/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2015 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include /** * Flag to enable debug tracing for the board outline creation * * Use "KICAD_BOARD_OUTLINE" to enable. * * @ingroup trace_env_vars */ const wxChar* traceBoardOutline = wxT( "KICAD_BOARD_OUTLINE" ); /** * Function close_enough * is a local and tunable method of qualifying the proximity of two points. * * @param aLeft is the first point * @param aRight is the second point * @param aLimit is a measure of proximity that the caller knows about. * @return bool - true if the two points are close enough, else false. */ bool close_enough( VECTOR2I aLeft, VECTOR2I aRight, unsigned aLimit ) { return ( aLeft - aRight ).SquaredEuclideanNorm() <= SEG::Square( aLimit ); } /** * Function closer_to_first * Local method which qualifies whether the start or end point of a segment is closest to a point. * * @param aRef is the reference point * @param aFirst is the first point * @param aSecond is the second point * @return bool - true if the first point is closest to the reference, otherwise false. */ bool closer_to_first( VECTOR2I aRef, VECTOR2I aFirst, VECTOR2I aSecond ) { return ( aRef - aFirst ).SquaredEuclideanNorm() < ( aRef - aSecond ).SquaredEuclideanNorm(); } /** * Searches for a PCB_SHAPE matching a given end point or start point in a list. * @param aShape The starting shape. * @param aPoint The starting or ending point to search for. * @param aList The list to remove from. * @param aLimit is the distance from \a aPoint that still constitutes a valid find. * @return PCB_SHAPE* - The first PCB_SHAPE that has a start or end point matching * aPoint, otherwise NULL if none. */ static PCB_SHAPE* findNext( PCB_SHAPE* aShape, const wxPoint& aPoint, const std::vector& aList, unsigned aLimit ) { // Look for an unused, exact hit for( PCB_SHAPE* graphic : aList ) { if( graphic == aShape || ( graphic->GetFlags() & SKIP_STRUCT ) != 0 ) continue; switch( graphic->GetShape() ) { case S_ARC: if( aPoint == graphic->GetArcStart() || aPoint == graphic->GetArcEnd() ) return graphic; break; default: if( aPoint == graphic->GetStart() || aPoint == graphic->GetEnd() ) return graphic; } } // Search again for anything that's close, even something already used. (The latter is // important for error reporting.) VECTOR2I pt( aPoint ); SEG::ecoord closest_dist_sq = SEG::Square( aLimit ); PCB_SHAPE* closest_graphic = nullptr; SEG::ecoord d_sq; for( PCB_SHAPE* graphic : aList ) { if( graphic == aShape ) continue; switch( graphic->GetShape() ) { case S_ARC: d_sq = ( pt - graphic->GetArcStart() ).SquaredEuclideanNorm(); if( d_sq < closest_dist_sq ) { closest_dist_sq = d_sq; closest_graphic = graphic; } d_sq = ( pt - graphic->GetArcEnd() ).SquaredEuclideanNorm(); if( d_sq < closest_dist_sq ) { closest_dist_sq = d_sq; closest_graphic = graphic; } break; default: d_sq = ( pt - graphic->GetStart() ).SquaredEuclideanNorm(); if( d_sq < closest_dist_sq ) { closest_dist_sq = d_sq; closest_graphic = graphic; } d_sq = ( pt - graphic->GetEnd() ).SquaredEuclideanNorm(); if( d_sq < closest_dist_sq ) { closest_dist_sq = d_sq; closest_graphic = graphic; } } } return closest_graphic; // Note: will be nullptr if nothing within aLimit } /** * Function ConvertOutlineToPolygon * Build a polygon (with holes) from a PCB_SHAPE list, which is expected to be a closed main * outline with perhaps closed inner outlines. These closed inner outlines are considered as * holes in the main outline. * @param aSegList the initial list of drawsegments (only lines, circles and arcs). * @param aPolygons will contain the complex polygon. * @param aErrorMax is the max error distance when polygonizing a curve (internal units) * @param aChainingEpsilon is the max error distance when polygonizing a curve (internal units) * @param aErrorHandler = an optional error handler */ bool ConvertOutlineToPolygon( std::vector& aSegList, SHAPE_POLY_SET& aPolygons, int aErrorMax, int aChainingEpsilon, OUTLINE_ERROR_HANDLER* aErrorHandler ) { if( aSegList.size() == 0 ) return true; bool polygonComplete = false; bool selfIntersecting = false; wxString msg; PCB_SHAPE* graphic = nullptr; std::set startCandidates( aSegList.begin(), aSegList.end() ); // Find edge point with minimum x, this should be in the outer polygon // which will define the perimeter polygon polygon. wxPoint xmin = wxPoint( INT_MAX, 0 ); int xmini = 0; for( size_t i = 0; i < aSegList.size(); i++ ) { graphic = (PCB_SHAPE*) aSegList[i]; graphic->ClearFlags( SKIP_STRUCT ); switch( graphic->GetShape() ) { case S_RECT: case S_SEGMENT: { if( graphic->GetStart().x < xmin.x ) { xmin = graphic->GetStart(); xmini = i; } if( graphic->GetEnd().x < xmin.x ) { xmin = graphic->GetEnd(); xmini = i; } } break; case S_ARC: { wxPoint pstart = graphic->GetArcStart(); wxPoint center = graphic->GetCenter(); double angle = -graphic->GetAngle(); double radius = graphic->GetRadius(); int steps = GetArcToSegmentCount( radius, aErrorMax, angle / 10.0 ); wxPoint pt; for( int step = 1; step<=steps; ++step ) { double rotation = ( angle * step ) / steps; pt = pstart; RotatePoint( &pt, center, rotation ); if( pt.x < xmin.x ) { xmin = pt; xmini = i; } } } break; case S_CIRCLE: { wxPoint pt = graphic->GetCenter(); // pt has minimum x point pt.x -= graphic->GetRadius(); // when the radius <= 0, this is a mal-formed circle. Skip it if( graphic->GetRadius() > 0 && pt.x < xmin.x ) { xmin = pt; xmini = i; } } break; case S_CURVE: { graphic->RebuildBezierToSegmentsPointsList( graphic->GetWidth() ); for( const wxPoint& pt : graphic->GetBezierPoints() ) { if( pt.x < xmin.x ) { xmin = pt; xmini = i; } } } break; case S_POLYGON: { const SHAPE_POLY_SET poly = graphic->GetPolyShape(); double orientation = 0.0; VECTOR2I offset = VECTOR2I( 0, 0 ); if( graphic->GetParentFootprint() ) { orientation = graphic->GetParentFootprint()->GetOrientation(); offset = graphic->GetParentFootprint()->GetPosition(); } for( auto iter = poly.CIterate(); iter; iter++ ) { VECTOR2I pt = *iter; RotatePoint( pt, orientation ); pt += offset; if( pt.x < xmin.x ) { xmin.x = pt.x; xmin.y = pt.y; xmini = i; } } } break; default: break; } } // Keep a list of where the various segments came from so after doing our combined-polygon // tests we can still report errors against the individual graphic items. std::map, PCB_SHAPE*> segOwners; auto fetchOwner = [&]( const SEG& seg ) -> PCB_SHAPE* { auto it = segOwners.find( std::make_pair( seg.A, seg.B ) ); return it == segOwners.end() ? nullptr : it->second; }; // Grab the left most point, assume its on the board's perimeter, and see if we can put // enough graphics together by matching endpoints to formulate a cohesive polygon. PCB_SHAPE* prevGraphic = nullptr; wxPoint prevPt; graphic = (PCB_SHAPE*) aSegList[xmini]; graphic->SetFlags( SKIP_STRUCT ); startCandidates.erase( graphic ); // Output the outline perimeter as polygon. if( graphic->GetShape() == S_CIRCLE ) { TransformCircleToPolygon( aPolygons, graphic->GetCenter(), graphic->GetRadius(), ARC_LOW_DEF, ERROR_INSIDE ); polygonComplete = true; } else if( graphic->GetShape() == S_RECT ) { std::vector pts = graphic->GetRectCorners(); aPolygons.NewOutline(); for( const wxPoint& pt : pts ) aPolygons.Append( pt ); segOwners[ std::make_pair( pts[0], pts[1] ) ] = graphic; segOwners[ std::make_pair( pts[1], pts[2] ) ] = graphic; segOwners[ std::make_pair( pts[2], pts[3] ) ] = graphic; segOwners[ std::make_pair( pts[3], pts[0] ) ] = graphic; polygonComplete = true; } else if( graphic->GetShape() == S_POLYGON ) { double orientation = 0.0; VECTOR2I offset = VECTOR2I( 0, 0 ); if( graphic->GetParentFootprint() ) { orientation = graphic->GetParentFootprint()->GetOrientation(); offset = graphic->GetParentFootprint()->GetPosition(); } aPolygons.NewOutline(); bool first = true; for( auto it = graphic->GetPolyShape().CIterate( 0 ); it; it++ ) { VECTOR2I pt = *it; RotatePoint( pt, orientation ); pt += offset; aPolygons.Append( pt ); if( first ) first = false; else segOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = (wxPoint) pt; } polygonComplete = true; } else { // Polygon start point. Arbitrarily chosen end of the // segment and build the poly from here. wxPoint startPt = graphic->GetShape() == S_ARC ? graphic->GetArcEnd() : graphic->GetEnd(); prevPt = startPt; aPolygons.NewOutline(); aPolygons.Append( prevPt ); // Do not append the other end point yet of this 'graphic', this first // 'graphic' might be an arc or a curve. for(;;) { switch( graphic->GetShape() ) { case S_RECT: case S_CIRCLE: { // As a non-first item, closed shapes can't be anything but self-intersecting if( aErrorHandler ) { wxASSERT( prevGraphic ); (*aErrorHandler)( _( "(self-intersecting)" ), prevGraphic, graphic, prevPt ); } selfIntersecting = true; // A closed shape will finish where it started, so no point in updating prevPt } break; case S_SEGMENT: { wxPoint nextPt; // Use the line segment end point furthest away from prevPt as we assume // the other end to be ON prevPt or very close to it. if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) ) nextPt = graphic->GetEnd(); else nextPt = graphic->GetStart(); aPolygons.Append( nextPt ); segOwners[ std::make_pair( prevPt, nextPt ) ] = graphic; prevPt = nextPt; } break; case S_ARC: { // We do not support arcs in polygons, so approximate an arc with a series of // short lines and put those line segments into the !same! PATH. wxPoint pstart = graphic->GetArcStart(); wxPoint pend = graphic->GetArcEnd(); wxPoint pcenter = graphic->GetCenter(); double angle = -graphic->GetAngle(); double radius = graphic->GetRadius(); int steps = GetArcToSegmentCount( radius, aErrorMax, angle / 10.0 ); if( !close_enough( prevPt, pstart, aChainingEpsilon ) ) { wxASSERT( close_enough( prevPt, graphic->GetArcEnd(), aChainingEpsilon ) ); angle = -angle; std::swap( pstart, pend ); } // Create intermediate points between start and end: for( int step = 1; step < steps; ++step ) { double rotation = ( angle * step ) / steps; wxPoint pt = pstart; RotatePoint( &pt, pcenter, rotation ); aPolygons.Append( pt ); segOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = pt; } // Append the last arc end point aPolygons.Append( pend ); segOwners[ std::make_pair( prevPt, pend ) ] = graphic; prevPt = pend; } break; case S_CURVE: { // We do not support Bezier curves in polygons, so approximate with a series // of short lines and put those line segments into the !same! PATH. wxPoint nextPt; bool first = true; bool reverse = false; // Use the end point furthest away from // prevPt as we assume the other end to be ON prevPt or // very close to it. if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) ) { nextPt = graphic->GetEnd(); } else { nextPt = graphic->GetStart(); reverse = true; } if( reverse ) { for( int jj = graphic->GetBezierPoints().size()-1; jj >= 0; jj-- ) { const wxPoint& pt = graphic->GetBezierPoints()[jj]; aPolygons.Append( pt ); if( first ) first = false; else segOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = pt; } } else { for( const wxPoint& pt : graphic->GetBezierPoints() ) { aPolygons.Append( pt ); if( first ) first = false; else segOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = pt; } } prevPt = nextPt; } break; default: wxFAIL_MSG( "Unsupported PCB_SHAPE type " + BOARD_ITEM::ShowShape( graphic->GetShape() ) ); return false; } // Get next closest segment. PCB_SHAPE* nextGraphic = findNext( graphic, prevPt, aSegList, aChainingEpsilon ); if( nextGraphic && !( nextGraphic->GetFlags() & SKIP_STRUCT ) ) { prevGraphic = graphic; graphic = nextGraphic; graphic->SetFlags( SKIP_STRUCT ); startCandidates.erase( graphic ); continue; } // Finished, or ran into trouble... if( close_enough( startPt, prevPt, aChainingEpsilon ) ) { polygonComplete = true; break; } else if( nextGraphic ) // encountered already-used segment, but not at the start { if( aErrorHandler ) (*aErrorHandler)( _( "(self-intersecting)" ), graphic, nextGraphic, prevPt ); polygonComplete = false; break; } else // encountered discontinuity { if( aErrorHandler ) (*aErrorHandler)( _( "(not a closed shape)" ), graphic, nullptr, prevPt ); polygonComplete = false; break; } } } int holeNum = -1; while( startCandidates.size() ) { int hole = aPolygons.NewHole(); bool firstPt = true; holeNum++; graphic = (PCB_SHAPE*) *startCandidates.begin(); graphic->SetFlags( SKIP_STRUCT ); startCandidates.erase( startCandidates.begin() ); // Both circles and polygons on the edge cuts layer are closed items that // do not connect to other elements, so we process them independently if( graphic->GetShape() == S_POLYGON ) { double orientation = 0.0; VECTOR2I offset = VECTOR2I( 0, 0 ); if( graphic->GetParentFootprint() ) { orientation = graphic->GetParentFootprint()->GetOrientation(); offset = graphic->GetParentFootprint()->GetPosition(); } for( auto it = graphic->GetPolyShape().CIterate(); it; it++ ) { VECTOR2I pt = *it; RotatePoint( pt, orientation ); pt += offset; aPolygons.Append( pt, -1, hole ); if( firstPt ) firstPt = false; else segOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = (wxPoint) pt; } } else if( graphic->GetShape() == S_CIRCLE ) { // make a circle by segments; wxPoint center = graphic->GetCenter(); double angle = 3600.0; wxPoint start = center; int radius = graphic->GetRadius(); int steps = GetArcToSegmentCount( radius, aErrorMax, 360.0 ); wxPoint nextPt; start.x += radius; for( int step = 0; step < steps; ++step ) { double rotation = ( angle * step ) / steps; nextPt = start; RotatePoint( &nextPt.x, &nextPt.y, center.x, center.y, rotation ); aPolygons.Append( nextPt, -1, hole ); if( firstPt ) firstPt = false; else segOwners[ std::make_pair( prevPt, nextPt ) ] = graphic; prevPt = nextPt; } } else if( graphic->GetShape() == S_RECT ) { std::vector pts = graphic->GetRectCorners(); for( const wxPoint& pt : pts ) { aPolygons.Append( pt, -1, hole ); if( firstPt ) firstPt = false; else segOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = (wxPoint) pt; } } else { // Polygon start point. Arbitrarily chosen end of the segment and build the poly // from here. wxPoint startPt( graphic->GetEnd() ); prevPt = graphic->GetEnd(); aPolygons.Append( prevPt, -1, hole ); // do not append the other end point yet, this first 'graphic' might be an arc for(;;) { switch( graphic->GetShape() ) { case S_SEGMENT: { wxPoint nextPt; // Use the line segment end point furthest away from // prevPt as we assume the other end to be ON prevPt or // very close to it. if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) ) nextPt = graphic->GetEnd(); else nextPt = graphic->GetStart(); aPolygons.Append( nextPt, -1, hole ); segOwners[ std::make_pair( prevPt, nextPt ) ] = graphic; prevPt = nextPt; } break; case S_ARC: // We do not support arcs in polygons, so approximate an arc with a series of // short lines and put those line segments into the !same! PATH. { wxPoint pstart = graphic->GetArcStart(); wxPoint pend = graphic->GetArcEnd(); wxPoint pcenter = graphic->GetCenter(); double angle = -graphic->GetAngle(); int radius = graphic->GetRadius(); int steps = GetArcToSegmentCount( radius, aErrorMax, angle / 10.0 ); if( !close_enough( prevPt, pstart, aChainingEpsilon ) ) { wxASSERT( close_enough( prevPt, graphic->GetArcEnd(), aChainingEpsilon ) ); angle = -angle; std::swap( pstart, pend ); } // Create intermediate points between start and end: for( int step = 1; step < steps; ++step ) { double rotation = ( angle * step ) / steps; wxPoint pt = pstart; RotatePoint( &pt, pcenter, rotation ); aPolygons.Append( pt, -1, hole ); segOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = pt; } // Append the last arc end point aPolygons.Append( pend, -1, hole ); segOwners[ std::make_pair( prevPt, pend ) ] = graphic; prevPt = pend; } break; case S_CURVE: // We do not support Bezier curves in polygons, so approximate with a series // of short lines and put those line segments into the !same! PATH. { wxPoint nextPt; bool reverse = false; // Use the end point furthest away from // prevPt as we assume the other end to be ON prevPt or // very close to it. if( closer_to_first( prevPt, graphic->GetStart(), graphic->GetEnd()) ) { nextPt = graphic->GetEnd(); } else { nextPt = graphic->GetStart(); reverse = true; } if( reverse ) { for( int jj = graphic->GetBezierPoints().size()-1; jj >= 0; jj-- ) { const wxPoint& pt = graphic->GetBezierPoints()[jj]; aPolygons.Append( pt, -1, hole ); segOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = pt; } } else { for( const wxPoint& pt : graphic->GetBezierPoints() ) { aPolygons.Append( pt, -1, hole ); segOwners[ std::make_pair( prevPt, pt ) ] = graphic; prevPt = pt; } } prevPt = nextPt; } break; default: wxFAIL_MSG( "Unsupported PCB_SHAPE type " + BOARD_ITEM::ShowShape( graphic->GetShape() ) ); return false; } // Get next closest segment. PCB_SHAPE* nextGraphic = findNext( graphic, prevPt, aSegList, aChainingEpsilon ); if( nextGraphic && !( nextGraphic->GetFlags() & SKIP_STRUCT ) ) { graphic = nextGraphic; graphic->SetFlags( SKIP_STRUCT ); startCandidates.erase( graphic ); continue; } // Finished, or ran into trouble... if( close_enough( startPt, prevPt, aChainingEpsilon ) ) { break; } else if( nextGraphic ) // encountered already-used segment, but not at the start { if( aErrorHandler ) (*aErrorHandler)( _( "(self-intersecting)" ), graphic, nextGraphic, prevPt ); polygonComplete = false; break; } else // encountered discontinuity { if( aErrorHandler ) (*aErrorHandler)( _( "(not a closed shape)" ), graphic, nullptr, prevPt ); polygonComplete = false; break; } } } } if( !polygonComplete ) return false; // All of the silliness that follows is to work around the segment iterator while checking // for collisions. // TODO: Implement proper segment and point iterators that follow std for( auto seg1 = aPolygons.IterateSegmentsWithHoles(); seg1; seg1++ ) { auto seg2 = seg1; for( ++seg2; seg2; seg2++ ) { // Check for exact overlapping segments. if( *seg1 == *seg2 || ( ( *seg1 ).A == ( *seg2 ).B && ( *seg1 ).B == ( *seg2 ).A ) ) { if( aErrorHandler ) { BOARD_ITEM* a = fetchOwner( *seg1 ); BOARD_ITEM* b = fetchOwner( *seg2 ); if( a && b ) (*aErrorHandler)( _( "(self-intersecting)" ), a, b, (wxPoint) ( *seg1 ).A ); } selfIntersecting = true; } if( boost::optional pt = seg1.Get().Intersect( seg2.Get(), true ) ) { if( aErrorHandler ) { BOARD_ITEM* a = fetchOwner( *seg1 ); BOARD_ITEM* b = fetchOwner( *seg2 ); if( a && b ) (*aErrorHandler)( _( "(self-intersecting)" ), a, b, (wxPoint) pt.get() ); } selfIntersecting = true; } } } return !selfIntersecting; } #include #include /* This function is used to extract a board outlines (3D view, automatic zones build ...) * Any closed outline inside the main outline is a hole * All contours should be closed, i.e. valid closed polygon vertices */ bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aErrorMax, int aChainingEpsilon, OUTLINE_ERROR_HANDLER* aErrorHandler ) { PCB_TYPE_COLLECTOR items; bool success = false; // Get all the PCB and FP shapes into 'items', then keep only those on layer == Edge_Cuts. static const KICAD_T scan_graphics[] = { PCB_SHAPE_T, PCB_FP_SHAPE_T, EOT }; items.Collect( aBoard, scan_graphics ); // Make a working copy of aSegList, because the list is modified during calculations std::vector segList; for( int ii = 0; ii < items.GetCount(); ii++ ) { if( items[ii]->GetLayer() == Edge_Cuts ) segList.push_back( static_cast( items[ii] ) ); } if( segList.size() ) { success = ConvertOutlineToPolygon( segList, aOutlines, aErrorMax, aChainingEpsilon, aErrorHandler ); } if( !success || !aOutlines.OutlineCount() ) { // Couldn't create a valid polygon outline. Use the board edge cuts bounding box to // create a rectangular outline, or, failing that, the bounding box of the items on // the board. EDA_RECT bbbox = aBoard->GetBoardEdgesBoundingBox(); // If null area, uses the global bounding box. if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) ) bbbox = aBoard->ComputeBoundingBox(); // Ensure non null area. If happen, gives a minimal size. if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) ) bbbox.Inflate( Millimeter2iu( 1.0 ) ); aOutlines.RemoveAllContours(); aOutlines.NewOutline(); wxPoint corner; aOutlines.Append( bbbox.GetOrigin() ); corner.x = bbbox.GetOrigin().x; corner.y = bbbox.GetEnd().y; aOutlines.Append( corner ); aOutlines.Append( bbbox.GetEnd() ); corner.x = bbbox.GetEnd().x; corner.y = bbbox.GetOrigin().y; aOutlines.Append( corner ); } return success; } /** * Get the complete bounding box of the board (including all items). * * The vertex numbers and segment numbers of the rectangle returned. * 1 * *---------------* * |1 2| * 0| |2 * |0 3| * *---------------* * 3 */ void buildBoardBoundingBoxPoly( const BOARD* aBoard, SHAPE_POLY_SET& aOutline ) { EDA_RECT bbbox = aBoard->GetBoundingBox(); SHAPE_LINE_CHAIN chain; // If null area, uses the global bounding box. if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) ) bbbox = aBoard->ComputeBoundingBox(); // Ensure non null area. If happen, gives a minimal size. if( ( bbbox.GetWidth() ) == 0 || ( bbbox.GetHeight() == 0 ) ) bbbox.Inflate( Millimeter2iu( 1.0 ) ); // Inflate slightly (by 1/10th the size of the box) bbbox.Inflate( bbbox.GetWidth() / 10, bbbox.GetHeight() / 10 ); chain.Append( bbbox.GetOrigin() ); chain.Append( bbbox.GetOrigin().x, bbbox.GetEnd().y ); chain.Append( bbbox.GetEnd() ); chain.Append( bbbox.GetEnd().x, bbbox.GetOrigin().y ); chain.SetClosed( true ); aOutline.RemoveAllContours(); aOutline.AddOutline( chain ); } bool isCopperOutside( const FOOTPRINT* aMod, SHAPE_POLY_SET& aShape ) { bool padOutside = false; for( PAD* pad : aMod->Pads() ) { SHAPE_POLY_SET poly = aShape; poly.BooleanIntersection( *pad->GetEffectivePolygon(), SHAPE_POLY_SET::PM_FAST ); if( poly.OutlineCount() == 0 ) { wxPoint padPos = pad->GetPosition(); wxLogTrace( traceBoardOutline, "Tested pad (%d, %d): outside", padPos.x, padPos.y ); padOutside = true; break; } wxPoint padPos = pad->GetPosition(); wxLogTrace( traceBoardOutline, "Tested pad (%d, %d): not outside", padPos.x, padPos.y ); } return padOutside; } VECTOR2I projectPointOnSegment( const VECTOR2I& aEndPoint, const SHAPE_POLY_SET& aOutline, int aOutlineNum = 0 ) { int minDistance = -1; VECTOR2I projPoint; for( auto it = aOutline.CIterateSegments( aOutlineNum ); it; it++ ) { auto seg = it.Get(); int dis = seg.Distance( aEndPoint ); if( minDistance < 0 || ( dis < minDistance ) ) { minDistance = dis; projPoint = seg.NearestPoint( aEndPoint ); } } return projPoint; } int findEndSegments( SHAPE_LINE_CHAIN& aChain, SEG& aStartSeg, SEG& aEndSeg ) { int foundSegs = 0; for( int i = 0; i < aChain.SegmentCount(); i++ ) { SEG seg = aChain.Segment( i ); bool foundA = false; bool foundB = false; for( int j = 0; j < aChain.SegmentCount(); j++ ) { // Don't test the segment against itself if( i == j ) continue; SEG testSeg = aChain.Segment( j ); if( testSeg.Contains( seg.A ) ) foundA = true; if( testSeg.Contains( seg.B ) ) foundB = true; } // This segment isn't a start or end if( foundA && foundB ) continue; if( foundSegs == 0 ) { // The first segment we encounter is the "start" segment wxLogTrace( traceBoardOutline, "Found start segment: (%d, %d)-(%d, %d)", seg.A.x, seg.A.y, seg.B.x, seg.B.y ); aStartSeg = seg; foundSegs++; } else { // Once we find both start and end, we can stop wxLogTrace( traceBoardOutline, "Found end segment: (%d, %d)-(%d, %d)", seg.A.x, seg.A.y, seg.B.x, seg.B.y ); aEndSeg = seg; foundSegs++; break; } } return foundSegs; } /** * This function is used to extract a board outline for a footprint view. * * Notes: * * Incomplete outlines will be closed by joining the end of the outline onto the bounding box * (by simply projecting the end points) and then take the area that contains the copper. * * If all copper lies inside a closed outline, than that outline will be treated as an external * board outline. * * If copper is located outside a closed outline, then that outline will be treated as a hole, * and the outer edge will be formed using the bounding box. */ bool BuildFootprintPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines, int aErrorMax, int aChainingEpsilon, OUTLINE_ERROR_HANDLER* aErrorHandler ) { FOOTPRINT* footprint = aBoard->GetFirstFootprint(); // No footprint loaded if( !footprint ) { wxLogTrace( traceBoardOutline, "No footprint found on board" ); return false; } PCB_TYPE_COLLECTOR items; SHAPE_POLY_SET outlines; bool success = false; // Get all the SHAPEs into 'items', then keep only those on layer == Edge_Cuts. static const KICAD_T scan_graphics[] = { PCB_SHAPE_T, PCB_FP_SHAPE_T, EOT }; items.Collect( aBoard, scan_graphics ); // Make a working copy of aSegList, because the list is modified during calculations std::vector segList; for( int ii = 0; ii < items.GetCount(); ii++ ) { if( items[ii]->GetLayer() == Edge_Cuts ) segList.push_back( static_cast( items[ii] ) ); } if( !segList.empty() ) { success = ConvertOutlineToPolygon( segList, outlines, aErrorMax, aChainingEpsilon, aErrorHandler ); } // A closed outline was found on Edge_Cuts if( success ) { wxLogTrace( traceBoardOutline, "Closed outline found" ); // If copper is outside a closed polygon, treat it as a hole if( isCopperOutside( footprint, outlines ) ) { wxLogTrace( traceBoardOutline, "Treating outline as a hole" ); buildBoardBoundingBoxPoly( aBoard, aOutlines ); // Copy all outlines from the conversion as holes into the new outline for( int i = 0; i < outlines.OutlineCount(); i++ ) { SHAPE_LINE_CHAIN& out = outlines.Outline( i ); if( out.IsClosed() ) aOutlines.AddHole( out, -1 ); for( int j = 0; j < outlines.HoleCount( i ); j++ ) { SHAPE_LINE_CHAIN& hole = outlines.Hole( i, j ); if( hole.IsClosed() ) aOutlines.AddHole( hole, -1 ); } } } // If all copper is inside, then the computed outline is the board outline else { wxLogTrace( traceBoardOutline, "Treating outline as board edge" ); aOutlines = outlines; } return true; } // No board outlines were found, so use the bounding box else if( outlines.OutlineCount() == 0 ) { wxLogTrace( traceBoardOutline, "Using footprint bounding box" ); buildBoardBoundingBoxPoly( aBoard, aOutlines ); return true; } // There is an outline present, but it is not closed else { wxLogTrace( traceBoardOutline, "Trying to build outline" ); std::vector closedChains; std::vector openChains; // The ConvertOutlineToPolygon function returns only one main outline and the rest as // holes, so we promote the holes and process them openChains.push_back( outlines.Outline( 0 ) ); for( int j = 0; j < outlines.HoleCount( 0 ); j++ ) { SHAPE_LINE_CHAIN hole = outlines.Hole( 0, j ); if( hole.IsClosed() ) { wxLogTrace( traceBoardOutline, "Found closed hole" ); closedChains.push_back( hole ); } else { wxLogTrace( traceBoardOutline, "Found open hole" ); openChains.push_back( hole ); } } SHAPE_POLY_SET bbox; buildBoardBoundingBoxPoly( aBoard, bbox ); // Treat the open polys as the board edge SHAPE_LINE_CHAIN chain = openChains[0]; SHAPE_LINE_CHAIN rect = bbox.Outline( 0 ); // We know the outline chain is open, so set to non-closed to get better segment count chain.SetClosed( false ); SEG startSeg; SEG endSeg; // The two possible board outlines SHAPE_LINE_CHAIN upper; SHAPE_LINE_CHAIN lower; findEndSegments( chain, startSeg, endSeg ); if( chain.SegmentCount() == 0 ) { // Something is wrong, bail out with the overall footprint bounding box wxLogTrace( traceBoardOutline, "No line segments in provided outline" ); aOutlines = bbox; return true; } else if( chain.SegmentCount() == 1 ) { // This case means there is only 1 line segment making up the edge cuts of the // footprint, so we just need to use it to cut the bounding box in half. wxLogTrace( traceBoardOutline, "Only 1 line segment in provided outline" ); startSeg = chain.Segment( 0 ); // Intersect with all the sides of the rectangle OPT_VECTOR2I inter0 = startSeg.IntersectLines( rect.Segment( 0 ) ); OPT_VECTOR2I inter1 = startSeg.IntersectLines( rect.Segment( 1 ) ); OPT_VECTOR2I inter2 = startSeg.IntersectLines( rect.Segment( 2 ) ); OPT_VECTOR2I inter3 = startSeg.IntersectLines( rect.Segment( 3 ) ); if( inter0 && inter2 && !inter1 && !inter3 ) { // Intersects the vertical rectangle sides only wxLogTrace( traceBoardOutline, "Segment intersects only vertical bbox sides" ); // The upper half upper.Append( *inter0 ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( rect.GetPoint( 2 ) ); upper.Append( *inter2 ); upper.SetClosed( true ); // The lower half lower.Append( *inter0 ); lower.Append( rect.GetPoint( 0 ) ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( *inter2 ); lower.SetClosed( true ); } else if( inter1 && inter3 && !inter0 && !inter2 ) { // Intersects the horizontal rectangle sides only wxLogTrace( traceBoardOutline, "Segment intersects only horizontal bbox sides" ); // The left half upper.Append( *inter1 ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( rect.GetPoint( 0 ) ); upper.Append( *inter3 ); upper.SetClosed( true ); // The right half lower.Append( *inter1 ); lower.Append( rect.GetPoint( 2 ) ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( *inter3 ); lower.SetClosed( true ); } else { // Angled line segment that cuts across a corner wxLogTrace( traceBoardOutline, "Segment intersects two perpendicular bbox sides" ); // Figure out which actual lines are intersected, since IntersectLines assumes // an infinite line bool hit0 = rect.Segment( 0 ).Contains( *inter0 ); bool hit1 = rect.Segment( 1 ).Contains( *inter1 ); bool hit2 = rect.Segment( 2 ).Contains( *inter2 ); bool hit3 = rect.Segment( 3 ).Contains( *inter3 ); if( hit0 && hit1 ) { // Cut across the upper left corner wxLogTrace( traceBoardOutline, "Segment cuts upper left corner" ); // The upper half upper.Append( *inter0 ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( *inter1 ); upper.SetClosed( true ); // The lower half lower.Append( *inter0 ); lower.Append( rect.GetPoint( 0 ) ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( rect.GetPoint( 2 ) ); lower.Append( *inter1 ); lower.SetClosed( true ); } else if( hit1 && hit2 ) { // Cut across the upper right corner wxLogTrace( traceBoardOutline, "Segment cuts upper right corner" ); // The upper half upper.Append( *inter1 ); upper.Append( rect.GetPoint( 2 ) ); upper.Append( *inter2 ); upper.SetClosed( true ); // The lower half lower.Append( *inter1 ); lower.Append( rect.GetPoint( 1 ) ); lower.Append( rect.GetPoint( 0 ) ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( *inter2 ); lower.SetClosed( true ); } else if( hit2 && hit3 ) { // Cut across the lower right corner wxLogTrace( traceBoardOutline, "Segment cuts lower right corner" ); // The upper half upper.Append( *inter2 ); upper.Append( rect.GetPoint( 2 ) ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( rect.GetPoint( 0 ) ); upper.Append( *inter3 ); upper.SetClosed( true ); // The bottom half lower.Append( *inter2 ); lower.Append( rect.GetPoint( 3 ) ); lower.Append( *inter3 ); lower.SetClosed( true ); } else { // Cut across the lower left corner wxLogTrace( traceBoardOutline, "Segment cuts upper left corner" ); // The upper half upper.Append( *inter0 ); upper.Append( rect.GetPoint( 1 ) ); upper.Append( rect.GetPoint( 2 ) ); upper.Append( rect.GetPoint( 3 ) ); upper.Append( *inter3 ); upper.SetClosed( true ); // The bottom half lower.Append( *inter0 ); lower.Append( rect.GetPoint( 0 ) ); lower.Append( *inter3 ); lower.SetClosed( true ); } } } else { // More than 1 segment wxLogTrace( traceBoardOutline, "Multiple segments in outline" ); // Just a temporary thing aOutlines = bbox; return true; } // Figure out which is the correct outline SHAPE_POLY_SET poly1; SHAPE_POLY_SET poly2; poly1.NewOutline(); poly1.Append( upper ); poly2.NewOutline(); poly2.Append( lower ); if( isCopperOutside( footprint, poly1 ) ) { wxLogTrace( traceBoardOutline, "Using lower shape" ); aOutlines = poly2; } else { wxLogTrace( traceBoardOutline, "Using upper shape" ); aOutlines = poly1; } // Add all closed polys as holes to the main outline for( SHAPE_LINE_CHAIN& closedChain : closedChains ) { wxLogTrace( traceBoardOutline, "Adding hole to main outline" ); aOutlines.AddHole( closedChain, -1 ); } return true; } // We really shouldn't reach this point return false; }