/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 CERN * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include bool SHAPE_ARC::Collide( const SEG& aSeg, int aClearance ) const { int minDist = aClearance + m_width / 2; auto centerDist = aSeg.Distance( m_pc ); auto p1 = GetP1(); if( centerDist < minDist ) return true; auto ab = (aSeg.B - aSeg.A ); auto ac = ( m_pc - aSeg.A ); auto lenAbSq = ab.SquaredEuclideanNorm(); auto lambda = (double) ac.Dot( ab ) / (double) lenAbSq; if( lambda >= 0.0 && lambda <= 1.0 ) { VECTOR2I p; p.x = (double) aSeg.A.x * lambda + (double) aSeg.B.x * (1.0 - lambda); p.y = (double) aSeg.A.y * lambda + (double) aSeg.B.y * (1.0 - lambda); auto p0pdist = ( m_p0 - p ).EuclideanNorm(); if( p0pdist < minDist ) return true; auto p1pdist = ( p1 - p ).EuclideanNorm(); if( p1pdist < minDist ) return true; } auto p0dist = aSeg.Distance( m_p0 ); if( p0dist > minDist ) return true; auto p1dist = aSeg.Distance( p1 ); if( p1dist > minDist ) return false; return true; } #if 0 bool SHAPE_ARC::ConstructFromCorners( VECTOR2I aP0, VECTOR2I aP1, double aCenterAngle ) { VECTOR2D mid = ( VECTOR2D( aP0 ) + VECTOR2D( aP1 ) ) * 0.5; VECTOR2D chord = VECTOR2D( aP1 ) - VECTOR2D( aP0 ); double c = (aP1 - aP0).EuclideanNorm() / 2; VECTOR2D d = chord.Rotate( M_PI / 2.0 ).Resize( c ); m_pc = mid + d * ( 1.0 / tan( aCenterAngle / 2.0 * M_PI / 180.0 ) ); m_p0 = aP0; m_p1 = aP1; return true; } bool SHAPE_ARC::ConstructFromCornerAndAngles( VECTOR2I aP0, double aStartAngle, double aCenterAngle, double aRadius ) { m_p0 = aP0; auto d1 = VECTOR2D( 1.0, 0.0 ).Rotate( aStartAngle * M_PI / 180.0 ) * aRadius; auto d2 = VECTOR2D( 1.0, 0.0 ).Rotate( (aStartAngle + aCenterAngle) * M_PI / 180.0 ) * aRadius; m_pc = m_p0 - (VECTOR2I) d1; m_p1 = m_pc + (VECTOR2I) d2; if( aCenterAngle < 0 ) std::swap( m_p0, m_p1 ); return true; } bool SHAPE_ARC::ConstructFromCenterAndAngles( VECTOR2I aCenter, double aRadius, double aStartAngle, double aCenterAngle ) { double ea = aStartAngle + aCenterAngle; m_fullCircle = false; m_pc = aCenter; m_p0.x = (int) ( (double) aCenter.x + aRadius * cos( aStartAngle * M_PI / 180.0 ) ); m_p0.y = (int) ( (double) aCenter.y + aRadius * sin( aStartAngle * M_PI / 180.0 ) ); m_p1.x = (int) ( (double) aCenter.x + aRadius * cos( ea * M_PI / 180.0 ) ); m_p1.y = (int) ( (double) aCenter.y + aRadius * sin( ea * M_PI / 180.0 ) ); if( aCenterAngle == 360.0 ) { m_fullCircle = true; return true; } else if ( aCenterAngle < 0.0 ) { std::swap(m_p0, m_p1); } return true; } #endif const VECTOR2I SHAPE_ARC::GetP1() const { VECTOR2D rvec = m_p0 - m_pc; auto ca = m_centralAngle * M_PI / 180.0; VECTOR2I p1; p1.x = (int) ( m_pc.x + rvec.x * cos( ca ) - rvec.y * sin( ca ) ); p1.y = (int) ( m_pc.y + rvec.x * sin( ca ) + rvec.y * cos( ca ) ); return p1; } const BOX2I SHAPE_ARC::BBox( int aClearance ) const { BOX2I bbox; std::vector points; points.push_back( m_pc ); points.push_back( m_p0 ); points.push_back( GetP1() ); double start_angle = GetStartAngle(); double end_angle = start_angle + GetCentralAngle(); // we always count quadrants clockwise (increasing angle) if( start_angle > end_angle ) std::swap( start_angle, end_angle ); int quad_angle_start = std::ceil( start_angle / 90.0 ); int quad_angle_end = std::floor( end_angle / 90.0 ); // count through quadrants included in arc for( int quad_angle = quad_angle_start; quad_angle <= quad_angle_end; ++quad_angle ) { const int radius = GetRadius(); VECTOR2I quad_pt = m_pc; switch( quad_angle % 4 ) { case 0: quad_pt += { radius, 0 }; break; case 1: case -3: quad_pt += { 0, radius }; break; case 2: case -2: quad_pt += { -radius, 0 }; break; case 3: case -1: quad_pt += { 0, -radius }; break; default: assert( false ); } points.push_back( quad_pt ); } bbox.Compute( points ); if( aClearance != 0 ) bbox.Inflate( aClearance ); return bbox; } bool SHAPE_ARC::Collide( const VECTOR2I& aP, int aClearance ) const { assert( false ); return false; } double SHAPE_ARC::GetStartAngle() const { VECTOR2D d( m_p0 - m_pc ); auto ang = 180.0 / M_PI * atan2( d.y, d.x ); return ang; } double SHAPE_ARC::GetEndAngle() const { double a = GetStartAngle() + m_centralAngle; if( a < 0.0 ) a += 360.0; else if ( a >= 360.0 ) a -= 360.0; return a; } double SHAPE_ARC::GetCentralAngle() const { return m_centralAngle; } int SHAPE_ARC::GetRadius() const { return (m_p0 - m_pc).EuclideanNorm(); } const SHAPE_LINE_CHAIN SHAPE_ARC::ConvertToPolyline( double aAccuracy ) const { SHAPE_LINE_CHAIN rv; double r = GetRadius(); double sa = GetStartAngle(); auto c = GetCenter(); int n; if( r == 0.0 ) { n = 0; } else { n = GetArcToSegmentCount( r, aAccuracy, m_centralAngle ); } for( int i = 0; i <= n ; i++ ) { double a = sa; if( n != 0 ) sa += m_centralAngle * (double) i / (double) n; double x = c.x + r * cos( a * M_PI / 180.0 ); double y = c.y + r * sin( a * M_PI / 180.0 ); rv.Append( (int) x, (int) y ); } return rv; }