/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2015 Jean-Pierre Charras, jp.charras at wanadoo.fr * Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck * Copyright (C) 2015 Wayne Stambaugh * Copyright (C) 1992-2015 KiCad Developers, see AUTHORS.txt for contributors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /** * @file muonde.cpp * @brief Microwave pcb layout code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static std::vector< wxRealPoint > PolyEdges; static double ShapeScaleX, ShapeScaleY; static wxSize ShapeSize; static int PolyShapeType; static void Exit_Self( EDA_DRAW_PANEL* aPanel, wxDC* aDC ); static void gen_arc( std::vector & aBuffer, wxPoint aStartPoint, wxPoint aCenter, int a_ArcAngle ); static void ShowBoundingBoxMicroWaveInductor( EDA_DRAW_PANEL* aPanel, wxDC* aDC, const wxPoint& aPosition, bool aErase ); static int BuildCornersList_S_Shape( std::vector & aBuffer, wxPoint aStartPoint, wxPoint aEndPoint, int aLength, int aWidth ); /** * Creates a self-shaped coil for microwave applications. */ static MODULE* CreateMicrowaveInductor( PCB_EDIT_FRAME* aPcbFrame, wxString& aErrorMessage ); class MUWAVE_INDUCTOR { public: wxPoint m_Start; wxPoint m_End; wxSize m_Size; int m_length; // full length trace. int m_Width; // Trace width. // A flag set to true when mu-wave inductor is being created bool m_Flag; }; // An instance of MUWAVE_INDUCTOR temporary used during mu-wave inductor creation static MUWAVE_INDUCTOR s_inductor_pattern; /* This function shows on screen the bounding box of the inductor that will be * created at the end of the build inductor process */ static void ShowBoundingBoxMicroWaveInductor( EDA_DRAW_PANEL* aPanel, wxDC* aDC, const wxPoint& aPosition, bool aErase ) { /* Calculate the orientation and size of the box containing the inductor: * the box is a rectangle with height = length/2 * the shape is defined by a rectangle, nor necessary horizontal or vertical */ GRSetDrawMode( aDC, GR_XOR ); wxPoint poly[5]; wxPoint pt = s_inductor_pattern.m_End - s_inductor_pattern.m_Start; double angle = -ArcTangente( pt.y, pt.x ); int len = KiROUND( EuclideanNorm( pt ) ); // calculate corners pt.x = 0; pt.y = len / 4; RotatePoint( &pt, angle ); poly[0] = s_inductor_pattern.m_Start + pt; poly[1] = s_inductor_pattern.m_End + pt; pt.x = 0; pt.y = -len / 4; RotatePoint( &pt, angle ); poly[2] = s_inductor_pattern.m_End + pt; poly[3] = s_inductor_pattern.m_Start + pt; poly[4] = poly[0]; if( aErase ) { GRPoly( aPanel->GetClipBox(), aDC, 5, poly, false, 0, YELLOW, YELLOW ); } s_inductor_pattern.m_End = aPanel->GetParent()->GetCrossHairPosition(); pt = s_inductor_pattern.m_End - s_inductor_pattern.m_Start; angle = -ArcTangente( pt.y, pt.x ); len = KiROUND( EuclideanNorm( pt ) ); // calculate new corners pt.x = 0; pt.y = len / 4; RotatePoint( &pt, angle ); poly[0] = s_inductor_pattern.m_Start + pt; poly[1] = s_inductor_pattern.m_End + pt; pt.x = 0; pt.y = -len / 4; RotatePoint( &pt, angle ); poly[2] = s_inductor_pattern.m_End + pt; poly[3] = s_inductor_pattern.m_Start + pt; poly[4] = poly[0]; GRPoly( aPanel->GetClipBox(), aDC, 5, poly, false, 0, YELLOW, YELLOW ); } void Exit_Self( EDA_DRAW_PANEL* aPanel, wxDC* aDC ) { if( aPanel->IsMouseCaptured() ) aPanel->CallMouseCapture( aDC, wxDefaultPosition, false ); s_inductor_pattern.m_Flag = false; aPanel->SetMouseCapture( NULL, NULL ); } void PCB_EDIT_FRAME::Begin_Self( wxDC* DC ) { if( s_inductor_pattern.m_Flag ) { m_canvas->CallMouseCapture( DC, wxDefaultPosition, false ); m_canvas->SetMouseCapture( NULL, NULL ); wxString errorMessage; // Prepare parameters for inductor // s_inductor_pattern.m_Start is already initialized, // when s_inductor_pattern.m_Flag == false s_inductor_pattern.m_Width = GetDesignSettings().GetCurrentTrackWidth(); s_inductor_pattern.m_End = GetCrossHairPosition(); MODULE* footprint = CreateMicrowaveInductor( this, errorMessage ); if( footprint ) { SetMsgPanel( footprint ); footprint->Draw( m_canvas, DC, GR_OR ); } else if( !errorMessage.IsEmpty() ) DisplayError( this, errorMessage ); return; } s_inductor_pattern.m_Start = GetCrossHairPosition(); s_inductor_pattern.m_End = s_inductor_pattern.m_Start; s_inductor_pattern.m_Flag = true; // Update the initial coordinates. GetScreen()->m_O_Curseur = GetCrossHairPosition(); UpdateStatusBar(); m_canvas->SetMouseCapture( ShowBoundingBoxMicroWaveInductor, Exit_Self ); m_canvas->CallMouseCapture( DC, wxDefaultPosition, false ); } MODULE* CreateMicrowaveInductor( PCB_EDIT_FRAME* aPcbFrame, wxString& aErrorMessage ) { /* Build a microwave inductor footprint. * - Length Mself.lng * - Extremities Mself.m_Start and Mself.m_End * We must determine: * Mself.nbrin = number of segments perpendicular to the direction * (The coil nbrin will demicercles + 1 + 2 1 / 4 circle) * Mself.lbrin = length of a strand * Mself.radius = radius of rounded parts of the coil * Mself.delta = segments extremities connection between him and the coil even * * The equations are * Mself.m_Size.x = 2 * Mself.radius + Mself.lbrin * Mself.m_Size.y * Mself.delta = 2 + 2 * Mself.nbrin * Mself.radius * Mself.lng = 2 * Mself.delta / / connections to the coil + (Mself.nbrin-2) * Mself.lbrin / / length of the strands except 1st and last + (Mself.nbrin 1) * (PI * Mself.radius) / / length of rounded * Mself.lbrin + / 2 - Melf.radius * 2) / / length of 1st and last bit * * The constraints are: * Nbrin >= 2 * Mself.radius < Mself.m_Size.x * Mself.m_Size.y = Mself.radius * 4 + 2 * Mself.raccord * Mself.lbrin> Mself.radius * 2 * * The calculation is conducted in the following way: * Initially: * Nbrin = 2 * Radius = 4 * m_Size.x (arbitrarily fixed value) * Then: * Increasing the number of segments to the desired length * (Radius decreases if necessary) */ D_PAD* pad; int ll; wxString msg; wxASSERT( s_inductor_pattern.m_Flag ); s_inductor_pattern.m_Flag = false; wxPoint pt = s_inductor_pattern.m_End - s_inductor_pattern.m_Start; int min_len = KiROUND( EuclideanNorm( pt ) ); s_inductor_pattern.m_length = min_len; // Enter the desired length. msg = StringFromValue( g_UserUnit, s_inductor_pattern.m_length ); wxTextEntryDialog dlg( NULL, wxEmptyString, _( "Length of Trace:" ), msg ); if( dlg.ShowModal() != wxID_OK ) return NULL; // canceled by user msg = dlg.GetValue(); s_inductor_pattern.m_length = ValueFromString( g_UserUnit, msg ); // Control values (ii = minimum length) if( s_inductor_pattern.m_length < min_len ) { aErrorMessage = _( "Requested length < minimum length" ); return NULL; } // Calculate the elements. std::vector buffer; ll = BuildCornersList_S_Shape( buffer, s_inductor_pattern.m_Start, s_inductor_pattern.m_End, s_inductor_pattern.m_length, s_inductor_pattern.m_Width ); if( !ll ) { aErrorMessage = _( "Requested length too large" ); return NULL; } // Generate footprint. the value is also used as footprint name. msg.Empty(); wxTextEntryDialog cmpdlg( NULL, wxEmptyString, _( "Component Value:" ), msg ); cmpdlg.SetTextValidator( FILE_NAME_CHAR_VALIDATOR( &msg ) ); if( ( cmpdlg.ShowModal() != wxID_OK ) || msg.IsEmpty() ) return NULL; // Aborted by user MODULE* module = aPcbFrame->CreateNewModule( msg ); // here the module is already in the BOARD, CreateNewModule() does that. module->SetFPID( FPID( std::string( "mw_inductor" ) ) ); module->SetAttributes( MOD_VIRTUAL | MOD_CMS ); module->ClearFlags(); module->SetPosition( s_inductor_pattern.m_End ); // Generate segments for( unsigned jj = 1; jj < buffer.size(); jj++ ) { EDGE_MODULE* PtSegm; PtSegm = new EDGE_MODULE( module ); PtSegm->SetStart( buffer[jj - 1] ); PtSegm->SetEnd( buffer[jj] ); PtSegm->SetWidth( s_inductor_pattern.m_Width ); PtSegm->SetLayer( module->GetLayer() ); PtSegm->SetShape( S_SEGMENT ); PtSegm->SetStart0( PtSegm->GetStart() - module->GetPosition() ); PtSegm->SetEnd0( PtSegm->GetEnd() - module->GetPosition() ); module->GraphicalItems().PushBack( PtSegm ); } // Place a pad on each end of coil. pad = new D_PAD( module ); module->Pads().PushFront( pad ); pad->SetPadName( wxT( "1" ) ); pad->SetPosition( s_inductor_pattern.m_End ); pad->SetPos0( pad->GetPosition() - module->GetPosition() ); pad->SetSize( wxSize( s_inductor_pattern.m_Width, s_inductor_pattern.m_Width ) ); pad->SetLayerSet( LSET( module->GetLayer() ) ); pad->SetAttribute( PAD_ATTRIB_SMD ); pad->SetShape( PAD_SHAPE_CIRCLE ); D_PAD* newpad = new D_PAD( *pad ); module->Pads().Insert( newpad, pad->Next() ); pad = newpad; pad->SetPadName( wxT( "2" ) ); pad->SetPosition( s_inductor_pattern.m_Start ); pad->SetPos0( pad->GetPosition() - module->GetPosition() ); // Modify text positions. wxPoint refPos( ( s_inductor_pattern.m_Start.x + s_inductor_pattern.m_End.x ) / 2, ( s_inductor_pattern.m_Start.y + s_inductor_pattern.m_End.y ) / 2 ); wxPoint valPos = refPos; refPos.y -= module->Reference().GetSize().y; module->Reference().SetPosition( refPos ); valPos.y += module->Value().GetSize().y; module->Value().SetPosition( valPos ); module->CalculateBoundingBox(); return module; } /** * Function gen_arc * generates an arc using arc approximation by lines: * Center aCenter * Angle "angle" (in 0.1 deg) * @param aBuffer = a buffer to store points. * @param aStartPoint = starting point of arc. * @param aCenter = arc centre. * @param a_ArcAngle = arc length in 0.1 degrees. */ static void gen_arc( std::vector & aBuffer, wxPoint aStartPoint, wxPoint aCenter, int a_ArcAngle ) { #define SEGM_COUNT_PER_360DEG 16 wxPoint first_point = aStartPoint - aCenter; int seg_count = ( ( abs( a_ArcAngle ) ) * SEGM_COUNT_PER_360DEG ) / 3600; if( seg_count == 0 ) seg_count = 1; double increment_angle = (double) a_ArcAngle * M_PI / 1800 / seg_count; // Creates nb_seg point to approximate arc by segments: for( int ii = 1; ii <= seg_count; ii++ ) { double rot_angle = increment_angle * ii; double fcos = cos( rot_angle ); double fsin = sin( rot_angle ); wxPoint currpt; // Rotate current point: currpt.x = KiROUND( ( first_point.x * fcos + first_point.y * fsin ) ); currpt.y = KiROUND( ( first_point.y * fcos - first_point.x * fsin ) ); wxPoint corner = aCenter + currpt; aBuffer.push_back( corner ); } } /** * Function BuildCornersList_S_Shape * Create a path like a S-shaped coil * @param aBuffer = a buffer where to store points (ends of segments) * @param aStartPoint = starting point of the path * @param aEndPoint = ending point of the path * @param aLength = full length of the path * @param aWidth = segment width */ int BuildCornersList_S_Shape( std::vector & aBuffer, wxPoint aStartPoint, wxPoint aEndPoint, int aLength, int aWidth ) { /* We must determine: * segm_count = number of segments perpendicular to the direction * segm_len = length of a strand * radius = radius of rounded parts of the coil * stubs_len = length of the 2 stubs( segments parallel to the direction) * connecting the start point to the start point of the S shape * and the ending point to the end point of the S shape * The equations are (assuming the area size of the entire shape is Size: * Size.x = 2 * radius + segm_len * Size.y = (segm_count + 2 ) * 2 * radius + 2 * stubs_len * s_inductor_pattern.m_length = 2 * delta // connections to the coil * + (segm_count-2) * segm_len // length of the strands except 1st and last * + (segm_count) * (PI * radius) // length of rounded * segm_len + / 2 - radius * 2) // length of 1st and last bit * * The constraints are: * segm_count >= 2 * radius < m_Size.x * Size.y = (radius * 4) + (2 * stubs_len) * segm_len > radius * 2 * * The calculation is conducted in the following way: * first: * segm_count = 2 * radius = 4 * Size.x (arbitrarily fixed value) * Then: * Increasing the number of segments to the desired length * (radius decreases if necessary) */ wxSize size; // This scale factor adjusts the arc length to handle // the arc to segment approximation. // because we use SEGM_COUNT_PER_360DEG segment to approximate a circle, // the trace len must be corrected when calculated using arcs // this factor adjust calculations and must be changed if SEGM_COUNT_PER_360DEG is modified // because trace using segment is shorter the corresponding arc // ADJUST_SIZE is the ratio between tline len and the arc len for an arc // of 360/ADJUST_SIZE angle #define ADJUST_SIZE 0.988 wxPoint pt = aEndPoint - aStartPoint; double angle = -ArcTangente( pt.y, pt.x ); int min_len = KiROUND( EuclideanNorm( pt ) ); int segm_len = 0; // length of segments int full_len; // full len of shape (sum of length of all segments + arcs) /* Note: calculations are made for a vertical coil (more easy calculations) * and after points are rotated to their actual position * So the main direction is the Y axis. * the 2 stubs are on the Y axis * the others segments are parallel to the X axis. */ // Calculate the size of area (for a vertical shape) size.x = min_len / 2; size.y = min_len; // Choose a reasonable starting value for the radius of the arcs. int radius = std::min( aWidth * 5, size.x / 4 ); int segm_count; // number of full len segments // the half size segments (first and last segment) are not counted here int stubs_len = 0; // length of first or last segment (half size of others segments) for( segm_count = 0; ; segm_count++ ) { stubs_len = ( size.y - ( radius * 2 * (segm_count + 2 ) ) ) / 2; if( stubs_len < size.y / 10 ) // Reduce radius. { stubs_len = size.y / 10; radius = ( size.y - (2 * stubs_len) ) / ( 2 * (segm_count + 2) ); if( radius < aWidth ) // Radius too small. { // Unable to create line: Requested length value is too large for room return 0; } } segm_len = size.x - ( radius * 2 ); full_len = 2 * stubs_len; // Length of coil connections. full_len += segm_len * segm_count; // Length of full length segments. full_len += KiROUND( ( segm_count + 2 ) * M_PI * ADJUST_SIZE * radius ); // Ard arcs len full_len += segm_len - (2 * radius); // Length of first and last segments // (half size segments len = segm_len/2 - radius). if( full_len >= aLength ) break; } // Adjust len by adjusting segm_len: int delta_size = full_len - aLength; // reduce len of the segm_count segments + 2 half size segments (= 1 full size segment) segm_len -= delta_size / (segm_count + 1); // Generate first line (the first stub) and first arc (90 deg arc) pt = aStartPoint; aBuffer.push_back( pt ); pt.y += stubs_len; aBuffer.push_back( pt ); wxPoint centre = pt; centre.x -= radius; gen_arc( aBuffer, pt, centre, -900 ); pt = aBuffer.back(); int half_size_seg_len = segm_len / 2 - radius; if( half_size_seg_len ) { pt.x -= half_size_seg_len; aBuffer.push_back( pt ); } // Create shape. int ii; int sign = 1; segm_count += 1; // increase segm_count to create the last half_size segment for( ii = 0; ii < segm_count; ii++ ) { int arc_angle; if( ii & 1 ) // odd order arcs are greater than 0 sign = -1; else sign = 1; arc_angle = 1800 * sign; centre = pt; centre.y += radius; gen_arc( aBuffer, pt, centre, arc_angle ); pt = aBuffer.back(); pt.x += segm_len * sign; aBuffer.push_back( pt ); } // The last point is false: // it is the end of a full size segment, but must be // the end of the second half_size segment. Change it. sign *= -1; aBuffer.back().x = aStartPoint.x + radius * sign; // create last arc pt = aBuffer.back(); centre = pt; centre.y += radius; gen_arc( aBuffer, pt, centre, 900 * sign ); aBuffer.back(); // Rotate point angle += 900; for( unsigned jj = 0; jj < aBuffer.size(); jj++ ) { RotatePoint( &aBuffer[jj].x, &aBuffer[jj].y, aStartPoint.x, aStartPoint.y, angle ); } // push last point (end point) aBuffer.push_back( aEndPoint ); return 1; } MODULE* PCB_EDIT_FRAME::CreateMuWaveBaseFootprint( const wxString& aValue, int aTextSize, int aPadCount ) { MODULE* module = CreateNewModule( aValue ); if( aTextSize > 0 ) { module->Reference().SetSize( wxSize( aTextSize, aTextSize ) ); module->Reference().SetThickness( aTextSize/5 ); module->Value().SetSize( wxSize( aTextSize, aTextSize ) ); module->Value().SetThickness( aTextSize/5 ); } // Create 2 pads used in gaps and stubs. The gap is between these 2 pads // the stub is the pad 2 wxString Line; int pad_num = 1; while( aPadCount-- ) { D_PAD* pad = new D_PAD( module ); module->Pads().PushFront( pad ); int tw = GetDesignSettings().GetCurrentTrackWidth(); pad->SetSize( wxSize( tw, tw ) ); pad->SetPosition( module->GetPosition() ); pad->SetShape( PAD_SHAPE_RECT ); pad->SetAttribute( PAD_ATTRIB_SMD ); pad->SetLayerSet( F_Cu ); Line.Printf( wxT( "%d" ), pad_num ); pad->SetPadName( Line ); pad_num++; } return module; } MODULE* PCB_EDIT_FRAME::Create_MuWaveComponent( int shape_type ) { int oX; D_PAD* pad; MODULE* module; wxString msg, cmp_name; int pad_count = 2; int angle = 0; // Ref and value text size (O = use board default value. // will be set to a value depending on the footprint size, if possible int text_size = 0; // Enter the size of the gap or stub int gap_size = GetDesignSettings().GetCurrentTrackWidth(); switch( shape_type ) { case 0: msg = _( "Gap" ); cmp_name = wxT( "muwave_gap" ); text_size = gap_size; break; case 1: msg = _( "Stub" ); cmp_name = wxT( "muwave_stub" ); text_size = gap_size; pad_count = 2; break; case 2: msg = _( "Arc Stub" ); cmp_name = wxT( "muwave_arcstub" ); pad_count = 1; break; default: msg = wxT( "???" ); break; } wxString value = StringFromValue( g_UserUnit, gap_size ); wxTextEntryDialog dlg( this, msg, _( "Create microwave module" ), value ); if( dlg.ShowModal() != wxID_OK ) { m_canvas->MoveCursorToCrossHair(); return NULL; // cancelled by user } value = dlg.GetValue(); gap_size = ValueFromString( g_UserUnit, value ); bool abort = false; if( shape_type == 2 ) { double fcoeff = 10.0, fval; msg.Printf( wxT( "%3.1f" ), angle / fcoeff ); wxTextEntryDialog angledlg( this, _( "Angle in degrees:" ), _( "Create microwave module" ), msg ); if( angledlg.ShowModal() != wxID_OK ) { m_canvas->MoveCursorToCrossHair(); return NULL; // cancelled by user } msg = angledlg.GetValue(); if( !msg.ToDouble( &fval ) ) { DisplayError( this, _( "Incorrect number, abort" ) ); abort = true; } angle = std::abs( KiROUND( fval * fcoeff ) ); if( angle > 1800 ) angle = 1800; } if( abort ) { m_canvas->MoveCursorToCrossHair(); return NULL; } module = CreateMuWaveBaseFootprint( cmp_name, text_size, pad_count ); pad = module->Pads(); switch( shape_type ) { case 0: //Gap : oX = -( gap_size + pad->GetSize().x ) / 2; pad->SetX0( oX ); pad->SetX( pad->GetPos0().x + pad->GetPosition().x ); pad = pad->Next(); pad->SetX0( oX + gap_size + pad->GetSize().x ); pad->SetX( pad->GetPos0().x + pad->GetPosition().x ); break; case 1: //Stub : pad->SetPadName( wxT( "1" ) ); pad = pad->Next(); pad->SetY0( -( gap_size + pad->GetSize().y ) / 2 ); pad->SetSize( wxSize( pad->GetSize().x, gap_size ) ); pad->SetY( pad->GetPos0().y + pad->GetPosition().y ); break; case 2: // Arc Stub created by a polygonal approach: { EDGE_MODULE* edge = new EDGE_MODULE( module ); module->GraphicalItems().PushFront( edge ); edge->SetShape( S_POLYGON ); edge->SetLayer( F_Cu ); int numPoints = (angle / 50) + 3; // Note: angles are in 0.1 degrees std::vector& polyPoints = edge->GetPolyPoints(); polyPoints.reserve( numPoints ); edge->m_Start0.y = -pad->GetSize().y / 2; polyPoints.push_back( wxPoint( 0, 0 ) ); int theta = -angle / 2; for( int ii = 1; ii angle / 2 ) theta = angle / 2; } // Close the polygon: polyPoints.push_back( polyPoints[0] ); } break; default: break; } module->CalculateBoundingBox(); GetBoard()->m_Status_Pcb = 0; OnModify(); return module; } /**************** Polygon Shapes ***********************/ enum id_mw_cmd { ID_READ_SHAPE_FILE = 1000 }; /* Setting polynomial form parameters */ class MWAVE_POLYGONAL_SHAPE_DLG : public wxDialog { private: PCB_EDIT_FRAME* m_Parent; wxRadioBox* m_ShapeOptionCtrl; EDA_SIZE_CTRL* m_SizeCtrl; public: MWAVE_POLYGONAL_SHAPE_DLG( PCB_EDIT_FRAME* parent, const wxPoint& pos ); ~MWAVE_POLYGONAL_SHAPE_DLG() { }; private: void OnOkClick( wxCommandEvent& event ); void OnCancelClick( wxCommandEvent& event ); /** * Function ReadDataShapeDescr * read a description shape file * File format is * Unit=MM * XScale=271.501 * YScale=1.00133 * * $COORD * 0 0.6112600148417837 * 0.001851851851851852 0.6104800531118608 * .... * $ENDCOORD * * Each line is the X Y coord (normalized units from 0 to 1) */ void ReadDataShapeDescr( wxCommandEvent& event ); void AcceptOptions( wxCommandEvent& event ); DECLARE_EVENT_TABLE() }; BEGIN_EVENT_TABLE( MWAVE_POLYGONAL_SHAPE_DLG, wxDialog ) EVT_BUTTON( wxID_OK, MWAVE_POLYGONAL_SHAPE_DLG::OnOkClick ) EVT_BUTTON( wxID_CANCEL, MWAVE_POLYGONAL_SHAPE_DLG::OnCancelClick ) EVT_BUTTON( ID_READ_SHAPE_FILE, MWAVE_POLYGONAL_SHAPE_DLG::ReadDataShapeDescr ) END_EVENT_TABLE() MWAVE_POLYGONAL_SHAPE_DLG::MWAVE_POLYGONAL_SHAPE_DLG( PCB_EDIT_FRAME* parent, const wxPoint& framepos ) : wxDialog( parent, -1, _( "Complex shape" ), framepos, wxSize( 350, 280 ), wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER ) { m_Parent = parent; PolyEdges.clear(); wxBoxSizer* MainBoxSizer = new wxBoxSizer( wxHORIZONTAL ); SetSizer( MainBoxSizer ); wxBoxSizer* LeftBoxSizer = new wxBoxSizer( wxVERTICAL ); wxBoxSizer* RightBoxSizer = new wxBoxSizer( wxVERTICAL ); MainBoxSizer->Add( LeftBoxSizer, 0, wxGROW | wxALL, 5 ); MainBoxSizer->Add( RightBoxSizer, 0, wxALIGN_CENTER_VERTICAL | wxALL, 5 ); wxButton* Button = new wxButton( this, wxID_OK, _( "OK" ) ); RightBoxSizer->Add( Button, 0, wxGROW | wxALL, 5 ); Button = new wxButton( this, wxID_CANCEL, _( "Cancel" ) ); RightBoxSizer->Add( Button, 0, wxGROW | wxALL, 5 ); Button = new wxButton( this, ID_READ_SHAPE_FILE, _( "Read Shape Description File..." ) ); RightBoxSizer->Add( Button, 0, wxGROW | wxALL, 5 ); wxString shapelist[3] = { _( "Normal" ), _( "Symmetrical" ), _( "Mirrored" ) }; m_ShapeOptionCtrl = new wxRadioBox( this, -1, _( "Shape Option" ), wxDefaultPosition, wxDefaultSize, 3, shapelist, 1, wxRA_SPECIFY_COLS ); LeftBoxSizer->Add( m_ShapeOptionCtrl, 0, wxGROW | wxALL, 5 ); m_SizeCtrl = new EDA_SIZE_CTRL( this, _( "Size" ), ShapeSize, g_UserUnit, LeftBoxSizer ); GetSizer()->SetSizeHints( this ); } void MWAVE_POLYGONAL_SHAPE_DLG::OnCancelClick( wxCommandEvent& event ) { PolyEdges.clear(); EndModal( wxID_CANCEL ); } void MWAVE_POLYGONAL_SHAPE_DLG::OnOkClick( wxCommandEvent& event ) { ShapeSize = m_SizeCtrl->GetValue(); PolyShapeType = m_ShapeOptionCtrl->GetSelection(); EndModal( wxID_OK ); } void MWAVE_POLYGONAL_SHAPE_DLG::ReadDataShapeDescr( wxCommandEvent& event ) { static wxString lastpath; // To remember the last open path during a session wxString mask = wxT( "*.*" ); wxString FullFileName = EDA_FILE_SELECTOR( _( "Read descr shape file" ), lastpath, FullFileName, wxEmptyString, mask, this, wxFD_OPEN, true ); if( FullFileName.IsEmpty() ) return; wxFileName fn( FullFileName ); lastpath = fn.GetPath(); PolyEdges.clear(); FILE* File = wxFopen( FullFileName, wxT( "rt" ) ); if( File == NULL ) { DisplayError( this, _( "File not found" ) ); return; } double unitconv = IU_PER_MM; ShapeScaleX = ShapeScaleY = 1.0; FILE_LINE_READER fileReader( File, FullFileName ); FILTER_READER reader( fileReader ); LOCALE_IO toggle; while( reader.ReadLine() ) { char* Line = reader.Line(); char* param1 = strtok( Line, " =\n\r" ); char* param2 = strtok( NULL, " \t\n\r" ); if( strnicmp( param1, "Unit", 4 ) == 0 ) { if( strnicmp( param2, "inch", 4 ) == 0 ) unitconv = IU_PER_MILS*1000; if( strnicmp( param2, "mm", 2 ) == 0 ) unitconv = IU_PER_MM; } if( strnicmp( param1, "$ENDCOORD", 8 ) == 0 ) break; if( strnicmp( param1, "$COORD", 6 ) == 0 ) { while( reader.ReadLine() ) { Line = reader.Line(); param1 = strtok( Line, " \t\n\r" ); param2 = strtok( NULL, " \t\n\r" ); if( strnicmp( param1, "$ENDCOORD", 8 ) == 0 ) break; wxRealPoint coord( atof( param1 ), atof( param2 ) ); PolyEdges.push_back( coord ); } } if( strnicmp( Line, "XScale", 6 ) == 0 ) ShapeScaleX = atof( param2 ); if( strnicmp( Line, "YScale", 6 ) == 0 ) ShapeScaleY = atof( param2 ); } ShapeScaleX *= unitconv; ShapeScaleY *= unitconv; m_SizeCtrl->SetValue( (int) ShapeScaleX, (int) ShapeScaleY ); } MODULE* PCB_EDIT_FRAME::Create_MuWavePolygonShape() { D_PAD* pad1, * pad2; MODULE* module; wxString cmp_name; int pad_count = 2; EDGE_MODULE* edge; MWAVE_POLYGONAL_SHAPE_DLG dlg( this, wxPoint( -1, -1 ) ); int ret = dlg.ShowModal(); m_canvas->MoveCursorToCrossHair(); if( ret != wxID_OK ) { PolyEdges.clear(); return NULL; } if( PolyShapeType == 2 ) // mirrored ShapeScaleY = -ShapeScaleY; ShapeSize.x = KiROUND( ShapeScaleX ); ShapeSize.y = KiROUND( ShapeScaleY ); if( ( ShapeSize.x ) == 0 || ( ShapeSize.y == 0 ) ) { DisplayError( this, _( "Shape has a null size!" ) ); return NULL; } if( PolyEdges.size() == 0 ) { DisplayError( this, _( "Shape has no points!" ) ); return NULL; } cmp_name = wxT( "muwave_polygon" ); // Create a footprint with 2 pads, orientation = 0, pos 0 module = CreateMuWaveBaseFootprint( cmp_name, 0, pad_count ); // We try to place the footprint anchor to the middle of the shape len wxPoint offset; offset.x = -ShapeSize.x / 2; pad1 = module->Pads(); pad1->SetX0( offset.x ); pad1->SetX( pad1->GetPos0().x ); pad2 = pad1->Next(); pad2->SetX0( offset.x + ShapeSize.x ); pad2->SetX( pad2->GetPos0().x ); // Add a polygonal edge (corners will be added later) on copper layer edge = new EDGE_MODULE( module ); edge->SetShape( S_POLYGON ); edge->SetLayer( F_Cu ); module->GraphicalItems().PushFront( edge ); // Get the corner buffer of the polygonal edge std::vector& polyPoints = edge->GetPolyPoints(); polyPoints.reserve( PolyEdges.size() + 2 ); // Init start point coord: polyPoints.push_back( wxPoint( offset.x, 0 ) ); wxPoint last_coordinate; for( unsigned ii = 0; ii < PolyEdges.size(); ii++ ) // Copy points { last_coordinate.x = KiROUND( PolyEdges[ii].x * ShapeScaleX ); last_coordinate.y = -KiROUND( PolyEdges[ii].y * ShapeScaleY ); last_coordinate += offset; polyPoints.push_back( last_coordinate ); } // finish the polygonal shape if( last_coordinate.y != 0 ) polyPoints.push_back( wxPoint( last_coordinate.x, 0 ) ); switch( PolyShapeType ) { case 0: // shape from file case 2: // shape from file, mirrored (the mirror is already done) break; case 1: // Symmetric shape: add the symmetric (mirrored) shape for( int ndx = polyPoints.size() - 1; ndx >= 0; --ndx ) { wxPoint pt = polyPoints[ndx]; pt.y = -pt.y; // mirror about X axis polyPoints.push_back( pt ); } break; } PolyEdges.clear(); module->CalculateBoundingBox(); GetBoard()->m_Status_Pcb = 0; OnModify(); return module; } void PCB_EDIT_FRAME::Edit_Gap( wxDC* DC, MODULE* aModule ) { int gap_size, oX; D_PAD* pad, * next_pad; wxString msg; if( aModule == NULL ) return; // Test if module is a gap type (name begins with GAP, and has 2 pads). msg = aModule->GetReference().Left( 3 ); if( msg != wxT( "GAP" ) ) return; pad = aModule->Pads(); if( pad == NULL ) { DisplayError( this, _( "No pad for this footprint" ) ); return; } next_pad = pad->Next(); if( next_pad == NULL ) { DisplayError( this, _( "Only one pad for this footprint" ) ); return; } aModule->Draw( m_canvas, DC, GR_XOR ); // Calculate the current dimension. gap_size = next_pad->GetPos0().x - pad->GetPos0().x - pad->GetSize().x; // Entrer the desired length of the gap. msg = StringFromValue( g_UserUnit, gap_size ); wxTextEntryDialog dlg( this, _( "Gap:" ), _( "Create Microwave Gap" ), msg ); if( dlg.ShowModal() != wxID_OK ) return; // cancelled by user msg = dlg.GetValue(); gap_size = ValueFromString( g_UserUnit, msg ); // Updating sizes of pads forming the gap. int tw = GetDesignSettings().GetCurrentTrackWidth(); pad->SetSize( wxSize( tw, tw ) ); pad->SetY0( 0 ); oX = -( gap_size + pad->GetSize().x ) / 2; pad->SetX0( oX ); wxPoint padpos = pad->GetPos0() + aModule->GetPosition(); RotatePoint( &padpos.x, &padpos.y, aModule->GetPosition().x, aModule->GetPosition().y, aModule->GetOrientation() ); pad->SetPosition( padpos ); tw = GetDesignSettings().GetCurrentTrackWidth(); next_pad->SetSize( wxSize( tw, tw ) ); next_pad->SetY0( 0 ); next_pad->SetX0( oX + gap_size + next_pad->GetSize().x ); padpos = next_pad->GetPos0() + aModule->GetPosition(); RotatePoint( &padpos.x, &padpos.y, aModule->GetPosition().x, aModule->GetPosition().y, aModule->GetOrientation() ); next_pad->SetPosition( padpos ); aModule->Draw( m_canvas, DC, GR_OR ); }