/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2011 Wayne Stambaugh * * Copyright (C) 1992-2020 KiCad Developers, see change_log.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include "ar_autoplacer.h" #include "ar_matrix.h" #include #include #define AR_GAIN 16 #define AR_KEEPOUT_MARGIN 500 #define AR_ABORT_PLACEMENT -1 #define STEP_AR_MM 1.0 /* Bits characterizing cell */ #define CELL_IS_EMPTY 0x00 #define CELL_IS_HOLE 0x01 /* a conducting hole or obstacle */ #define CELL_IS_MODULE 0x02 /* auto placement occupied by a module */ #define CELL_IS_EDGE 0x20 /* Area and auto-placement: limiting cell contour (Board, Zone) */ #define CELL_IS_FRIEND 0x40 /* Area and auto-placement: cell part of the net */ #define CELL_IS_ZONE 0x80 /* Area and auto-placement: cell available */ /* Penalty (cost) for CntRot90 and CntRot180: * CntRot90 and CntRot180 are from 0 (rotation allowed) to 10 (rotation not allowed) */ static const double OrientationPenalty[11] = { 2.0, // CntRot = 0 rotation prohibited 1.9, // CntRot = 1 1.8, // CntRot = 2 1.7, // CntRot = 3 1.6, // CntRot = 4 1.5, // CntRot = 5 1.4, // CntRot = 5 1.3, // CntRot = 7 1.2, // CntRot = 8 1.1, // CntRot = 9 1.0 // CntRot = 10 rotation authorized, no penalty }; AR_AUTOPLACER::AR_AUTOPLACER( BOARD* aBoard ) { m_board = aBoard; m_connectivity = std::make_unique( ); for( MODULE* footprint : m_board->Footprints() ) m_connectivity->Add( footprint ); m_gridSize = Millimeter2iu( STEP_AR_MM ); m_progressReporter = nullptr; m_refreshCallback = nullptr; m_minCost = 0.0; } void AR_AUTOPLACER::placeFootprint( MODULE* aFootprint, bool aDoNotRecreateRatsnest, const wxPoint& aPos ) { if( !aFootprint ) return; aFootprint->SetPosition( aPos ); m_connectivity->Update( aFootprint ); } int AR_AUTOPLACER::genPlacementRoutingMatrix() { m_matrix.UnInitRoutingMatrix(); EDA_RECT bbox = m_board->GetBoardEdgesBoundingBox(); if( bbox.GetWidth() == 0 || bbox.GetHeight() == 0 ) return 0; // Build the board shape m_board->GetBoardPolygonOutlines( m_boardShape /*, aErrorText, aErrorLocation*/ ); m_topFreeArea = m_boardShape; m_bottomFreeArea = m_boardShape; m_matrix.ComputeMatrixSize( bbox ); int nbCells = m_matrix.m_Ncols * m_matrix.m_Nrows; // Choose the number of board sides. m_matrix.m_RoutingLayersCount = 2; m_matrix.InitRoutingMatrix(); m_matrix.m_routeLayerBottom = B_Cu; m_matrix.m_routeLayerTop = F_Cu; // Fill (mark) the cells inside the board: fillMatrix(); // Other obstacles can be added here: for( auto drawing : m_board->Drawings() ) { switch( drawing->Type() ) { case PCB_SHAPE_T: if( drawing->GetLayer() != Edge_Cuts ) { m_matrix.TraceSegmentPcb( (PCB_SHAPE*) drawing, CELL_IS_HOLE | CELL_IS_EDGE, m_matrix.m_GridRouting, AR_MATRIX::WRITE_CELL ); } break; default: break; } } // Initialize top layer. to the same value as the bottom layer if( m_matrix.m_BoardSide[AR_SIDE_TOP] ) memcpy( m_matrix.m_BoardSide[AR_SIDE_TOP], m_matrix.m_BoardSide[AR_SIDE_BOTTOM], nbCells * sizeof(AR_MATRIX::MATRIX_CELL) ); return 1; } bool AR_AUTOPLACER::fillMatrix() { std::vector x_coordinates; bool success = true; int step = m_matrix.m_GridRouting; wxPoint coord_orgin = m_matrix.GetBrdCoordOrigin(); // Board coordinate of matruix cell (0,0) // Create a single board outline: SHAPE_POLY_SET brd_shape = m_boardShape; brd_shape.Fracture( SHAPE_POLY_SET::PM_FAST ); const SHAPE_LINE_CHAIN& outline = brd_shape.Outline(0); const BOX2I& rect = outline.BBox(); // Creates the horizontal segments // Calculate the y limits of the area for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += step ) { // The row index (vertical position) of current line scan inside the placement matrix int idy = (refy - coord_orgin.y) / step; // Ensure we are still inside the placement matrix if( idy >= m_matrix.m_Nrows ) break; // Ensure we are inside the placement matrix if( idy <= 0 ) continue; // find all intersection points of an infinite line with polyline sides x_coordinates.clear(); for( int v = 0; v < outline.PointCount(); v++ ) { int seg_startX = outline.CPoint( v ).x; int seg_startY = outline.CPoint( v ).y; int seg_endX = outline.CPoint( v + 1 ).x; int seg_endY = outline.CPoint( v + 1 ).y; /* Trivial cases: skip if ref above or below the segment to test */ if( ( seg_startY > refy ) && ( seg_endY > refy ) ) continue; // segment below ref point, or its Y end pos on Y coordinate ref point: skip if( ( seg_startY <= refy ) && (seg_endY <= refy ) ) continue; /* at this point refy is between seg_startY and seg_endY * see if an horizontal line at Y = refy is intersecting this segment */ // calculate the x position of the intersection of this segment and the // infinite line this is more easier if we move the X,Y axis origin to // the segment start point: seg_endX -= seg_startX; seg_endY -= seg_startY; double newrefy = (double) ( refy - seg_startY ); double intersec_x; if ( seg_endY == 0 ) // horizontal segment on the same line: skip continue; // Now calculate the x intersection coordinate of the horizontal line at // y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the // horizontal line at the new refy position the line slope is: // slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY // and the x pos relative to the new origin is: // intersec_x = refy/slope = refy * inv_slope // Note: because horizontal segments are already tested and skipped, slope // exists (seg_end_y not O) double inv_slope = (double) seg_endX / seg_endY; intersec_x = newrefy * inv_slope; x_coordinates.push_back( (int) intersec_x + seg_startX ); } // A line scan is finished: build list of segments // Sort intersection points by increasing x value: // So 2 consecutive points are the ends of a segment std::sort( x_coordinates.begin(), x_coordinates.end() ); // An even number of coordinates is expected, because a segment has 2 ends. // An if this algorithm always works, it must always find an even count. if( ( x_coordinates.size() & 1 ) != 0 ) { success = false; break; } // Fill cells having the same Y coordinate int iimax = x_coordinates.size() - 1; for( int ii = 0; ii < iimax; ii += 2 ) { int seg_start_x = x_coordinates[ii] - coord_orgin.x; int seg_end_x = x_coordinates[ii + 1] - coord_orgin.x; // Fill cells at y coord = idy, // and at x cood >= seg_start_x and <= seg_end_x for( int idx = seg_start_x / step; idx < m_matrix.m_Ncols; idx++ ) { if( idx * step > seg_end_x ) break; if( idx * step >= seg_start_x ) m_matrix.SetCell( idy, idx, AR_SIDE_BOTTOM, CELL_IS_ZONE ); } } } // End examine segments in one area return success; } void AR_AUTOPLACER::rotateFootprint( MODULE* aFootprint, double angle, bool incremental ) { if( aFootprint == NULL ) return; if( incremental ) aFootprint->SetOrientation( aFootprint->GetOrientation() + angle ); else aFootprint->SetOrientation( angle ); m_board->GetConnectivity()->Update( aFootprint ); } void AR_AUTOPLACER::addFpBody( wxPoint aStart, wxPoint aEnd, LSET aLayerMask ) { // Add a polygonal shape (rectangle) to m_fpAreaFront and/or m_fpAreaBack if( aLayerMask[ F_Cu ] ) { m_fpAreaTop.NewOutline(); m_fpAreaTop.Append( aStart.x, aStart.y ); m_fpAreaTop.Append( aEnd.x, aStart.y ); m_fpAreaTop.Append( aEnd.x, aEnd.y ); m_fpAreaTop.Append( aStart.x, aEnd.y ); } if( aLayerMask[ B_Cu ] ) { m_fpAreaBottom.NewOutline(); m_fpAreaBottom.Append( aStart.x, aStart.y ); m_fpAreaBottom.Append( aEnd.x, aStart.y ); m_fpAreaBottom.Append( aEnd.x, aEnd.y ); m_fpAreaBottom.Append( aStart.x, aEnd.y ); } } void AR_AUTOPLACER::addPad( PAD* aPad, int aClearance ) { // Add a polygonal shape (rectangle) to m_fpAreaFront and/or m_fpAreaBack EDA_RECT bbox = aPad->GetBoundingBox(); bbox.Inflate( aClearance ); if( aPad->IsOnLayer( F_Cu ) ) { m_fpAreaTop.NewOutline(); m_fpAreaTop.Append( bbox.GetLeft(), bbox.GetTop() ); m_fpAreaTop.Append( bbox.GetRight(), bbox.GetTop() ); m_fpAreaTop.Append( bbox.GetRight(), bbox.GetBottom() ); m_fpAreaTop.Append( bbox.GetLeft(), bbox.GetBottom() ); } if( aPad->IsOnLayer( B_Cu ) ) { m_fpAreaBottom.NewOutline(); m_fpAreaBottom.Append( bbox.GetLeft(), bbox.GetTop() ); m_fpAreaBottom.Append( bbox.GetRight(), bbox.GetTop() ); m_fpAreaBottom.Append( bbox.GetRight(), bbox.GetBottom() ); m_fpAreaBottom.Append( bbox.GetLeft(), bbox.GetBottom() ); } } void AR_AUTOPLACER::buildFpAreas( MODULE* aFootprint, int aFpClearance ) { m_fpAreaTop.RemoveAllContours(); m_fpAreaBottom.RemoveAllContours(); aFootprint->BuildPolyCourtyards(); m_fpAreaTop = aFootprint->GetPolyCourtyardFront(); m_fpAreaBottom = aFootprint->GetPolyCourtyardBack(); LSET layerMask; if( aFootprint->GetLayer() == F_Cu ) layerMask.set( F_Cu ); if( aFootprint->GetLayer() == B_Cu ) layerMask.set( B_Cu ); EDA_RECT fpBBox = aFootprint->GetBoundingBox(); fpBBox.Inflate( ( m_matrix.m_GridRouting / 2 ) + aFpClearance ); // Add a minimal area to the fp area: addFpBody( fpBBox.GetOrigin(), fpBBox.GetEnd(), layerMask ); // Trace pads + clearance areas. for( PAD* pad : aFootprint->Pads() ) { int margin = (m_matrix.m_GridRouting / 2) + pad->GetOwnClearance( pad->GetLayer() ); addPad( pad, margin ); } } void AR_AUTOPLACER::genModuleOnRoutingMatrix( MODULE* Module ) { int ox, oy, fx, fy; LSET layerMask; EDA_RECT fpBBox = Module->GetBoundingBox(); fpBBox.Inflate( m_matrix.m_GridRouting / 2 ); ox = fpBBox.GetX(); fx = fpBBox.GetRight(); oy = fpBBox.GetY(); fy = fpBBox.GetBottom(); if( ox < m_matrix.m_BrdBox.GetX() ) ox = m_matrix.m_BrdBox.GetX(); if( ox > m_matrix.m_BrdBox.GetRight() ) ox = m_matrix.m_BrdBox.GetRight(); if( fx < m_matrix.m_BrdBox.GetX() ) fx = m_matrix.m_BrdBox.GetX(); if( fx > m_matrix.m_BrdBox.GetRight() ) fx = m_matrix.m_BrdBox.GetRight(); if( oy < m_matrix.m_BrdBox.GetY() ) oy = m_matrix.m_BrdBox.GetY(); if( oy > m_matrix.m_BrdBox.GetBottom() ) oy = m_matrix.m_BrdBox.GetBottom(); if( fy < m_matrix.m_BrdBox.GetY() ) fy = m_matrix.m_BrdBox.GetY(); if( fy > m_matrix.m_BrdBox.GetBottom() ) fy = m_matrix.m_BrdBox.GetBottom(); if( Module->GetLayer() == F_Cu ) layerMask.set( F_Cu ); if( Module->GetLayer() == B_Cu ) layerMask.set( B_Cu ); m_matrix.TraceFilledRectangle( ox, oy, fx, fy, layerMask, CELL_IS_MODULE, AR_MATRIX::WRITE_OR_CELL ); // Trace pads + clearance areas. for( PAD* pad : Module->Pads() ) { int margin = (m_matrix.m_GridRouting / 2) + pad->GetOwnClearance( pad->GetLayer() ); m_matrix.PlacePad( pad, CELL_IS_MODULE, margin, AR_MATRIX::WRITE_OR_CELL ); } // Trace clearance. int margin = ( m_matrix.m_GridRouting * Module->GetPadCount() ) / AR_GAIN; m_matrix.CreateKeepOutRectangle( ox, oy, fx, fy, margin, AR_KEEPOUT_MARGIN , layerMask ); // Build the footprint courtyard buildFpAreas( Module, margin ); // Substract the shape to free areas m_topFreeArea.BooleanSubtract( m_fpAreaTop, SHAPE_POLY_SET::PM_FAST ); m_bottomFreeArea.BooleanSubtract( m_fpAreaBottom, SHAPE_POLY_SET::PM_FAST ); } /* Test if the rectangular area (ux, ux .. y0, y1): * - is a free zone (except OCCUPED_By_MODULE returns) * - is on the working surface of the board (otherwise returns OUT_OF_BOARD) * * Returns OUT_OF_BOARD, or OCCUPED_By_MODULE or FREE_CELL if OK */ int AR_AUTOPLACER::testRectangle( const EDA_RECT& aRect, int side ) { EDA_RECT rect = aRect; rect.Inflate( m_matrix.m_GridRouting / 2 ); wxPoint start = rect.GetOrigin(); wxPoint end = rect.GetEnd(); start -= m_matrix.m_BrdBox.GetOrigin(); end -= m_matrix.m_BrdBox.GetOrigin(); int row_min = start.y / m_matrix.m_GridRouting; int row_max = end.y / m_matrix.m_GridRouting; int col_min = start.x / m_matrix.m_GridRouting; int col_max = end.x / m_matrix.m_GridRouting; if( start.y > row_min * m_matrix.m_GridRouting ) row_min++; if( start.x > col_min * m_matrix.m_GridRouting ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= ( m_matrix.m_Nrows - 1 ) ) row_max = m_matrix.m_Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= ( m_matrix.m_Ncols - 1 ) ) col_max = m_matrix.m_Ncols - 1; for( int row = row_min; row <= row_max; row++ ) { for( int col = col_min; col <= col_max; col++ ) { unsigned int data = m_matrix.GetCell( row, col, side ); if( ( data & CELL_IS_ZONE ) == 0 ) return AR_OUT_OF_BOARD; if( (data & CELL_IS_MODULE) ) return AR_OCCUIPED_BY_MODULE; } } return AR_FREE_CELL; } /* Calculates and returns the clearance area of the rectangular surface * aRect): * (Sum of cells in terms of distance) */ unsigned int AR_AUTOPLACER::calculateKeepOutArea( const EDA_RECT& aRect, int side ) { wxPoint start = aRect.GetOrigin(); wxPoint end = aRect.GetEnd(); start -= m_matrix.m_BrdBox.GetOrigin(); end -= m_matrix.m_BrdBox.GetOrigin(); int row_min = start.y / m_matrix.m_GridRouting; int row_max = end.y / m_matrix.m_GridRouting; int col_min = start.x / m_matrix.m_GridRouting; int col_max = end.x / m_matrix.m_GridRouting; if( start.y > row_min * m_matrix.m_GridRouting ) row_min++; if( start.x > col_min * m_matrix.m_GridRouting ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= ( m_matrix.m_Nrows - 1 ) ) row_max = m_matrix.m_Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= ( m_matrix.m_Ncols - 1 ) ) col_max = m_matrix.m_Ncols - 1; unsigned int keepOutCost = 0; for( int row = row_min; row <= row_max; row++ ) { for( int col = col_min; col <= col_max; col++ ) { // m_matrix.GetDist returns the "cost" of the cell // at position (row, col) // in autoplace this is the cost of the cell, if it is // inside aRect keepOutCost += m_matrix.GetDist( row, col, side ); } } return keepOutCost; } /* Test if the module can be placed on the board. * Returns the value TstRectangle(). * Module is known by its bounding box */ int AR_AUTOPLACER::testModuleOnBoard( MODULE* aFootprint, bool TstOtherSide, const wxPoint& aOffset ) { int side = AR_SIDE_TOP; int otherside = AR_SIDE_BOTTOM; if( aFootprint->GetLayer() == B_Cu ) { side = AR_SIDE_BOTTOM; otherside = AR_SIDE_TOP; } EDA_RECT fpBBox = aFootprint->GetFootprintRect(); fpBBox.Move( -aOffset ); buildFpAreas( aFootprint, 0 ); int diag = //testModuleByPolygon( aFootprint, side, aOffset ); testRectangle( fpBBox, side ); if( diag != AR_FREE_CELL ) return diag; if( TstOtherSide ) { diag = //testModuleByPolygon( aFootprint, otherside, aOffset ); testRectangle( fpBBox, otherside ); if( diag != AR_FREE_CELL ) return diag; } int marge = ( m_matrix.m_GridRouting * aFootprint->GetPadCount() ) / AR_GAIN; fpBBox.Inflate( marge ); return calculateKeepOutArea( fpBBox, side ); } int AR_AUTOPLACER::getOptimalFPPlacement( MODULE* aFootprint ) { int error = 1; wxPoint LastPosOK; double min_cost, curr_cost, Score; bool TstOtherSide; aFootprint->CalculateBoundingBox(); LastPosOK = m_matrix.m_BrdBox.GetOrigin(); wxPoint mod_pos = aFootprint->GetPosition(); EDA_RECT fpBBox = aFootprint->GetFootprintRect(); // Move fpBBox to have the footprint position at (0,0) fpBBox.Move( -mod_pos ); wxPoint fpBBoxOrg = fpBBox.GetOrigin(); // Calculate the limit of the footprint position, relative // to the routing matrix area wxPoint xylimit = m_matrix.m_BrdBox.GetEnd() - fpBBox.GetEnd(); wxPoint initialPos = m_matrix.m_BrdBox.GetOrigin() - fpBBoxOrg; // Stay on grid. initialPos.x -= initialPos.x % m_matrix.m_GridRouting; initialPos.y -= initialPos.y % m_matrix.m_GridRouting; m_curPosition = initialPos; auto moduleOffset = mod_pos - m_curPosition; /* Examine pads, and set TstOtherSide to true if a footprint * has at least 1 pad through. */ TstOtherSide = false; if( m_matrix.m_RoutingLayersCount > 1 ) { LSET other( aFootprint->GetLayer() == B_Cu ? F_Cu : B_Cu ); for( PAD* pad : aFootprint->Pads() ) { if( !( pad->GetLayerSet() & other ).any() ) continue; TstOtherSide = true; break; } } fpBBox.SetOrigin( fpBBoxOrg + m_curPosition ); min_cost = -1.0; // m_frame->SetStatusText( wxT( "Score ??, pos ??" ) ); for( ; m_curPosition.x < xylimit.x; m_curPosition.x += m_matrix.m_GridRouting ) { m_curPosition.y = initialPos.y; for( ; m_curPosition.y < xylimit.y; m_curPosition.y += m_matrix.m_GridRouting ) { fpBBox.SetOrigin( fpBBoxOrg + m_curPosition ); moduleOffset = mod_pos - m_curPosition; int keepOutCost = testModuleOnBoard( aFootprint, TstOtherSide, moduleOffset ); if( keepOutCost >= 0 ) // i.e. if the module can be put here { error = 0; // m_frame->build_ratsnest_module( aFootprint ); // fixme curr_cost = computePlacementRatsnestCost( aFootprint, moduleOffset ); Score = curr_cost + keepOutCost; if( (min_cost >= Score ) || (min_cost < 0 ) ) { LastPosOK = m_curPosition; min_cost = Score; wxString msg; /* msg.Printf( wxT( "Score %g, pos %s, %s" ), min_cost, GetChars( ::CoordinateToString( LastPosOK.x ) ), GetChars( ::CoordinateToString( LastPosOK.y ) ) ); m_frame->SetStatusText( msg );*/ } } } } // Regeneration of the modified variable. m_curPosition = LastPosOK; m_minCost = min_cost; return error; } const PAD* AR_AUTOPLACER::nearestPad( MODULE *aRefFP, PAD* aRefPad, const wxPoint& aOffset) { const PAD* nearest = nullptr; int64_t nearestDist = INT64_MAX; for ( MODULE* footprint : m_board->Footprints() ) { if ( footprint == aRefFP ) continue; if( !m_matrix.m_BrdBox.Contains( footprint->GetPosition() ) ) continue; for( PAD* pad: footprint->Pads() ) { if( pad->GetNetCode() != aRefPad->GetNetCode() || pad->GetNetCode() <= 0 ) continue; auto dist = (VECTOR2I( aRefPad->GetPosition() - aOffset ) - VECTOR2I( pad->GetPosition() ) ).EuclideanNorm(); if ( dist < nearestDist ) { nearestDist = dist; nearest = pad; } } } return nearest; } double AR_AUTOPLACER::computePlacementRatsnestCost( MODULE *aFootprint, const wxPoint& aOffset ) { double curr_cost; VECTOR2I start; // start point of a ratsnest VECTOR2I end; // end point of a ratsnest int dx, dy; curr_cost = 0; for ( PAD* pad : aFootprint->Pads() ) { const PAD* nearest = nearestPad( aFootprint, pad, aOffset ); if( !nearest ) continue; start = VECTOR2I( pad->GetPosition() ) - VECTOR2I(aOffset); end = VECTOR2I( nearest->GetPosition() ); //m_overlay->SetIsStroke( true ); //m_overlay->SetStrokeColor( COLOR4D(0.0, 1.0, 0.0, 1.0) ); //m_overlay->Line( start, end ); // Cost of the ratsnest. dx = end.x - start.x; dy = end.y - start.y; dx = abs( dx ); dy = abs( dy ); // ttry to have always dx >= dy to calculate the cost of the rastsnet if( dx < dy ) std::swap( dx, dy ); // Cost of the connection = length + penalty due to the slope // dx is the biggest length relative to the X or Y axis // the penalty is max for 45 degrees ratsnests, // and 0 for horizontal or vertical ratsnests. // For Horizontal and Vertical ratsnests, dy = 0; double conn_cost = hypot( dx, dy * 2.0 ); curr_cost += conn_cost; // Total cost = sum of costs of each connection } return curr_cost; } // Sort routines static bool sortFootprintsByComplexity( MODULE* ref, MODULE* compare ) { double ff1, ff2; ff1 = ref->GetArea() * ref->GetPadCount(); ff2 = compare->GetArea() * compare->GetPadCount(); return ff2 < ff1; } static bool sortFootprintsByRatsnestSize( MODULE* ref, MODULE* compare ) { double ff1, ff2; ff1 = ref->GetArea() * ref->GetFlag(); ff2 = compare->GetArea() * compare->GetFlag(); return ff2 < ff1; } MODULE* AR_AUTOPLACER::pickFootprint( ) { std::vector fpList; for( MODULE* footprint : m_board->Footprints() ) { footprint->CalculateBoundingBox(); fpList.push_back( footprint ); } sort( fpList.begin(), fpList.end(), sortFootprintsByComplexity ); for( unsigned kk = 0; kk < fpList.size(); kk++ ) { MODULE* footprint = fpList[kk]; footprint->SetFlag( 0 ); if( !footprint->NeedsPlaced() ) continue; m_connectivity->Update( footprint ); } m_connectivity->RecalculateRatsnest(); for( unsigned kk = 0; kk < fpList.size(); kk++ ) { MODULE* footprint = fpList[kk]; auto edges = m_connectivity->GetRatsnestForComponent( footprint, true ); footprint->SetFlag( edges.size() ) ; } sort( fpList.begin(), fpList.end(), sortFootprintsByRatsnestSize ); // Search for "best" module. MODULE* bestModule = nullptr; MODULE* altModule = nullptr; for( unsigned ii = 0; ii < fpList.size(); ii++ ) { MODULE* footprint = fpList[ii]; if( !footprint->NeedsPlaced() ) continue; altModule = footprint; if( footprint->GetFlag() == 0 ) continue; bestModule = footprint; break; } if( bestModule ) return bestModule; else return altModule; } void AR_AUTOPLACER::drawPlacementRoutingMatrix( ) { // Draw the board free area m_overlay->Clear(); m_overlay->SetIsFill( true ); m_overlay->SetIsStroke( false ); SHAPE_POLY_SET freeArea = m_topFreeArea; freeArea.Fracture( SHAPE_POLY_SET::PM_FAST ); // Draw the free polygon areas, top side: if( freeArea.OutlineCount() > 0 ) { m_overlay->SetIsFill( true ); m_overlay->SetIsStroke( false ); m_overlay->SetFillColor( COLOR4D(0.7, 0.0, 0.1, 0.2) ); m_overlay->Polygon( freeArea ); } freeArea = m_bottomFreeArea; freeArea.Fracture( SHAPE_POLY_SET::PM_FAST ); // Draw the free polygon areas, bottom side: if( freeArea.OutlineCount() > 0 ) { m_overlay->SetFillColor( COLOR4D(0.0, 0.7, 0.0, 0.2) ); m_overlay->Polygon( freeArea ); } } AR_RESULT AR_AUTOPLACER::AutoplaceFootprints( std::vector& aFootprints, BOARD_COMMIT* aCommit, bool aPlaceOffboardModules ) { wxPoint memopos; int error; bool cancelled = false; memopos = m_curPosition; m_matrix.m_GridRouting = m_gridSize; //(int) m_frame->GetScreen()->GetGridSize().x; // Ensure Board.m_GridRouting has a reasonable value: if( m_matrix.m_GridRouting < Millimeter2iu( 0.25 ) ) m_matrix.m_GridRouting = Millimeter2iu( 0.25 ); // Compute module parameters used in auto place if( genPlacementRoutingMatrix( ) == 0 ) return AR_FAILURE; int moduleCount = 0; for( MODULE* footprint : m_board->Footprints() ) footprint->SetNeedsPlaced( false ); std::vector offboardMods; if( aPlaceOffboardModules ) { for( MODULE* footprint : m_board->Footprints() ) { if( !m_matrix.m_BrdBox.Contains( footprint->GetPosition() ) ) offboardMods.push_back( footprint ); } } for( MODULE* footprint : aFootprints ) { footprint->SetNeedsPlaced( true ); aCommit->Modify( footprint ); } for( MODULE* footprint : offboardMods ) { footprint->SetNeedsPlaced( true ); aCommit->Modify( footprint ); } for( MODULE* footprint : m_board->Footprints() ) { if( footprint->NeedsPlaced() ) // Erase from screen moduleCount++; else genModuleOnRoutingMatrix( footprint ); } int cnt = 0; wxString msg; if( m_progressReporter ) { m_progressReporter->Report( _( "Autoplacing components..." ) ); m_progressReporter->SetMaxProgress( moduleCount ); } drawPlacementRoutingMatrix(); if( m_refreshCallback ) m_refreshCallback( nullptr ); MODULE* footprint; while( ( footprint = pickFootprint() ) != nullptr ) { // Display some info about activity, footprint placement can take a while: //m_frame->SetStatusText( msg ); if( m_progressReporter ) m_progressReporter->SetTitle( wxString::Format( _( "Autoplacing %s" ), footprint->GetReference() ) ); double initialOrient = footprint->GetOrientation(); error = getOptimalFPPlacement( footprint ); double bestScore = m_minCost; double bestRotation = 0.0; int rotAllowed; if( error == AR_ABORT_PLACEMENT ) goto end_of_tst; // Try orientations 90, 180, 270 degrees from initial orientation rotAllowed = footprint->GetPlacementCost180(); if( rotAllowed != 0 ) { rotateFootprint( footprint, 1800.0, true ); error = getOptimalFPPlacement( footprint ); m_minCost *= OrientationPenalty[rotAllowed]; if( bestScore > m_minCost ) // This orientation is better. { bestScore = m_minCost; bestRotation = 1800.0; } else { rotateFootprint( footprint, initialOrient, false ); } if( error == AR_ABORT_PLACEMENT ) goto end_of_tst; } // Determine if the best orientation of a module is 90. rotAllowed = footprint->GetPlacementCost90(); if( rotAllowed != 0 ) { rotateFootprint( footprint, 900.0, true ); error = getOptimalFPPlacement( footprint ); m_minCost *= OrientationPenalty[rotAllowed]; if( bestScore > m_minCost ) // This orientation is better. { bestScore = m_minCost; bestRotation = 900.0; } else { rotateFootprint( footprint, initialOrient, false ); } if( error == AR_ABORT_PLACEMENT ) goto end_of_tst; } // Determine if the best orientation of a module is -90. if( rotAllowed != 0 ) { rotateFootprint( footprint, 2700.0, true ); error = getOptimalFPPlacement( footprint ); m_minCost *= OrientationPenalty[rotAllowed]; if( bestScore > m_minCost ) // This orientation is better. { bestScore = m_minCost; bestRotation = 2700.0; } else { rotateFootprint( footprint, initialOrient, false ); } if( error == AR_ABORT_PLACEMENT ) goto end_of_tst; } end_of_tst: if( error == AR_ABORT_PLACEMENT ) break; bestRotation += initialOrient; if( bestRotation != footprint->GetOrientation() ) { rotateFootprint( footprint, bestRotation, false ); } // Place module. placeFootprint( footprint, true, m_curPosition ); footprint->CalculateBoundingBox(); genModuleOnRoutingMatrix( footprint ); footprint->SetIsPlaced( true ); footprint->SetNeedsPlaced( false ); drawPlacementRoutingMatrix(); if( m_refreshCallback ) m_refreshCallback( footprint ); if( m_progressReporter ) { m_progressReporter->AdvanceProgress(); if ( !m_progressReporter->KeepRefreshing( false ) ) { cancelled = true; break; } } cnt++; } m_curPosition = memopos; m_matrix.UnInitRoutingMatrix(); for( MODULE* footprint : m_board->Footprints() ) footprint->CalculateBoundingBox(); return cancelled ? AR_CANCELLED : AR_COMPLETED; }