noise1, noise2, noise3 ) * SFVEC3F( 0.1f, 0.2f, 1.0f ); } BRUSHED_METAL_NORMAL::BRUSHED_METAL_NORMAL( float aScale ) { m_scale = 1.0f / aScale; } SFVEC3F BRUSHED_METAL_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const { const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale; const float noise1 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 1.1f, hitPos.z * 1.2f ) - 0.5f; const float noise2 = s_perlinNoise.noise( hitPos.x * 1.3f, hitPos.y * 1.4f, hitPos.z * 1.5f ) - 0.5f; const float noise3 = s_perlinNoise.noise( hitPos.x * 0.1f, hitPos.y * 0.1f, hitPos.z * 1.0f ) - 0.5f; return SFVEC3F( noise1 * 0.15f + noise3 * 0.35f, noise2 * 0.25f, noise1 * noise2 * noise3 ); } SILK_SCREEN_NORMAL::SILK_SCREEN_NORMAL( float aScale ) { m_scale = 1.0f / aScale; } SFVEC3F SILK_SCREEN_NORMAL::Generate( const RAY& aRay, const HITINFO& aHitInfo ) const { const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale; const float noise1 = s_perlinNoise.noise( hitPos.x * 2.0f, hitPos.y * 2.0f, hitPos.z ); const float noise2 = s_perlinNoise.noise( hitPos.x * 0.6f, hitPos.y * 0.6f, hitPos.z ); SFVEC3F t = SFVEC3F( noise1, noise2, 0.0f ) - 0.5f; SFVEC3F tt = t * t; t = t * tt * tt * 100.0f; // this factor controls the intensity of the effect t.z = 0.0f; // this will keep untouch the original z component of the normal return t; }