/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2013-2017 CERN * @author Maciej Suminski * @author Tomasz Wlostowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file ratsnest_data.cpp * @brief Class that computes missing connections on a PCB. */ #ifdef USE_OPENMP #include #endif /* USE_OPENMP */ #ifdef PROFILE #include #endif #include #include using namespace std::placeholders; #include #include #include #include static uint64_t getDistance( const CN_ANCHOR_PTR& aNode1, const CN_ANCHOR_PTR& aNode2 ) { double dx = ( aNode1->Pos().x - aNode2->Pos().x ); double dy = ( aNode1->Pos().y - aNode2->Pos().y ); return sqrt( dx * dx + dy * dy ); } static bool sortWeight( const CN_EDGE& aEdge1, const CN_EDGE& aEdge2 ) { return aEdge1.GetWeight() < aEdge2.GetWeight(); } static const std::vector kruskalMST( std::list& aEdges, std::vector& aNodes ) { unsigned int nodeNumber = aNodes.size(); unsigned int mstExpectedSize = nodeNumber - 1; unsigned int mstSize = 0; bool ratsnestLines = false; //printf("mst nodes : %d edges : %d\n", aNodes.size(), aEdges.size () ); // The output std::vector mst; // Set tags for marking cycles std::unordered_map tags; unsigned int tag = 0; for( auto& node : aNodes ) { node->SetTag( tag ); tags[node] = tag++; } // Lists of nodes connected together (subtrees) to detect cycles in the graph std::vector > cycles( nodeNumber ); for( unsigned int i = 0; i < nodeNumber; ++i ) cycles[i].push_back( i ); // Kruskal algorithm requires edges to be sorted by their weight aEdges.sort( sortWeight ); while( mstSize < mstExpectedSize && !aEdges.empty() ) { //printf("mstSize %d %d\n", mstSize, mstExpectedSize); auto& dt = aEdges.front(); int srcTag = tags[dt.GetSourceNode()]; int trgTag = tags[dt.GetTargetNode()]; // Check if by adding this edge we are going to join two different forests if( srcTag != trgTag ) { // Because edges are sorted by their weight, first we always process connected // items (weight == 0). Once we stumble upon an edge with non-zero weight, // it means that the rest of the lines are ratsnest. if( !ratsnestLines && dt.GetWeight() != 0 ) ratsnestLines = true; // Update tags if( ratsnestLines ) { for( auto it = cycles[trgTag].begin(); it != cycles[trgTag].end(); ++it ) { tags[aNodes[*it]] = srcTag; } // Do a copy of edge, but make it RN_EDGE_MST. In contrary to RN_EDGE, // RN_EDGE_MST saves both source and target node and does not require any other // edges to exist for getting source/target nodes CN_EDGE newEdge ( dt.GetSourceNode(), dt.GetTargetNode(), dt.GetWeight() ); assert( newEdge.GetSourceNode()->GetTag() != newEdge.GetTargetNode()->GetTag() ); assert( newEdge.GetWeight() > 0 ); mst.push_back( newEdge ); ++mstSize; } else { // for( it = cycles[trgTag].begin(), itEnd = cycles[trgTag].end(); it != itEnd; ++it ) // for( auto it : cycles[trgTag] ) for( auto it = cycles[trgTag].begin(); it != cycles[trgTag].end(); ++it ) { tags[aNodes[*it]] = srcTag; aNodes[*it]->SetTag( srcTag ); } // Processing a connection, decrease the expected size of the ratsnest MST --mstExpectedSize; } // Move nodes that were marked with old tag to the list marked with the new tag cycles[srcTag].splice( cycles[srcTag].end(), cycles[trgTag] ); } // Remove the edge that was just processed aEdges.erase( aEdges.begin() ); } // Probably we have discarded some of edges, so reduce the size mst.resize( mstSize ); return mst; } class RN_NET::TRIANGULATOR_STATE { private: std::vector m_allNodes; std::vector m_triangulationNodes; public: void Clear() { m_allNodes.clear(); } void AddNode( CN_ANCHOR_PTR aNode ) { m_allNodes.push_back( aNode ); } const std::list Triangulate() { std::list mstEdges; std::list triangEdges; std::vector triNodes; using ANCHOR_LIST = std::vector; std::vector anchorChains; triNodes.reserve( m_allNodes.size() ); anchorChains.reserve( m_allNodes.size() ); std::sort( m_allNodes.begin(), m_allNodes.end(), [] ( const CN_ANCHOR_PTR& aNode1, const CN_ANCHOR_PTR& aNode2 ) { if( aNode1->Pos().y < aNode2->Pos().y ) return true; else if( aNode1->Pos().y == aNode2->Pos().y ) { return aNode1->Pos().x < aNode2->Pos().x; } return false; } ); CN_ANCHOR_PTR prev, last; int id = 0; for( auto n : m_allNodes ) { anchorChains.push_back( ANCHOR_LIST() ); } for( auto n : m_allNodes ) { if( !prev || prev->Pos() != n->Pos() ) { auto tn = std::make_shared ( n->Pos().x, n->Pos().y ); tn->SetId( id ); triNodes.push_back( tn ); } id++; prev = n; } int prevId = 0; for( auto n : triNodes ) { for( int i = prevId; i < n->Id(); i++ ) anchorChains[prevId].push_back( m_allNodes[ i ] ); prevId = n->Id(); } for( int i = prevId; i < id; i++ ) anchorChains[prevId].push_back( m_allNodes[ i ] ); hed::TRIANGULATION triangulator; triangulator.CreateDelaunay( triNodes.begin(), triNodes.end() ); triangulator.GetEdges( triangEdges ); for( auto e : triangEdges ) { auto src = m_allNodes[ e->GetSourceNode()->Id() ]; auto dst = m_allNodes[ e->GetTargetNode()->Id() ]; mstEdges.emplace_back( src, dst, getDistance( src, dst ) ); } for( unsigned int i = 0; i < anchorChains.size(); i++ ) { auto& chain = anchorChains[i]; if( chain.size() < 2 ) continue; std::sort( chain.begin(), chain.end(), [] ( const CN_ANCHOR_PTR& a, const CN_ANCHOR_PTR& b ) { return a->GetCluster().get() < b->GetCluster().get(); } ); for( unsigned int j = 1; j < chain.size(); j++ ) { const auto& prevNode = chain[j - 1]; const auto& curNode = chain[j]; int weight = prevNode->GetCluster() != curNode->GetCluster() ? 1 : 0; mstEdges.push_back( CN_EDGE ( prevNode, curNode, weight ) ); } } return mstEdges; } }; RN_NET::RN_NET() : m_dirty( true ) { m_triangulator.reset( new TRIANGULATOR_STATE ); } void RN_NET::compute() { // Special cases do not need complicated algorithms (actually, it does not work well with // the Delaunay triangulator) //printf("compute nodes : %d\n", m_nodes.size() ); if( m_nodes.size() <= 2 ) { m_rnEdges.clear(); // Check if the only possible connection exists if( m_boardEdges.size() == 0 && m_nodes.size() == 2 ) { auto last = ++m_nodes.begin(); // There can be only one possible connection, but it is missing CN_EDGE edge (*m_nodes.begin(), *last ); edge.GetSourceNode()->SetTag( 0 ); edge.GetTargetNode()->SetTag( 1 ); m_rnEdges.push_back( edge ); } else { // Set tags to m_nodes as connected for( auto node : m_nodes ) node->SetTag( 0 ); } return; } m_triangulator->Clear(); for( auto n : m_nodes ) { m_triangulator->AddNode( n ); } #ifdef PROFILE PROF_COUNTER cnt("triangulate"); #endif auto triangEdges = m_triangulator->Triangulate(); #ifdef PROFILE cnt.Show(); #endif for( const auto& e : m_boardEdges ) triangEdges.push_back( e ); // Get the minimal spanning tree #ifdef PROFILE PROF_COUNTER cnt2("mst"); #endif m_rnEdges = kruskalMST( triangEdges, m_nodes ); #ifdef PROFILE cnt2.Show(); #endif } void RN_NET::Update() { compute(); m_dirty = false; } void RN_NET::Clear() { m_rnEdges.clear(); m_boardEdges.clear(); m_nodes.clear(); m_dirty = true; } void RN_NET::AddCluster( CN_CLUSTER_PTR aCluster ) { CN_ANCHOR_PTR firstAnchor; for( auto item : *aCluster ) { bool isZone = dynamic_cast(item) != nullptr; auto& anchors = item->Anchors(); unsigned int nAnchors = isZone ? 1 : anchors.size(); if( nAnchors > anchors.size() ) nAnchors = anchors.size(); //printf("item %p anchors : %d\n", item, anchors.size() ); //printf("add item %p anchors : %d net : %d\n", item, item->Anchors().size(), item->Parent()->GetNetCode() ); for( unsigned int i = 0; i < nAnchors; i++ ) { // printf("add anchor %p\n", anchors[i].get() ); anchors[i]->SetCluster( aCluster ); m_nodes.push_back(anchors[i]); if( firstAnchor ) { if( firstAnchor != anchors[i] ) { m_boardEdges.emplace_back( firstAnchor, anchors[i], 0 ); } } else { firstAnchor = anchors[i]; } } } } bool RN_NET::NearestBicoloredPair( const RN_NET& aOtherNet, CN_ANCHOR_PTR& aNode1, CN_ANCHOR_PTR& aNode2 ) const { bool rv = false; VECTOR2I::extended_type distMax = VECTOR2I::ECOORD_MAX; for( auto nodeA : m_nodes ) { for( auto nodeB : aOtherNet.m_nodes ) { if( !nodeA->GetNoLine() ) { auto squaredDist = (nodeA->Pos() - nodeB->Pos() ).SquaredEuclideanNorm(); if( squaredDist < distMax ) { rv = true; distMax = squaredDist; aNode1 = nodeA; aNode2 = nodeB; } } } } return rv; } void RN_NET::SetVisible( bool aEnabled ) { for( auto& edge : m_rnEdges ) edge.SetVisible( aEnabled ); }