/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015-2016 Mario Luzeiro * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file create_graphic_brd_items.cpp * @brief This file implements the creation of 2D graphic primitives of pcb items: * pads, tracks, drawsegments, texts.... * It is based on the function found in the files: * board_items_to_polygon_shape_transform.cpp */ #include "../3d_rendering/3d_render_raytracing/shapes2D/ring_2d.h" #include "../3d_rendering/3d_render_raytracing/shapes2D/filled_circle_2d.h" #include "../3d_rendering/3d_render_raytracing/shapes2D/round_segment_2d.h" #include "../3d_rendering/3d_render_raytracing/shapes2D/triangle_2d.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // These variables are parameters used in addTextSegmToContainer. // But addTextSegmToContainer is a call-back function, // so we cannot send them as arguments. static int s_textWidth; static CONTAINER_2D_BASE* s_dstcontainer = nullptr; static float s_biuTo3Dunits; static const BOARD_ITEM* s_boardItem = nullptr; // This is a call back function, used by GRText to draw the 3D text shape: void addTextSegmToContainer( int x0, int y0, int xf, int yf, void* aData ) { const SFVEC2F start3DU( x0 * s_biuTo3Dunits, -y0 * s_biuTo3Dunits ); const SFVEC2F end3DU ( xf * s_biuTo3Dunits, -yf * s_biuTo3Dunits ); if( Is_segment_a_circle( start3DU, end3DU ) ) s_dstcontainer->Add( new FILLED_CIRCLE_2D( start3DU, ( s_textWidth / 2 ) * s_biuTo3Dunits, *s_boardItem) ); else s_dstcontainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, s_textWidth * s_biuTo3Dunits, *s_boardItem ) ); } // Based on // void PCB_TEXT::TransformTextShapeWithClearanceToPolygon // board_items_to_polygon_shape_transform.cpp void BOARD_ADAPTER::addShapeWithClearance( const PCB_TEXT* aText, CONTAINER_2D_BASE* aDstContainer, PCB_LAYER_ID aLayerId, int aClearanceValue ) { wxSize size = aText->GetTextSize(); if( aText->IsMirrored() ) size.x = -size.x; s_boardItem = (const BOARD_ITEM *) &aText; s_dstcontainer = aDstContainer; s_textWidth = aText->GetEffectiveTextPenWidth() + ( 2 * aClearanceValue ); s_biuTo3Dunits = m_biuTo3Dunits; // not actually used, but needed by GRText const COLOR4D dummy_color = COLOR4D::BLACK; bool forceBold = true; int penWidth = 0; // force max width for bold if( aText->IsMultilineAllowed() ) { wxArrayString strings_list; wxStringSplit( aText->GetShownText(), strings_list, '\n' ); std::vector positions; positions.reserve( strings_list.Count() ); aText->GetLinePositions( positions, strings_list.Count() ); for( unsigned ii = 0; ii < strings_list.Count(); ++ii ) { wxString txt = strings_list.Item( ii ); GRText( nullptr, positions[ii], dummy_color, txt, aText->GetTextAngle(), size, aText->GetHorizJustify(), aText->GetVertJustify(), penWidth, aText->IsItalic(), forceBold, addTextSegmToContainer ); } } else { GRText( nullptr, aText->GetTextPos(), dummy_color, aText->GetShownText(), aText->GetTextAngle(), size, aText->GetHorizJustify(), aText->GetVertJustify(), penWidth, aText->IsItalic(), forceBold, addTextSegmToContainer ); } } void BOARD_ADAPTER::addShapeWithClearance( const DIMENSION_BASE* aDimension, CONTAINER_2D_BASE* aDstContainer, PCB_LAYER_ID aLayerId, int aClearanceValue ) { addShapeWithClearance( &aDimension->Text(), aDstContainer, aLayerId, aClearanceValue ); const int linewidth = aDimension->GetLineThickness() + ( 2 * aClearanceValue ); for( const std::shared_ptr& shape : aDimension->GetShapes() ) { switch( shape->Type() ) { case SH_SEGMENT: { const SEG& seg = static_cast( shape.get() )->GetSeg(); const SFVEC2F start3DU( seg.A.x * m_biuTo3Dunits, -seg.A.y * m_biuTo3Dunits ); const SFVEC2F end3DU( seg.B.x * m_biuTo3Dunits, -seg.B.y * m_biuTo3Dunits ); aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, linewidth * m_biuTo3Dunits, *aDimension ) ); break; } case SH_CIRCLE: { int radius = static_cast( shape.get() )->GetRadius(); int deltar = aDimension->GetLineThickness(); SFVEC2F center( shape->Centre().x * m_biuTo3Dunits, shape->Centre().y * m_biuTo3Dunits ); aDstContainer->Add( new RING_2D( center, ( radius - deltar ) * m_biuTo3Dunits, ( radius + deltar ) * m_biuTo3Dunits, *aDimension ) ); break; } default: break; } } } // Based on // void FOOTPRINT::TransformFPShapesWithClearanceToPolygonSet // board_items_to_polygon_shape_transform.cpp#L204 void BOARD_ADAPTER::addFootprintShapesWithClearance( const FOOTPRINT* aFootprint, CONTAINER_2D_BASE* aDstContainer, PCB_LAYER_ID aLayerId, int aInflateValue ) { std::vector texts; // List of FP_TEXT to convert FP_SHAPE* outline; for( BOARD_ITEM* item : aFootprint->GraphicalItems() ) { switch( item->Type() ) { case PCB_FP_TEXT_T: { FP_TEXT* text = static_cast( item ); if( text->GetLayer() == aLayerId && text->IsVisible() ) texts.push_back( text ); } break; case PCB_FP_SHAPE_T: { outline = (FP_SHAPE*) item; if( outline->GetLayer() != aLayerId ) break; addShapeWithClearance( (const PCB_SHAPE*) outline, aDstContainer, aLayerId, 0 ); } break; default: break; } } // Convert texts for footprints if( aFootprint->Reference().GetLayer() == aLayerId && aFootprint->Reference().IsVisible() ) texts.push_back( &aFootprint->Reference() ); if( aFootprint->Value().GetLayer() == aLayerId && aFootprint->Value().IsVisible() ) texts.push_back( &aFootprint->Value() ); s_boardItem = (const BOARD_ITEM *)&aFootprint->Value(); s_dstcontainer = aDstContainer; s_biuTo3Dunits = m_biuTo3Dunits; for( FP_TEXT* text : texts ) { s_textWidth = text->GetEffectiveTextPenWidth() + ( 2 * aInflateValue ); wxSize size = text->GetTextSize(); bool forceBold = true; int penWidth = 0; // force max width for bold if( text->IsMirrored() ) size.x = -size.x; GRText( nullptr, text->GetTextPos(), BLACK, text->GetShownText(), text->GetDrawRotation(), size, text->GetHorizJustify(), text->GetVertJustify(), penWidth, text->IsItalic(), forceBold, addTextSegmToContainer ); } } void BOARD_ADAPTER::createTrack( const TRACK* aTrack, CONTAINER_2D_BASE* aDstContainer, int aClearanceValue ) { SFVEC2F start3DU( aTrack->GetStart().x * m_biuTo3Dunits, -aTrack->GetStart().y * m_biuTo3Dunits ); // y coord is inverted switch( aTrack->Type() ) { case PCB_VIA_T: { const float radius = ( ( aTrack->GetWidth() / 2 ) + aClearanceValue ) * m_biuTo3Dunits; aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, radius, *aTrack ) ); break; } case PCB_ARC_T: { const ARC* arc = static_cast( aTrack ); VECTOR2D center( arc->GetCenter() ); double arc_angle = arc->GetAngle(); double radius = arc->GetRadius(); int arcsegcount = GetArcToSegmentCount( radius, Millimeter2iu( 0.005), arc_angle/10 ); int circlesegcount; // We need a circle to segment count. However, the arc angle can be small, and the // radius very big. so we calculate a reasonable value for circlesegcount. if( arcsegcount <= 1 ) // The arc will be approximated by a segment circlesegcount = 1; else { double cnt = arcsegcount * 3600/std::abs( arc_angle ); #define SEG_CNT_MAX 128 if( cnt < SEG_CNT_MAX ) { circlesegcount = (int)cnt; if( circlesegcount == 0 ) circlesegcount = 1; } else { circlesegcount = SEG_CNT_MAX; } } transformArcToSegments( wxPoint( center.x, center.y ), arc->GetStart(), arc_angle, circlesegcount, arc->GetWidth() + 2 * aClearanceValue, aDstContainer, *arc ); break; } case PCB_TRACE_T: // Track is a usual straight segment { SFVEC2F end3DU( aTrack->GetEnd().x * m_biuTo3Dunits, -aTrack->GetEnd().y * m_biuTo3Dunits ); // Cannot add segments that have the same start and end point if( Is_segment_a_circle( start3DU, end3DU ) ) { const float radius = ((aTrack->GetWidth() / 2) + aClearanceValue) * m_biuTo3Dunits; aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, radius, *aTrack ) ); } else { const float width = (aTrack->GetWidth() + 2 * aClearanceValue ) * m_biuTo3Dunits; aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, width, *aTrack ) ); } break; } default: break; } } void BOARD_ADAPTER::createPadWithClearance( const PAD* aPad, CONTAINER_2D_BASE* aDstContainer, PCB_LAYER_ID aLayer, wxSize aClearanceValue ) const { SHAPE_POLY_SET poly; // Our shape-based builder can't handle negative or differing x:y clearance values (the // former are common for solder paste while the later get generated when a relative paste // margin is used with an oblong pad). So we apply this huge hack and fake a larger pad to // run the general-purpose polygon builder on. // Of course being a hack it falls down when dealing with custom shape pads (where the size // is only the size of the anchor), so for those we punt and just use aClearanceValue.x. if( ( aClearanceValue.x < 0 || aClearanceValue.x != aClearanceValue.y ) && aPad->GetShape() != PAD_SHAPE_CUSTOM ) { PAD dummy( *aPad ); dummy.SetSize( aPad->GetSize() + aClearanceValue + aClearanceValue ); dummy.TransformShapeWithClearanceToPolygon( poly, aLayer, 0, ARC_HIGH_DEF, ERROR_INSIDE ); aClearanceValue = { 0, 0 }; } else { auto padShapes = std::static_pointer_cast( aPad->GetEffectiveShape() ); for( const SHAPE* shape : padShapes->Shapes() ) { switch( shape->Type() ) { case SH_SEGMENT: { const SHAPE_SEGMENT* seg = (SHAPE_SEGMENT*) shape; const SFVEC2F start3DU( seg->GetSeg().A.x * m_biuTo3Dunits, -seg->GetSeg().A.y * m_biuTo3Dunits ); const SFVEC2F end3DU ( seg->GetSeg().B.x * m_biuTo3Dunits, -seg->GetSeg().B.y * m_biuTo3Dunits ); const int width = seg->GetWidth() + aClearanceValue.x * 2; // Cannot add segments that have the same start and end point if( Is_segment_a_circle( start3DU, end3DU ) ) { aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( width / 2) * m_biuTo3Dunits, *aPad ) ); } else { aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, width * m_biuTo3Dunits, *aPad ) ); } } break; case SH_CIRCLE: { const SHAPE_CIRCLE* circle = (SHAPE_CIRCLE*) shape; const int radius = circle->GetRadius() + aClearanceValue.x; const SFVEC2F center( circle->GetCenter().x * m_biuTo3Dunits, -circle->GetCenter().y * m_biuTo3Dunits ); aDstContainer->Add( new FILLED_CIRCLE_2D( center, radius * m_biuTo3Dunits, *aPad ) ); } break; case SH_RECT: { SHAPE_RECT* rect = (SHAPE_RECT*) shape; poly.NewOutline(); poly.Append( rect->GetPosition() ); poly.Append( rect->GetPosition().x + rect->GetSize().x, rect->GetPosition().y ); poly.Append( rect->GetPosition() + rect->GetSize() ); poly.Append( rect->GetPosition().x, rect->GetPosition().y + rect->GetSize().y ); } break; case SH_SIMPLE: poly.AddOutline( static_cast( shape )->Vertices() ); break; case SH_POLY_SET: poly = *(SHAPE_POLY_SET*) shape; break; case SH_ARC: { SHAPE_ARC* arc = (SHAPE_ARC*) shape; SHAPE_LINE_CHAIN l = arc->ConvertToPolyline(); for( int i = 0; i < l.SegmentCount(); i++ ) { SHAPE_SEGMENT seg( l.Segment( i ).A, l.Segment( i ).B, arc->GetWidth() ); const SFVEC2F start3DU( seg.GetSeg().A.x * m_biuTo3Dunits, -seg.GetSeg().A.y * m_biuTo3Dunits ); const SFVEC2F end3DU( seg.GetSeg().B.x * m_biuTo3Dunits, -seg.GetSeg().B.y * m_biuTo3Dunits ); const int width = arc->GetWidth() + aClearanceValue.x * 2; // Cannot add segments that have the same start and end point if( Is_segment_a_circle( start3DU, end3DU ) ) { aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( width / 2) * m_biuTo3Dunits, *aPad ) ); } else { aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, width * m_biuTo3Dunits, *aPad ) ); } } } break; default: wxFAIL_MSG( "BOARD_ADAPTER::createPadWithClearance no implementation for " + SHAPE_TYPE_asString( shape->Type() ) ); break; } } } if( !poly.IsEmpty() ) { if( aClearanceValue.x ) poly.Inflate( aClearanceValue.x, 32 ); // Add the PAD polygon ConvertPolygonToTriangles( poly, *aDstContainer, m_biuTo3Dunits, *aPad ); } } OBJECT_2D* BOARD_ADAPTER::createPadWithDrill( const PAD* aPad, int aInflateValue ) { wxSize drillSize = aPad->GetDrillSize(); if( !drillSize.x || !drillSize.y ) { wxLogTrace( m_logTrace, wxT( "BOARD_ADAPTER::createPadWithDrill - found an invalid pad" ) ); return nullptr; } if( drillSize.x == drillSize.y ) // usual round hole { const int radius = ( drillSize.x / 2 ) + aInflateValue; const SFVEC2F center( aPad->GetPosition().x * m_biuTo3Dunits, -aPad->GetPosition().y * m_biuTo3Dunits ); return new FILLED_CIRCLE_2D( center, radius * m_biuTo3Dunits, *aPad ); } else // Oblong hole { const SHAPE_SEGMENT* seg = aPad->GetEffectiveHoleShape(); float width = seg->GetWidth() + aInflateValue * 2; SFVEC2F start3DU( seg->GetSeg().A.x * m_biuTo3Dunits, -seg->GetSeg().A.y * m_biuTo3Dunits ); SFVEC2F end3DU ( seg->GetSeg().B.x * m_biuTo3Dunits, -seg->GetSeg().B.y * m_biuTo3Dunits ); return new ROUND_SEGMENT_2D( start3DU, end3DU, width * m_biuTo3Dunits, *aPad ); } return nullptr; } void BOARD_ADAPTER::addPadsWithClearance( const FOOTPRINT* aFootprint, CONTAINER_2D_BASE* aDstContainer, PCB_LAYER_ID aLayerId, int aInflateValue, bool aSkipNPTHPadsWihNoCopper, bool aSkipPlatedPads, bool aSkipNonPlatedPads ) { for( PAD* pad : aFootprint->Pads() ) { if( !pad->IsOnLayer( aLayerId ) ) continue; // Skip pad annulus when not connected on this layer (if removing is enabled) if( !pad->FlashLayer( aLayerId ) && IsCopperLayer( aLayerId ) ) continue; // NPTH pads are not drawn on layers if the // shape size and pos is the same as their hole: if( aSkipNPTHPadsWihNoCopper && ( pad->GetAttribute() == PAD_ATTRIB_NPTH ) ) { if( pad->GetDrillSize() == pad->GetSize() && pad->GetOffset() == wxPoint( 0, 0 ) ) { switch( pad->GetShape() ) { case PAD_SHAPE_CIRCLE: if( pad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE ) continue; break; case PAD_SHAPE_OVAL: if( pad->GetDrillShape() != PAD_DRILL_SHAPE_CIRCLE ) continue; break; default: break; } } } const bool isPlated = ( ( aLayerId == F_Cu ) && pad->FlashLayer( F_Mask ) ) || ( ( aLayerId == B_Cu ) && pad->FlashLayer( B_Mask ) ); if( aSkipPlatedPads && isPlated ) continue; if( aSkipNonPlatedPads && !isPlated ) continue; wxSize margin( aInflateValue, aInflateValue ); switch( aLayerId ) { case F_Mask: case B_Mask: margin.x += pad->GetSolderMaskMargin(); margin.y += pad->GetSolderMaskMargin(); break; case F_Paste: case B_Paste: margin += pad->GetSolderPasteMargin(); break; default: break; } createPadWithClearance( pad, aDstContainer, aLayerId, margin ); } } // based on TransformArcToPolygon function from // common/convert_basic_shapes_to_polygon.cpp void BOARD_ADAPTER::transformArcToSegments( const wxPoint& aCentre, const wxPoint& aStart, double aArcAngle, int aCircleToSegmentsCount, int aWidth, CONTAINER_2D_BASE* aDstContainer, const BOARD_ITEM& aBoardItem ) { wxPoint arc_start, arc_end; int delta = 3600 / aCircleToSegmentsCount; // rotate angle in 0.1 degree arc_end = arc_start = aStart; if( aArcAngle != 3600 ) { RotatePoint( &arc_end, aCentre, -aArcAngle ); } if( aArcAngle < 0 ) { std::swap( arc_start, arc_end ); aArcAngle = -aArcAngle; } // Compute the ends of segments and creates poly wxPoint curr_end = arc_start; wxPoint curr_start = arc_start; for( int ii = delta; ii < aArcAngle; ii += delta ) { curr_end = arc_start; RotatePoint( &curr_end, aCentre, -ii ); const SFVEC2F start3DU( curr_start.x * m_biuTo3Dunits, -curr_start.y * m_biuTo3Dunits ); const SFVEC2F end3DU ( curr_end.x * m_biuTo3Dunits, -curr_end.y * m_biuTo3Dunits ); if( Is_segment_a_circle( start3DU, end3DU ) ) { aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( aWidth / 2 ) * m_biuTo3Dunits, aBoardItem ) ); } else { aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, aWidth * m_biuTo3Dunits, aBoardItem ) ); } curr_start = curr_end; } if( curr_end != arc_end ) { const SFVEC2F start3DU( curr_end.x * m_biuTo3Dunits, -curr_end.y * m_biuTo3Dunits ); const SFVEC2F end3DU ( arc_end.x * m_biuTo3Dunits, -arc_end.y * m_biuTo3Dunits ); if( Is_segment_a_circle( start3DU, end3DU ) ) { aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( aWidth / 2 ) * m_biuTo3Dunits, aBoardItem ) ); } else { aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, aWidth * m_biuTo3Dunits, aBoardItem ) ); } } } // Based on // TransformShapeWithClearanceToPolygon // board_items_to_polygon_shape_transform.cpp#L431 void BOARD_ADAPTER::addShapeWithClearance( const PCB_SHAPE* aShape, CONTAINER_2D_BASE* aDstContainer, PCB_LAYER_ID aLayerId, int aClearanceValue ) { // The full width of the lines to create // The extra 1 protects the inner/outer radius values from degeneracy const int linewidth = aShape->GetWidth() + ( 2 * aClearanceValue ) + 1; switch( aShape->GetShape() ) { case S_CIRCLE: { const SFVEC2F center3DU( aShape->GetCenter().x * m_biuTo3Dunits, -aShape->GetCenter().y * m_biuTo3Dunits ); float inner_radius = ( aShape->GetRadius() - linewidth / 2 ) * m_biuTo3Dunits; float outer_radius = ( aShape->GetRadius() + linewidth / 2 ) * m_biuTo3Dunits; if( inner_radius < 0 ) inner_radius = 0; if( aShape->IsFilled() ) aDstContainer->Add( new FILLED_CIRCLE_2D( center3DU, outer_radius, *aShape ) ); else aDstContainer->Add( new RING_2D( center3DU, inner_radius, outer_radius, *aShape ) ); } break; case S_RECT: if( aShape->IsFilled() ) { SHAPE_POLY_SET polyList; aShape->TransformShapeWithClearanceToPolygon( polyList, aLayerId, 0, ARC_HIGH_DEF, ERROR_INSIDE ); polyList.Simplify( SHAPE_POLY_SET::PM_FAST ); ConvertPolygonToTriangles( polyList, *aDstContainer, m_biuTo3Dunits, *aShape ); } else { std::vector pts = aShape->GetRectCorners(); const SFVEC2F topLeft3DU( pts[0].x * m_biuTo3Dunits, -pts[0].y * m_biuTo3Dunits ); const SFVEC2F topRight3DU( pts[1].x * m_biuTo3Dunits, -pts[1].y * m_biuTo3Dunits ); const SFVEC2F botRight3DU( pts[2].x * m_biuTo3Dunits, -pts[2].y * m_biuTo3Dunits ); const SFVEC2F botLeft3DU( pts[3].x * m_biuTo3Dunits, -pts[3].y * m_biuTo3Dunits ); aDstContainer->Add( new ROUND_SEGMENT_2D( topLeft3DU, topRight3DU, linewidth * m_biuTo3Dunits, *aShape ) ); aDstContainer->Add( new ROUND_SEGMENT_2D( topRight3DU, botRight3DU, linewidth * m_biuTo3Dunits, *aShape ) ); aDstContainer->Add( new ROUND_SEGMENT_2D( botRight3DU, botLeft3DU, linewidth * m_biuTo3Dunits, *aShape ) ); aDstContainer->Add( new ROUND_SEGMENT_2D( botLeft3DU, topLeft3DU, linewidth * m_biuTo3Dunits, *aShape ) ); } break; case S_ARC: { unsigned int segCount = GetCircleSegmentCount( aShape->GetBoundingBox().GetSizeMax() ); transformArcToSegments( aShape->GetCenter(), aShape->GetArcStart(), aShape->GetAngle(), segCount, linewidth, aDstContainer, *aShape ); } break; case S_SEGMENT: { const SFVEC2F start3DU( aShape->GetStart().x * m_biuTo3Dunits, -aShape->GetStart().y * m_biuTo3Dunits ); const SFVEC2F end3DU ( aShape->GetEnd().x * m_biuTo3Dunits, -aShape->GetEnd().y * m_biuTo3Dunits ); if( Is_segment_a_circle( start3DU, end3DU ) ) { aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( linewidth / 2 ) * m_biuTo3Dunits, *aShape ) ); } else { aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, linewidth * m_biuTo3Dunits, *aShape ) ); } } break; case S_CURVE: case S_POLYGON: { SHAPE_POLY_SET polyList; aShape->TransformShapeWithClearanceToPolygon( polyList, aLayerId, 0, ARC_HIGH_DEF, ERROR_INSIDE ); polyList.Simplify( SHAPE_POLY_SET::PM_FAST ); if( polyList.IsEmpty() ) // Just for caution break; ConvertPolygonToTriangles( polyList, *aDstContainer, m_biuTo3Dunits, *aShape ); } break; default: wxFAIL_MSG( "BOARD_ADAPTER::addShapeWithClearance no implementation for " + PCB_SHAPE_TYPE_T_asString( aShape->GetShape() ) ); break; } } // Based on // TransformSolidAreasShapesToPolygonSet // board_items_to_polygon_shape_transform.cpp void BOARD_ADAPTER::addSolidAreasShapes( const ZONE* aZoneContainer, CONTAINER_2D_BASE* aDstContainer, PCB_LAYER_ID aLayerId ) { // Copy the polys list because we have to simplify it SHAPE_POLY_SET polyList = SHAPE_POLY_SET( aZoneContainer->GetFilledPolysList( aLayerId ) ); // This convert the poly in outline and holes ConvertPolygonToTriangles( polyList, *aDstContainer, m_biuTo3Dunits, *aZoneContainer ); // add filled areas outlines, which are drawn with thick lines segments // but only if filled polygons outlines have thickness if( !aZoneContainer->GetFilledPolysUseThickness() ) return; float line_thickness = aZoneContainer->GetMinThickness() * m_biuTo3Dunits; for( int i = 0; i < polyList.OutlineCount(); ++i ) { // Add outline const SHAPE_LINE_CHAIN& pathOutline = polyList.COutline( i ); for( int j = 0; j < pathOutline.PointCount(); ++j ) { const VECTOR2I& a = pathOutline.CPoint( j ); const VECTOR2I& b = pathOutline.CPoint( j + 1 ); SFVEC2F start3DU( a.x * m_biuTo3Dunits, -a.y * m_biuTo3Dunits ); SFVEC2F end3DU ( b.x * m_biuTo3Dunits, -b.y * m_biuTo3Dunits ); if( Is_segment_a_circle( start3DU, end3DU ) ) { float radius = line_thickness/2; if( radius > 0.0 ) // degenerated circles crash 3D viewer aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, radius, *aZoneContainer ) ); } else { aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, line_thickness, *aZoneContainer ) ); } } // Add holes (of the poly, ie: the open parts) for this outline for( int h = 0; h < polyList.HoleCount( i ); ++h ) { const SHAPE_LINE_CHAIN& pathHole = polyList.CHole( i, h ); for( int j = 0; j < pathHole.PointCount(); j++ ) { const VECTOR2I& a = pathHole.CPoint( j ); const VECTOR2I& b = pathHole.CPoint( j + 1 ); SFVEC2F start3DU( a.x * m_biuTo3Dunits, -a.y * m_biuTo3Dunits ); SFVEC2F end3DU ( b.x * m_biuTo3Dunits, -b.y * m_biuTo3Dunits ); if( Is_segment_a_circle( start3DU, end3DU ) ) { float radius = line_thickness/2; if( radius > 0.0 ) // degenerated circles crash 3D viewer aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, radius, *aZoneContainer ) ); } else { aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, line_thickness, *aZoneContainer ) ); } } } } } void BOARD_ADAPTER::buildPadOutlineAsSegments( const PAD* aPad, CONTAINER_2D_BASE* aDstContainer, int aWidth ) { if( aPad->GetShape() == PAD_SHAPE_CIRCLE ) // Draw a ring { const SFVEC2F center3DU( aPad->ShapePos().x * m_biuTo3Dunits, -aPad->ShapePos().y * m_biuTo3Dunits ); const int radius = aPad->GetSize().x / 2; const float inner_radius = ( radius - aWidth / 2 ) * m_biuTo3Dunits; const float outer_radius = ( radius + aWidth / 2 ) * m_biuTo3Dunits; aDstContainer->Add( new RING_2D( center3DU, inner_radius, outer_radius, *aPad ) ); return; } // For other shapes, add outlines as thick segments in polygon buffer const std::shared_ptr& corners = aPad->GetEffectivePolygon(); const SHAPE_LINE_CHAIN& path = corners->COutline( 0 ); for( int j = 0; j < path.PointCount(); j++ ) { const VECTOR2I& a = path.CPoint( j ); const VECTOR2I& b = path.CPoint( j + 1 ); SFVEC2F start3DU( a.x * m_biuTo3Dunits, -a.y * m_biuTo3Dunits ); SFVEC2F end3DU ( b.x * m_biuTo3Dunits, -b.y * m_biuTo3Dunits ); if( Is_segment_a_circle( start3DU, end3DU ) ) { aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( aWidth / 2 ) * m_biuTo3Dunits, *aPad ) ); } else { aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, aWidth * m_biuTo3Dunits, *aPad ) ); } } }