/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (c) 2005 Michael Niedermayer * Copyright (C) CERN * Copyright (C) 2021 KiCad Developers, see AUTHORS.txt for contributors. * * @author Tomasz Wlostowski * * The equals() method to compare two floating point values adapted from * AlmostEqualRelativeAndAbs() on * https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ * (C) Bruce Dawson subject to the Apache 2.0 license. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifndef UTIL_H #define UTIL_H #include #include #include #include #include /** * Helper to avoid directly including wx/log.h for the templated functions in kimath */ void kimathLogDebug( const char* aFormatString, ... ); /** * Limit @a value within the range @a lower <= @a value <= @a upper. * * It will work on temporary expressions, since they are evaluated only once, and it should * work on most if not all numeric types, string types, or any type for which "operator < ()" * is present. The arguments are accepted in this order so you can remember the expression as * a memory aid: *

* result is: lower <= value <= upper *

*/ template inline const T& Clamp( const T& lower, const T& value, const T& upper ) { if( value < lower ) return lower; else if( upper < value ) return upper; return value; } // Suppress an annoying warning that the explicit rounding we do is not precise #ifdef HAVE_WIMPLICIT_FLOAT_CONVERSION _Pragma( "GCC diagnostic push" ) \ _Pragma( "GCC diagnostic ignored \"-Wimplicit-int-float-conversion\"" ) #endif /** * Round a floating point number to an integer using "round halfway cases away from zero". * * In Debug build an assert fires if will not fit into the return type. */ template constexpr ret_type KiROUND( fp_type v ) { using max_ret = long long int; fp_type ret = v < 0 ? v - 0.5 : v + 0.5; if( std::numeric_limits::max() < ret || std::numeric_limits::lowest() > ret ) { kimathLogDebug( "Overflow KiROUND converting value %f to %s", double( v ), typeid( ret_type ).name() ); return 0; } return ret_type( max_ret( ret ) ); } #ifdef HAVE_WIMPLICIT_FLOAT_CONVERSION _Pragma( "GCC diagnostic pop" ) #endif /** * Scale a number (value) by rational (numerator/denominator). Numerator must be <= denominator. */ template T rescale( T aNumerator, T aValue, T aDenominator ) { return aNumerator * aValue / aDenominator; } template int sign( T val ) { return ( T( 0 ) < val) - ( val < T( 0 ) ); } // explicit specializations for integer types, taking care of overflow. template <> int rescale( int aNumerator, int aValue, int aDenominator ); template <> int64_t rescale( int64_t aNumerator, int64_t aValue, int64_t aDenominator ); /** * Template to compare two floating point values for equality within a required epsilon. * * @param aFirst value to compare. * @param aSecond value to compare. * @param aEpsilon allowed error. * @return true if the values considered equal within the specified epsilon, otherwise false. */ template typename std::enable_if::is_integer, bool>::type equals( T aFirst, T aSecond, T aEpsilon = std::numeric_limits::epsilon() ) { T diff = fabs( aFirst - aSecond ); if( diff < aEpsilon ) { return true; } aFirst = fabs( aFirst ); aSecond = fabs( aSecond ); T largest = aFirst > aSecond ? aFirst : aSecond; if( diff <= largest * aEpsilon ) { return true; } return false; } #endif // UTIL_H