/* * This program source code file is part of KiCad, a free EDA CAD application. * * Copyright (C) 2016-2023 CERN * Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors. * @author Tomasz Wlostowski * @author Maciej Suminski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * https://www.gnu.org/licenses/gpl-3.0.html * or you may search the http://www.gnu.org website for the version 3 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kiplatform/app.h" SIM_TRACE_TYPE operator|( SIM_TRACE_TYPE aFirst, SIM_TRACE_TYPE aSecond ) { int res = (int) aFirst | (int) aSecond; return (SIM_TRACE_TYPE) res; } enum SIGNALS_GRID_COLUMNS { COL_SIGNAL_NAME = 0, COL_SIGNAL_SHOW, COL_SIGNAL_COLOR, COL_CURSOR_1, COL_CURSOR_2 }; enum CURSORS_GRID_COLUMNS { COL_CURSOR_NAME = 0, COL_CURSOR_SIGNAL, COL_CURSOR_X, COL_CURSOR_Y }; enum MEASUREMENTS_GIRD_COLUMNS { COL_MEASUREMENT = 0, COL_MEASUREMENT_VALUE, COL_MEASUREMENT_FORMAT }; enum { MYID_MEASURE_MIN = GRIDTRICKS_FIRST_CLIENT_ID, MYID_MEASURE_MAX, MYID_MEASURE_AVG, MYID_MEASURE_RMS, MYID_MEASURE_PP, MYID_MEASURE_MIN_AT, MYID_MEASURE_MAX_AT, MYID_MEASURE_INTEGRAL, MYID_FOURIER, MYID_FORMAT_VALUE, MYID_DELETE_MEASUREMENT }; class SIGNALS_GRID_TRICKS : public GRID_TRICKS { public: SIGNALS_GRID_TRICKS( SIMULATOR_FRAME_UI* aParent, WX_GRID* aGrid ) : GRID_TRICKS( aGrid ), m_parent( aParent ), m_menuRow( 0 ), m_menuCol( 0 ) {} protected: void showPopupMenu( wxMenu& menu, wxGridEvent& aEvent ) override; void doPopupSelection( wxCommandEvent& event ) override; protected: SIMULATOR_FRAME_UI* m_parent; int m_menuRow; int m_menuCol; }; void SIGNALS_GRID_TRICKS::showPopupMenu( wxMenu& menu, wxGridEvent& aEvent ) { m_menuRow = aEvent.GetRow(); m_menuCol = aEvent.GetCol(); if( m_menuCol == COL_SIGNAL_NAME ) { if( !( m_grid->IsInSelection( m_menuRow, m_menuCol ) ) ) m_grid->ClearSelection(); m_grid->SetGridCursor( m_menuRow, m_menuCol ); if( SIM_TAB* panel = m_parent->GetCurrentSimTab() ) { if( panel->GetSimType() == ST_TRAN || panel->GetSimType() == ST_AC || panel->GetSimType() == ST_DC || panel->GetSimType() == ST_SP ) { menu.Append( MYID_MEASURE_MIN, _( "Measure Min" ) ); menu.Append( MYID_MEASURE_MAX, _( "Measure Max" ) ); menu.Append( MYID_MEASURE_AVG, _( "Measure Average" ) ); menu.Append( MYID_MEASURE_RMS, _( "Measure RMS" ) ); menu.Append( MYID_MEASURE_PP, _( "Measure Peak-to-peak" ) ); if( panel->GetSimType() == ST_AC || panel->GetSimType() == ST_SP ) { menu.Append( MYID_MEASURE_MIN_AT, _( "Measure Frequency of Min" ) ); menu.Append( MYID_MEASURE_MAX_AT, _( "Measure Frequency of Max" ) ); } else { menu.Append( MYID_MEASURE_MIN_AT, _( "Measure Time of Min" ) ); menu.Append( MYID_MEASURE_MAX_AT, _( "Measure Time of Max" ) ); } menu.Append( MYID_MEASURE_INTEGRAL, _( "Measure Integral" ) ); if( panel->GetSimType() == ST_TRAN ) { menu.AppendSeparator(); menu.Append( MYID_FOURIER, _( "Perform Fourier Analysis..." ) ); } menu.AppendSeparator(); } } } GRID_TRICKS::showPopupMenu( menu, aEvent ); } void SIGNALS_GRID_TRICKS::doPopupSelection( wxCommandEvent& event ) { std::vector signals; wxGridCellCoordsArray cells1 = m_grid->GetSelectionBlockTopLeft(); wxGridCellCoordsArray cells2 = m_grid->GetSelectionBlockBottomRight(); for( size_t i = 0; i < cells1.Count(); i++ ) { if( cells1[i].GetCol() == COL_SIGNAL_NAME ) { for( int j = cells1[i].GetRow(); j < cells2[i].GetRow() + 1; j++ ) { signals.push_back( m_grid->GetCellValue( j, cells1[i].GetCol() ) ); } } } wxGridCellCoordsArray cells3 = m_grid->GetSelectedCells(); for( size_t i = 0; i < cells3.Count(); i++ ) { if( cells3[i].GetCol() == COL_SIGNAL_NAME ) signals.push_back( m_grid->GetCellValue( cells3[i].GetRow(), cells3[i].GetCol() ) ); } if( signals.size() < 1 ) signals.push_back( m_grid->GetCellValue( m_menuRow, m_menuCol ) ); auto addMeasurement = [this]( const wxString& cmd, wxString signal ) { if( signal.EndsWith( _( " (phase)" ) ) ) return; if( signal.EndsWith( _( " (gain)" ) ) || signal.EndsWith( _( " (amplitude)" ) ) ) { signal = signal.Left( signal.length() - 7 ); if( signal.Upper().StartsWith( wxS( "V(" ) ) ) signal = wxS( "vdb" ) + signal.Mid( 1 ); } m_parent->AddMeasurement( cmd + wxS( " " ) + signal ); }; if( event.GetId() == MYID_MEASURE_MIN ) { for( const wxString& signal : signals ) addMeasurement( wxS( "MIN" ), signal ); } else if( event.GetId() == MYID_MEASURE_MAX ) { for( const wxString& signal : signals ) addMeasurement( wxS( "MAX" ), signal ); } else if( event.GetId() == MYID_MEASURE_AVG ) { for( const wxString& signal : signals ) addMeasurement( wxS( "AVG" ), signal ); } else if( event.GetId() == MYID_MEASURE_RMS ) { for( const wxString& signal : signals ) addMeasurement( wxS( "RMS" ), signal ); } else if( event.GetId() == MYID_MEASURE_PP ) { for( const wxString& signal : signals ) addMeasurement( wxS( "PP" ), signal ); } else if( event.GetId() == MYID_MEASURE_MIN_AT ) { for( const wxString& signal : signals ) addMeasurement( wxS( "MIN_AT" ), signal ); } else if( event.GetId() == MYID_MEASURE_MAX_AT ) { for( const wxString& signal : signals ) addMeasurement( wxS( "MAX_AT" ), signal ); } else if( event.GetId() == MYID_MEASURE_INTEGRAL ) { for( const wxString& signal : signals ) addMeasurement( wxS( "INTEG" ), signal ); } else if( event.GetId() == MYID_FOURIER ) { wxString title; wxString fundamental = wxT( "1K" ); if( signals.size() == 1 ) title.Printf( _( "Fourier Analysis of %s" ), signals[0] ); else title = _( "Fourier Analyses of Multiple Signals" ); WX_TEXT_ENTRY_DIALOG dlg( m_parent, _( "Fundamental frequency:" ), title, fundamental ); if( dlg.ShowModal() != wxID_OK ) return; if( !dlg.GetValue().IsEmpty() ) fundamental = dlg.GetValue(); for( const wxString& signal : signals ) m_parent->DoFourier( signal, fundamental ); } else { GRID_TRICKS::doPopupSelection( event ); } } class CURSORS_GRID_TRICKS : public GRID_TRICKS { public: CURSORS_GRID_TRICKS( SIMULATOR_FRAME_UI* aParent, WX_GRID* aGrid ) : GRID_TRICKS( aGrid ), m_parent( aParent ), m_menuRow( 0 ), m_menuCol( 0 ) {} protected: void showPopupMenu( wxMenu& menu, wxGridEvent& aEvent ) override; void doPopupSelection( wxCommandEvent& event ) override; protected: SIMULATOR_FRAME_UI* m_parent; int m_menuRow; int m_menuCol; }; void CURSORS_GRID_TRICKS::showPopupMenu( wxMenu& menu, wxGridEvent& aEvent ) { m_menuRow = aEvent.GetRow(); m_menuCol = aEvent.GetCol(); if( m_menuCol == COL_CURSOR_X || m_menuCol == COL_CURSOR_Y ) { wxString msg = m_grid->GetColLabelValue( m_menuCol ); menu.Append( MYID_FORMAT_VALUE, wxString::Format( _( "Format %s..." ), msg ) ); menu.AppendSeparator(); } GRID_TRICKS::showPopupMenu( menu, aEvent ); } void CURSORS_GRID_TRICKS::doPopupSelection( wxCommandEvent& event ) { auto getSignalName = [this]( int row ) -> wxString { wxString signal = m_grid->GetCellValue( row, COL_CURSOR_SIGNAL ); if( signal.EndsWith( "[2 - 1]" ) ) signal = signal.Left( signal.length() - 7 ); return signal; }; if( event.GetId() == MYID_FORMAT_VALUE ) { int axis = m_menuCol - COL_CURSOR_X; SPICE_VALUE_FORMAT format = m_parent->GetCursorFormat( m_menuRow, axis ); DIALOG_SIM_FORMAT_VALUE formatDialog( m_parent, &format ); if( formatDialog.ShowModal() == wxID_OK ) { for( int row = 0; row < m_grid->GetNumberRows(); ++row ) { if( getSignalName( row ) == getSignalName( m_menuRow ) ) m_parent->SetCursorFormat( row, axis, format ); } } } else { GRID_TRICKS::doPopupSelection( event ); } } class MEASUREMENTS_GRID_TRICKS : public GRID_TRICKS { public: MEASUREMENTS_GRID_TRICKS( SIMULATOR_FRAME_UI* aParent, WX_GRID* aGrid ) : GRID_TRICKS( aGrid ), m_parent( aParent ), m_menuRow( 0 ), m_menuCol( 0 ) {} protected: void showPopupMenu( wxMenu& menu, wxGridEvent& aEvent ) override; void doPopupSelection( wxCommandEvent& event ) override; protected: SIMULATOR_FRAME_UI* m_parent; int m_menuRow; int m_menuCol; }; void MEASUREMENTS_GRID_TRICKS::showPopupMenu( wxMenu& menu, wxGridEvent& aEvent ) { m_menuRow = aEvent.GetRow(); m_menuCol = aEvent.GetCol(); if( !( m_grid->IsInSelection( m_menuRow, m_menuCol ) ) ) m_grid->ClearSelection(); m_grid->SetGridCursor( m_menuRow, m_menuCol ); if( m_menuCol == COL_MEASUREMENT_VALUE ) menu.Append( MYID_FORMAT_VALUE, _( "Format Value..." ) ); if( m_menuRow < ( m_grid->GetNumberRows() - 1 ) ) menu.Append( MYID_DELETE_MEASUREMENT, _( "Delete Measurement" ) ); menu.AppendSeparator(); GRID_TRICKS::showPopupMenu( menu, aEvent ); } void MEASUREMENTS_GRID_TRICKS::doPopupSelection( wxCommandEvent& event ) { if( event.GetId() == MYID_FORMAT_VALUE ) { SPICE_VALUE_FORMAT format = m_parent->GetMeasureFormat( m_menuRow ); DIALOG_SIM_FORMAT_VALUE formatDialog( m_parent, &format ); if( formatDialog.ShowModal() == wxID_OK ) { m_parent->SetMeasureFormat( m_menuRow, format ); m_parent->UpdateMeasurement( m_menuRow ); m_parent->OnModify(); } } else if( event.GetId() == MYID_DELETE_MEASUREMENT ) { std::vector measurements; wxGridCellCoordsArray cells1 = m_grid->GetSelectionBlockTopLeft(); wxGridCellCoordsArray cells2 = m_grid->GetSelectionBlockBottomRight(); for( size_t i = 0; i < cells1.Count(); i++ ) { if( cells1[i].GetCol() == COL_MEASUREMENT ) { for( int j = cells1[i].GetRow(); j < cells2[i].GetRow() + 1; j++ ) measurements.push_back( j ); } } wxGridCellCoordsArray cells3 = m_grid->GetSelectedCells(); for( size_t i = 0; i < cells3.Count(); i++ ) { if( cells3[i].GetCol() == COL_MEASUREMENT ) measurements.push_back( cells3[i].GetRow() ); } if( measurements.size() < 1 ) measurements.push_back( m_menuRow ); // When deleting a row, we'll change the indexes. // To avoid problems, we can start with the highest indexes. sort( measurements.begin(), measurements.end(), std::greater<>() ); for( int row : measurements ) m_parent->DeleteMeasurement( row ); m_grid->ClearSelection(); m_parent->OnModify(); } else { GRID_TRICKS::doPopupSelection( event ); } } class SUPPRESS_GRID_CELL_EVENTS { public: SUPPRESS_GRID_CELL_EVENTS( SIMULATOR_FRAME_UI* aFrame ) : m_frame( aFrame ) { m_frame->m_SuppressGridEvents++; } ~SUPPRESS_GRID_CELL_EVENTS() { m_frame->m_SuppressGridEvents--; } private: SIMULATOR_FRAME_UI* m_frame; }; #define ID_SIM_REFRESH 10207 #define REFRESH_INTERVAL 50 // 20 frames/second. SIMULATOR_FRAME_UI::SIMULATOR_FRAME_UI( SIMULATOR_FRAME* aSimulatorFrame, SCH_EDIT_FRAME* aSchematicFrame ) : SIMULATOR_FRAME_UI_BASE( aSimulatorFrame ), m_SuppressGridEvents( 0 ), m_simulatorFrame( aSimulatorFrame ), m_schematicFrame( aSchematicFrame ), m_darkMode( true ), m_plotNumber( 0 ), m_refreshTimer( this, ID_SIM_REFRESH ) { // Get the previous size and position of windows: LoadSettings( m_schematicFrame->eeconfig() ); m_filter->SetHint( _( "Filter" ) ); m_signalsGrid->wxGrid::SetLabelFont( KIUI::GetStatusFont( this ) ); m_cursorsGrid->wxGrid::SetLabelFont( KIUI::GetStatusFont( this ) ); m_measurementsGrid->wxGrid::SetLabelFont( KIUI::GetStatusFont( this ) ); m_signalsGrid->PushEventHandler( new SIGNALS_GRID_TRICKS( this, m_signalsGrid ) ); m_cursorsGrid->PushEventHandler( new CURSORS_GRID_TRICKS( this, m_cursorsGrid ) ); m_measurementsGrid->PushEventHandler( new MEASUREMENTS_GRID_TRICKS( this, m_measurementsGrid ) ); wxGridCellAttr* attr = new wxGridCellAttr; attr->SetReadOnly(); m_signalsGrid->SetColAttr( COL_SIGNAL_NAME, attr ); attr = new wxGridCellAttr; attr->SetReadOnly(); m_cursorsGrid->SetColAttr( COL_CURSOR_NAME, attr ); attr = new wxGridCellAttr; attr->SetReadOnly(); m_cursorsGrid->SetColAttr( COL_CURSOR_SIGNAL, attr ); attr = new wxGridCellAttr; attr->SetReadOnly(); m_cursorsGrid->SetColAttr( COL_CURSOR_Y, attr ); for( int cursorId = 0; cursorId < 3; ++cursorId ) { m_cursorFormats[ cursorId ][ 0 ] = { 3, wxS( "~s" ) }; m_cursorFormats[ cursorId ][ 1 ] = { 3, wxS( "~V" ) }; } attr = new wxGridCellAttr; attr->SetReadOnly(); m_measurementsGrid->SetColAttr( COL_MEASUREMENT_VALUE, attr ); // Prepare the color list to plot traces SIM_PLOT_COLORS::FillDefaultColorList( m_darkMode ); Bind( EVT_SIM_CURSOR_UPDATE, &SIMULATOR_FRAME_UI::onPlotCursorUpdate, this ); Bind( wxEVT_TIMER, [&]( wxTimerEvent& aEvent ) { OnSimRefresh( false ); if( m_simulatorFrame->GetSimulator()->IsRunning() ) m_refreshTimer.Start( REFRESH_INTERVAL, wxTIMER_ONE_SHOT ); }, m_refreshTimer.GetId() ); #ifndef wxHAS_NATIVE_TABART // Default non-native tab art has ugly gradients we don't want m_plotNotebook->SetArtProvider( new wxAuiSimpleTabArt() ); #endif } SIMULATOR_FRAME_UI::~SIMULATOR_FRAME_UI() { // Delete the GRID_TRICKS. m_signalsGrid->PopEventHandler( true ); m_cursorsGrid->PopEventHandler( true ); m_measurementsGrid->PopEventHandler( true ); } void SIMULATOR_FRAME_UI::ShowChangedLanguage() { for( int ii = 0; ii < (int) m_plotNotebook->GetPageCount(); ++ii ) { SIM_TAB* simTab = dynamic_cast( m_plotNotebook->GetPage( ii ) ); wxCHECK( simTab, /* void */ ); simTab->OnLanguageChanged(); wxString pageTitle( simulator()->TypeToName( simTab->GetSimType(), true ) ); pageTitle.Prepend( wxString::Format( _( "Analysis %u - " ), ii+1 /* 1-based */ ) ); m_plotNotebook->SetPageText( ii, pageTitle ); } m_filter->SetHint( _( "Filter" ) ); m_signalsGrid->SetColLabelValue( COL_SIGNAL_NAME, _( "Signal" ) ); m_signalsGrid->SetColLabelValue( COL_SIGNAL_SHOW, _( "Plot" ) ); m_signalsGrid->SetColLabelValue( COL_SIGNAL_COLOR, _( "Color" ) ); m_signalsGrid->SetColLabelValue( COL_CURSOR_1, _( "Cursor 1" ) ); m_signalsGrid->SetColLabelValue( COL_CURSOR_2, _( "Cursor 2" ) ); m_cursorsGrid->SetColLabelValue( COL_CURSOR_NAME, _( "Cursor" ) ); m_cursorsGrid->SetColLabelValue( COL_CURSOR_SIGNAL, _( "Signal" ) ); m_cursorsGrid->SetColLabelValue( COL_CURSOR_X, _( "Time" ) ); m_cursorsGrid->SetColLabelValue( COL_CURSOR_Y, _( "Value" ) ); updatePlotCursors(); for( TUNER_SLIDER* tuner : m_tuners ) tuner->ShowChangedLanguage(); } void SIMULATOR_FRAME_UI::LoadSettings( EESCHEMA_SETTINGS* aCfg ) { // Read subwindows sizes (should be > 0 ) m_splitterLeftRightSashPosition = aCfg->m_Simulator.plot_panel_width; m_splitterPlotAndConsoleSashPosition = aCfg->m_Simulator.plot_panel_height; m_splitterSignalsSashPosition = aCfg->m_Simulator.signal_panel_height; m_splitterCursorsSashPosition = aCfg->m_Simulator.cursors_panel_height; m_splitterTuneValuesSashPosition = aCfg->m_Simulator.measurements_panel_height; m_darkMode = !aCfg->m_Simulator.white_background; } void SIMULATOR_FRAME_UI::SaveSettings( EESCHEMA_SETTINGS* aCfg ) { aCfg->m_Simulator.plot_panel_width = m_splitterLeftRight->GetSashPosition(); aCfg->m_Simulator.plot_panel_height = m_splitterPlotAndConsole->GetSashPosition(); aCfg->m_Simulator.signal_panel_height = m_splitterSignals->GetSashPosition(); aCfg->m_Simulator.cursors_panel_height = m_splitterCursors->GetSashPosition(); aCfg->m_Simulator.measurements_panel_height = m_splitterMeasurements->GetSashPosition(); aCfg->m_Simulator.white_background = !m_darkMode; } void SIMULATOR_FRAME_UI::InitWorkbook() { if( !simulator()->Settings()->GetWorkbookFilename().IsEmpty() ) { wxFileName filename = simulator()->Settings()->GetWorkbookFilename(); filename.SetPath( m_schematicFrame->Prj().GetProjectPath() ); if( !LoadWorkbook( filename.GetFullPath() ) ) simulator()->Settings()->SetWorkbookFilename( "" ); } else if( m_simulatorFrame->LoadSimulator( wxEmptyString, 0 ) ) { wxString schTextSimCommand = circuitModel()->GetSchTextSimCommand(); if( !schTextSimCommand.IsEmpty() ) { SIM_TAB* simTab = NewSimTab( schTextSimCommand ); simTab->SetSimOptions( NETLIST_EXPORTER_SPICE::OPTION_DEFAULT_FLAGS ); } rebuildSignalsList(); rebuildSignalsGrid( m_filter->GetValue() ); } } void SIMULATOR_FRAME_UI::SetSubWindowsSashSize() { if( m_splitterLeftRightSashPosition > 0 ) m_splitterLeftRight->SetSashPosition( m_splitterLeftRightSashPosition ); if( m_splitterPlotAndConsoleSashPosition > 0 ) m_splitterPlotAndConsole->SetSashPosition( m_splitterPlotAndConsoleSashPosition ); if( m_splitterSignalsSashPosition > 0 ) m_splitterSignals->SetSashPosition( m_splitterSignalsSashPosition ); if( m_splitterCursorsSashPosition > 0 ) m_splitterCursors->SetSashPosition( m_splitterCursorsSashPosition ); if( m_splitterTuneValuesSashPosition > 0 ) m_splitterMeasurements->SetSashPosition( m_splitterTuneValuesSashPosition ); } void sortSignals( std::vector& signals ) { std::sort( signals.begin(), signals.end(), []( const wxString& lhs, const wxString& rhs ) { // Sort voltages first if( lhs.Upper().StartsWith( 'V' ) && !rhs.Upper().StartsWith( 'V' ) ) return true; else if( !lhs.Upper().StartsWith( 'V' ) && rhs.Upper().StartsWith( 'V' ) ) return false; return StrNumCmp( lhs, rhs, true /* ignore case */ ) < 0; } ); } void SIMULATOR_FRAME_UI::rebuildSignalsGrid( wxString aFilter ) { SUPPRESS_GRID_CELL_EVENTS raii( this ); m_signalsGrid->ClearRows(); SIM_PLOT_TAB* plotPanel = dynamic_cast( GetCurrentSimTab() ); if( !plotPanel ) return; SIM_TYPE simType = plotPanel->GetSimType(); std::vector signals; if( plotPanel->GetSimType() == ST_FFT ) { wxStringTokenizer tokenizer( plotPanel->GetSimCommand(), wxT( " \t\r\n" ), wxTOKEN_STRTOK ); while( tokenizer.HasMoreTokens() && tokenizer.GetNextToken().Lower() != wxT( "fft" ) ) {}; while( tokenizer.HasMoreTokens() ) signals.emplace_back( tokenizer.GetNextToken() ); } else { // NB: m_signals are already broken out into gain/phase, but m_userDefinedSignals are // as the user typed them for( const wxString& signal : m_signals ) signals.push_back( signal ); for( const auto& [ id, signal ] : m_userDefinedSignals ) { if( simType == ST_AC ) { signals.push_back( signal + _( " (gain)" ) ); signals.push_back( signal + _( " (phase)" ) ); } else if( simType == ST_SP ) { signals.push_back( signal + _( " (amplitude)" ) ); signals.push_back( signal + _( " (phase)" ) ); } else { signals.push_back( signal ); } } sortSignals( signals ); } if( aFilter.IsEmpty() ) aFilter = wxS( "*" ); EDA_COMBINED_MATCHER matcher( aFilter.Upper(), CTX_SIGNAL ); int row = 0; for( const wxString& signal : signals ) { if( matcher.Find( signal.Upper() ) ) { int traceType = SPT_UNKNOWN; wxString vectorName = vectorNameFromSignalName( plotPanel, signal, &traceType ); TRACE* trace = plotPanel->GetTrace( vectorName, traceType ); m_signalsGrid->AppendRows( 1 ); m_signalsGrid->SetCellValue( row, COL_SIGNAL_NAME, signal ); wxGridCellAttr* attr = new wxGridCellAttr; attr->SetRenderer( new wxGridCellBoolRenderer() ); attr->SetReadOnly(); // not really; we delegate interactivity to GRID_TRICKS attr->SetAlignment( wxALIGN_CENTER, wxALIGN_CENTER ); m_signalsGrid->SetAttr( row, COL_SIGNAL_SHOW, attr ); if( !trace ) { attr = new wxGridCellAttr; attr->SetReadOnly(); m_signalsGrid->SetAttr( row, COL_SIGNAL_COLOR, attr ); m_signalsGrid->SetCellValue( row, COL_SIGNAL_COLOR, wxEmptyString ); attr = new wxGridCellAttr; attr->SetReadOnly(); m_signalsGrid->SetAttr( row, COL_CURSOR_1, attr ); attr = new wxGridCellAttr; attr->SetReadOnly(); m_signalsGrid->SetAttr( row, COL_CURSOR_2, attr ); } else { m_signalsGrid->SetCellValue( row, COL_SIGNAL_SHOW, wxS( "1" ) ); attr = new wxGridCellAttr; attr->SetRenderer( new GRID_CELL_COLOR_RENDERER( this ) ); attr->SetEditor( new GRID_CELL_COLOR_SELECTOR( this, m_signalsGrid ) ); attr->SetAlignment( wxALIGN_CENTER, wxALIGN_CENTER ); m_signalsGrid->SetAttr( row, COL_SIGNAL_COLOR, attr ); KIGFX::COLOR4D color( trace->GetPen().GetColour() ); m_signalsGrid->SetCellValue( row, COL_SIGNAL_COLOR, color.ToCSSString() ); attr = new wxGridCellAttr; attr->SetRenderer( new wxGridCellBoolRenderer() ); attr->SetReadOnly(); // not really; we delegate interactivity to GRID_TRICKS attr->SetAlignment( wxALIGN_CENTER, wxALIGN_CENTER ); m_signalsGrid->SetAttr( row, COL_CURSOR_1, attr ); attr = new wxGridCellAttr; attr->SetRenderer( new wxGridCellBoolRenderer() ); attr->SetReadOnly(); // not really; we delegate interactivity to GRID_TRICKS attr->SetAlignment( wxALIGN_CENTER, wxALIGN_CENTER ); m_signalsGrid->SetAttr( row, COL_CURSOR_2, attr ); } row++; } } } void SIMULATOR_FRAME_UI::rebuildSignalsList() { m_signals.clear(); int options = m_simulatorFrame->GetCurrentOptions(); SIM_TYPE simType = m_simulatorFrame->GetCurrentSimType(); wxString unconnected = wxString( wxS( "unconnected-(" ) ); if( simType == ST_UNKNOWN ) simType = ST_TRAN; unconnected.Replace( '(', '_' ); // Convert to SPICE markup auto addSignal = [&]( const wxString& aSignalName ) { if( simType == ST_AC ) { m_signals.push_back( aSignalName + _( " (gain)" ) ); m_signals.push_back( aSignalName + _( " (phase)" ) ); } else if( simType == ST_SP ) { m_signals.push_back( aSignalName + _( " (amplitude)" ) ); m_signals.push_back( aSignalName + _( " (phase)" ) ); } else { m_signals.push_back( aSignalName ); } }; if( ( options & NETLIST_EXPORTER_SPICE::OPTION_SAVE_ALL_VOLTAGES ) && ( simType == ST_TRAN || simType == ST_DC || simType == ST_AC || simType == ST_FFT) ) { for( const std::string& net : circuitModel()->GetNets() ) { // netnames are escaped (can contain "{slash}" for '/') Unscape them: wxString netname = UnescapeString( net ); if( netname == "GND" || netname == "0" || netname.StartsWith( unconnected ) ) continue; m_quotedNetnames[ netname ] = wxString::Format( wxS( "\"%s\"" ), netname ); addSignal( wxString::Format( wxS( "V(%s)" ), netname ) ); } } if( ( options & NETLIST_EXPORTER_SPICE::OPTION_SAVE_ALL_CURRENTS ) && ( simType == ST_TRAN || simType == ST_DC || simType == ST_AC ) ) { for( const SPICE_ITEM& item : circuitModel()->GetItems() ) { // Add all possible currents for the device. for( const std::string& name : item.model->SpiceGenerator().CurrentNames( item ) ) addSignal( name ); } } if( ( options & NETLIST_EXPORTER_SPICE::OPTION_SAVE_ALL_DISSIPATIONS ) && ( simType == ST_TRAN || simType == ST_DC ) ) { for( const SPICE_ITEM& item : circuitModel()->GetItems() ) { if( item.model->GetPinCount() >= 2 ) { wxString name = item.model->SpiceGenerator().ItemName( item ); addSignal( wxString::Format( wxS( "P(%s)" ), name ) ); } } } if( simType == ST_NOISE ) { addSignal( wxS( "inoise_spectrum" ) ); addSignal( wxS( "onoise_spectrum" ) ); } if( simType == ST_SP ) { std::vector portnums; for( const SPICE_ITEM& item : circuitModel()->GetItems() ) { wxString name = item.model->SpiceGenerator().ItemName( item ); // We are only looking for voltage sources in .SP mode if( !name.StartsWith( "V" ) ) continue; const SIM_MODEL::PARAM* portNum = item.model->FindParam( "portnum" ); if( portNum ) portnums.push_back( SIM_VALUE::ToSpice( portNum->value ) ); } for( const std::string& portnum1 : portnums ) { for( const std::string& portnum2 : portnums ) { addSignal( wxString::Format( wxS( "S_%s_%s" ), portnum1, portnum2 ) ); } } } // Add .PROBE directives for( const wxString& directive : circuitModel()->GetDirectives() ) { wxStringTokenizer tokenizer( directive, wxT( "\r\n" ), wxTOKEN_STRTOK ); while( tokenizer.HasMoreTokens() ) { wxString line = tokenizer.GetNextToken(); wxString directiveParams; if( line.Upper().StartsWith( wxS( ".PROBE" ), &directiveParams ) ) addSignal( directiveParams.Trim( true ).Trim( false ) ); } } } SIM_TAB* SIMULATOR_FRAME_UI::NewSimTab( const wxString& aSimCommand ) { SIM_TAB* simTab = nullptr; SIM_TYPE simType = SPICE_CIRCUIT_MODEL::CommandToSimType( aSimCommand ); if( SIM_TAB::IsPlottable( simType ) ) { SIM_PLOT_TAB* panel = new SIM_PLOT_TAB( aSimCommand, m_plotNotebook ); simTab = panel; COMMON_SETTINGS::INPUT cfg = Pgm().GetCommonSettings()->m_Input; panel->GetPlotWin()->EnableMouseWheelPan( cfg.scroll_modifier_zoom != 0 ); } else { simTab = new SIM_NOPLOT_TAB( aSimCommand, m_plotNotebook ); } wxString pageTitle( simulator()->TypeToName( simType, true ) ); pageTitle.Prepend( wxString::Format( _( "Analysis %u - " ), (unsigned int) ++m_plotNumber ) ); m_plotNotebook->AddPage( simTab, pageTitle, true ); return simTab; } void SIMULATOR_FRAME_UI::OnFilterText( wxCommandEvent& aEvent ) { rebuildSignalsGrid( m_filter->GetValue() ); } void SIMULATOR_FRAME_UI::OnFilterMouseMoved( wxMouseEvent& aEvent ) { wxPoint pos = aEvent.GetPosition(); wxRect ctrlRect = m_filter->GetScreenRect(); int buttonWidth = ctrlRect.GetHeight(); // Presume buttons are square if( m_filter->IsSearchButtonVisible() && pos.x < buttonWidth ) SetCursor( wxCURSOR_ARROW ); else if( m_filter->IsCancelButtonVisible() && pos.x > ctrlRect.GetWidth() - buttonWidth ) SetCursor( wxCURSOR_ARROW ); else SetCursor( wxCURSOR_IBEAM ); } wxString vectorNameFromSignalId( int aUserDefinedSignalId ) { return wxString::Format( wxS( "user%d" ), aUserDefinedSignalId ); } /** * For user-defined signals we display the user-oriented signal name such as "V(out)-V(in)", * but the simulator vector we actually have to plot will be "user0" or some-such. */ wxString SIMULATOR_FRAME_UI::vectorNameFromSignalName( SIM_PLOT_TAB* aPlotTab, const wxString& aSignalName, int* aTraceType ) { std::map suffixes; suffixes[ _( " (amplitude)" ) ] = SPT_SP_AMP; suffixes[ _( " (gain)" ) ] = SPT_AC_GAIN; suffixes[ _( " (phase)" ) ] = SPT_AC_PHASE; if( aTraceType ) { if( aPlotTab && aPlotTab->GetSimType() == ST_NOISE ) { if( getNoiseSource().Upper().StartsWith( 'I' ) ) *aTraceType = SPT_CURRENT; else *aTraceType = SPT_VOLTAGE; } else { wxUniChar firstChar = aSignalName.Upper()[0]; if( firstChar == 'V' ) *aTraceType = SPT_VOLTAGE; else if( firstChar == 'I' ) *aTraceType = SPT_CURRENT; else if( firstChar == 'P' ) *aTraceType = SPT_POWER; } } wxString suffix; wxString name = aSignalName; for( const auto& [ candidate, type ] : suffixes ) { if( name.EndsWith( candidate ) ) { name = name.Left( name.Length() - candidate.Length() ); if( aTraceType ) *aTraceType |= type; break; } } for( const auto& [ id, signal ] : m_userDefinedSignals ) { if( name == signal ) return vectorNameFromSignalId( id ); } return name; }; void SIMULATOR_FRAME_UI::onSignalsGridCellChanged( wxGridEvent& aEvent ) { if( m_SuppressGridEvents > 0 ) return; SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ); if( !plotTab ) return; int row = aEvent.GetRow(); int col = aEvent.GetCol(); wxString text = m_signalsGrid->GetCellValue( row, col ); wxString signalName = m_signalsGrid->GetCellValue( row, COL_SIGNAL_NAME ); int traceType = SPT_UNKNOWN; wxString vectorName = vectorNameFromSignalName( plotTab, signalName, &traceType ); if( col == COL_SIGNAL_SHOW ) { if( text == wxS( "1" ) ) updateTrace( vectorName, traceType, plotTab ); else plotTab->DeleteTrace( vectorName, traceType ); plotTab->GetPlotWin()->UpdateAll(); // Update enabled/visible states of other controls updateSignalsGrid(); updatePlotCursors(); OnModify(); } else if( col == COL_SIGNAL_COLOR ) { KIGFX::COLOR4D color( m_signalsGrid->GetCellValue( row, COL_SIGNAL_COLOR ) ); TRACE* trace = plotTab->GetTrace( vectorName, traceType ); if( trace ) { trace->SetTraceColour( color.ToColour() ); plotTab->UpdateTraceStyle( trace ); plotTab->UpdatePlotColors(); OnModify(); } } else if( col == COL_CURSOR_1 || col == COL_CURSOR_2 ) { for( int ii = 0; ii < m_signalsGrid->GetNumberRows(); ++ii ) { signalName = m_signalsGrid->GetCellValue( ii, COL_SIGNAL_NAME ); vectorName = vectorNameFromSignalName( plotTab, signalName, &traceType ); int id = col == COL_CURSOR_1 ? 1 : 2; bool enable = ii == row && text == wxS( "1" ); plotTab->EnableCursor( vectorName, traceType, id, enable, signalName ); OnModify(); } // Update cursor checkboxes (which are really radio buttons) updateSignalsGrid(); } } void SIMULATOR_FRAME_UI::onCursorsGridCellChanged( wxGridEvent& aEvent ) { if( m_SuppressGridEvents > 0 ) return; SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ); if( !plotTab ) return; int row = aEvent.GetRow(); int col = aEvent.GetCol(); wxString text = m_cursorsGrid->GetCellValue( row, col ); wxString cursorName = m_cursorsGrid->GetCellValue( row, COL_CURSOR_NAME ); if( col == COL_CURSOR_X ) { CURSOR* cursor1 = nullptr; CURSOR* cursor2 = nullptr; for( const auto& [name, trace] : plotTab->GetTraces() ) { if( CURSOR* cursor = trace->GetCursor( 1 ) ) cursor1 = cursor; if( CURSOR* cursor = trace->GetCursor( 2 ) ) cursor2 = cursor; } double value = SPICE_VALUE( text ).ToDouble(); if( cursorName == wxS( "1" ) && cursor1 ) cursor1->SetCoordX( value ); else if( cursorName == wxS( "2" ) && cursor2 ) cursor2->SetCoordX( value ); else if( cursorName == _( "Diff" ) && cursor1 && cursor2 ) cursor2->SetCoordX( cursor1->GetCoords().x + value ); updatePlotCursors(); OnModify(); } else { wxFAIL_MSG( wxT( "All other columns are supposed to be read-only!" ) ); } } SPICE_VALUE_FORMAT SIMULATOR_FRAME_UI::GetMeasureFormat( int aRow ) const { SPICE_VALUE_FORMAT result; result.FromString( m_measurementsGrid->GetCellValue( aRow, COL_MEASUREMENT_FORMAT ) ); return result; } void SIMULATOR_FRAME_UI::SetMeasureFormat( int aRow, const SPICE_VALUE_FORMAT& aFormat ) { m_measurementsGrid->SetCellValue( aRow, COL_MEASUREMENT_FORMAT, aFormat.ToString() ); } void SIMULATOR_FRAME_UI::DeleteMeasurement( int aRow ) { if( aRow < ( m_measurementsGrid->GetNumberRows() - 1 ) ) m_measurementsGrid->DeleteRows( aRow, 1 ); } void SIMULATOR_FRAME_UI::onMeasurementsGridCellChanged( wxGridEvent& aEvent ) { SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ); if( !plotTab ) return; int row = aEvent.GetRow(); int col = aEvent.GetCol(); wxString text = m_measurementsGrid->GetCellValue( row, col ); if( col == COL_MEASUREMENT ) { UpdateMeasurement( row ); OnModify(); } else { wxFAIL_MSG( wxT( "All other columns are supposed to be read-only!" ) ); } // Always leave a single empty row for type-in int rowCount = (int) m_measurementsGrid->GetNumberRows(); int emptyRows = 0; for( row = rowCount - 1; row >= 0; row-- ) { if( m_measurementsGrid->GetCellValue( row, COL_MEASUREMENT ).IsEmpty() ) emptyRows++; else break; } if( emptyRows > 1 ) { int killRows = emptyRows - 1; m_measurementsGrid->DeleteRows( rowCount - killRows, killRows ); } else if( emptyRows == 0 ) { m_measurementsGrid->AppendRows( 1 ); } } void SIMULATOR_FRAME_UI::OnUpdateUI( wxUpdateUIEvent& event ) { if( SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ) ) { if( plotTab->GetLegendPosition() != plotTab->m_LastLegendPosition ) OnModify(); } } /** * The user measurement looks something like: * MAX V(out) * * We need to send ngspice a "MEAS" command with the analysis type, an output variable name, * and the signal name. For our example above, this looks something like: * MEAS TRAN meas_result_0 MAX V(out) * * This is also a good time to harvest the signal name prefix so we know what units to show on * the result. For instance, for: * MAX P(out) * we want to show: * 15W */ void SIMULATOR_FRAME_UI::UpdateMeasurement( int aRow ) { static wxRegEx measureParamsRegEx( wxT( "^" " *" "([a-zA-Z_]+)" " +" "([a-zA-Z]*)\\(([^\\)]+)\\)" ) ); SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ); if( !plotTab ) return; wxString text = m_measurementsGrid->GetCellValue( aRow, COL_MEASUREMENT ); if( text.IsEmpty() ) { m_measurementsGrid->SetCellValue( aRow, COL_MEASUREMENT_VALUE, wxEmptyString ); return; } wxString simType = simulator()->TypeToName( plotTab->GetSimType(), true ); wxString resultName = wxString::Format( wxS( "meas_result_%u" ), aRow ); wxString result = wxS( "?" ); if( measureParamsRegEx.Matches( text ) ) { wxString func = measureParamsRegEx.GetMatch( text, 1 ).Upper(); wxString signalType = measureParamsRegEx.GetMatch( text, 2 ).Upper(); wxString deviceName = measureParamsRegEx.GetMatch( text, 3 ); wxString units; SPICE_VALUE_FORMAT fmt = GetMeasureFormat( aRow ); if( signalType.EndsWith( wxS( "DB" ) ) ) { units = wxS( "dB" ); } else if( signalType.StartsWith( 'I' ) ) { units = wxS( "A" ); } else if( signalType.StartsWith( 'P' ) ) { units = wxS( "W" ); // Our syntax is different from ngspice for power signals text = func + " " + deviceName + ":power"; } else { units = wxS( "V" ); } if( func.EndsWith( wxS( "_AT" ) ) ) { if( plotTab->GetSimType() == ST_AC || plotTab->GetSimType() == ST_SP ) units = wxS( "Hz" ); else units = wxS( "s" ); } else if( func.StartsWith( wxS( "INTEG" ) ) ) { switch( plotTab->GetSimType() ) { case ST_TRAN: if ( signalType.StartsWith( 'P' ) ) units = wxS( "J" ); else units += wxS( ".s" ); break; case ST_AC: case ST_SP: case ST_DISTO: case ST_NOISE: case ST_FFT: case ST_SENS: // If there is a vector, it is frequency units += wxS( "·Hz" ); break; case ST_DC: // Could be a lot of things : V, A, deg C, ohm, ... case ST_OP: // There is no vector for integration case ST_PZ: // There is no vector for integration case ST_TF: // There is no vector for integration default: units += wxS( "·?" ); break; } } fmt.UpdateUnits( units ); SetMeasureFormat( aRow, fmt ); } if( m_simulatorFrame->SimFinished() ) { wxString cmd = wxString::Format( wxS( "meas %s %s %s" ), simType, resultName, text ); simulator()->Command( "echo " + cmd.ToStdString() ); simulator()->Command( cmd.ToStdString() ); std::vector resultVec = simulator()->GetGainVector( resultName.ToStdString() ); if( resultVec.size() > 0 ) result = SPICE_VALUE( resultVec[0] ).ToString( GetMeasureFormat( aRow ) ); } m_measurementsGrid->SetCellValue( aRow, COL_MEASUREMENT_VALUE, result ); } void SIMULATOR_FRAME_UI::AddTuner( const SCH_SHEET_PATH& aSheetPath, SCH_SYMBOL* aSymbol ) { SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ); if( !plotTab ) return; wxString ref = aSymbol->GetRef( &aSheetPath ); // Do not add multiple instances for the same component. for( TUNER_SLIDER* tuner : m_tuners ) { if( tuner->GetSymbolRef() == ref ) return; } const SPICE_ITEM* item = GetExporter()->FindItem( std::string( ref.ToUTF8() ) ); // Do nothing if the symbol is not tunable. if( !item || !item->model->GetTunerParam() ) return; try { TUNER_SLIDER* tuner = new TUNER_SLIDER( this, m_panelTuners, aSheetPath, aSymbol ); m_sizerTuners->Add( tuner ); m_tuners.push_back( tuner ); m_panelTuners->Layout(); OnModify(); } catch( const KI_PARAM_ERROR& e ) { DisplayErrorMessage( nullptr, e.What() ); } } void SIMULATOR_FRAME_UI::UpdateTunerValue( const SCH_SHEET_PATH& aSheetPath, const KIID& aSymbol, const wxString& aRef, const wxString& aValue ) { SCH_ITEM* item = aSheetPath.GetItem( aSymbol ); SCH_SYMBOL* symbol = dynamic_cast( item ); if( !symbol ) { DisplayErrorMessage( this, _( "Could not apply tuned value(s):" ) + wxS( " " ) + wxString::Format( _( "%s not found" ), aRef ) ); return; } NULL_REPORTER devnull; SIM_LIB_MGR mgr( &m_schematicFrame->Prj() ); SIM_MODEL& model = mgr.CreateModel( &aSheetPath, *symbol, devnull ).model; const SIM_MODEL::PARAM* tunerParam = model.GetTunerParam(); if( !tunerParam ) { DisplayErrorMessage( this, _( "Could not apply tuned value(s):" ) + wxS( " " ) + wxString::Format( _( "%s is not tunable" ), aRef ) ); return; } model.SetParamValue( tunerParam->info.name, std::string( aValue.ToUTF8() ) ); model.WriteFields( symbol->GetFields() ); m_schematicFrame->UpdateItem( symbol, false, true ); m_schematicFrame->OnModify(); } void SIMULATOR_FRAME_UI::RemoveTuner( TUNER_SLIDER* aTuner ) { m_tuners.remove( aTuner ); aTuner->Destroy(); m_panelTuners->Layout(); OnModify(); } void SIMULATOR_FRAME_UI::AddMeasurement( const wxString& aCmd ) { // -1 because the last one is for user input for( int i = 0; i < m_measurementsGrid->GetNumberRows(); i++ ) { if ( m_measurementsGrid->GetCellValue( i, COL_MEASUREMENT ) == aCmd ) return; // Don't create duplicates } SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ); if( !plotTab ) return; wxString simType = simulator()->TypeToName( plotTab->GetSimType(), true ); int row; for( row = 0; row < m_measurementsGrid->GetNumberRows(); ++row ) { if( m_measurementsGrid->GetCellValue( row, COL_MEASUREMENT ).IsEmpty() ) break; } if( !m_measurementsGrid->GetCellValue( row, COL_MEASUREMENT ).IsEmpty() ) { m_measurementsGrid->AppendRows( 1 ); row = m_measurementsGrid->GetNumberRows() - 1; } m_measurementsGrid->SetCellValue( row, COL_MEASUREMENT, aCmd ); SetMeasureFormat( row, { 2, wxS( "~V" ) } ); UpdateMeasurement( row ); OnModify(); // Always leave at least one empty row for type-in: row = m_measurementsGrid->GetNumberRows() - 1; if( !m_measurementsGrid->GetCellValue( row, COL_MEASUREMENT ).IsEmpty() ) m_measurementsGrid->AppendRows( 1 ); } void SIMULATOR_FRAME_UI::DoFourier( const wxString& aSignal, const wxString& aFundamental ) { wxString cmd = wxString::Format( wxS( "fourier %s %s" ), SPICE_VALUE( aFundamental ).ToSpiceString(), aSignal ); simulator()->Command( cmd.ToStdString() ); } const SPICE_CIRCUIT_MODEL* SIMULATOR_FRAME_UI::GetExporter() const { return circuitModel().get(); } void SIMULATOR_FRAME_UI::AddTrace( const wxString& aName, SIM_TRACE_TYPE aType ) { if( !GetCurrentSimTab() ) { m_simConsole->AppendText( _( "Error: no current simulation.\n" ) ); m_simConsole->SetInsertionPointEnd(); return; } SIM_TYPE simType = SPICE_CIRCUIT_MODEL::CommandToSimType( GetCurrentSimTab()->GetSimCommand() ); if( simType == ST_UNKNOWN ) { m_simConsole->AppendText( _( "Error: simulation type not defined.\n" ) ); m_simConsole->SetInsertionPointEnd(); return; } else if( !SIM_TAB::IsPlottable( simType ) ) { m_simConsole->AppendText( _( "Error: simulation type doesn't support plotting.\n" ) ); m_simConsole->SetInsertionPointEnd(); return; } SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ); wxCHECK( plotTab, /* void */ ); if( simType == ST_AC ) { updateTrace( aName, aType | SPT_AC_GAIN, plotTab ); updateTrace( aName, aType | SPT_AC_PHASE, plotTab ); } else if( simType == ST_SP ) { updateTrace( aName, aType | SPT_AC_GAIN, plotTab ); updateTrace( aName, aType | SPT_AC_PHASE, plotTab ); } else { updateTrace( aName, aType, plotTab ); } plotTab->GetPlotWin()->UpdateAll(); updateSignalsGrid(); OnModify(); } void SIMULATOR_FRAME_UI::SetUserDefinedSignals( const std::map& aNewSignals ) { for( size_t ii = 0; ii < m_plotNotebook->GetPageCount(); ++ii ) { SIM_PLOT_TAB* plotTab = dynamic_cast( m_plotNotebook->GetPage( ii ) ); if( !plotTab ) continue; for( const auto& [ id, existingSignal ] : m_userDefinedSignals ) { int traceType = SPT_UNKNOWN; wxString vectorName = vectorNameFromSignalName( plotTab, existingSignal, &traceType ); if( aNewSignals.count( id ) == 0 ) { if( plotTab->GetSimType() == ST_AC ) { for( int subType : { SPT_AC_GAIN, SPT_AC_PHASE } ) plotTab->DeleteTrace( vectorName, traceType | subType ); } else if( plotTab->GetSimType() == ST_SP ) { for( int subType : { SPT_SP_AMP, SPT_AC_PHASE } ) plotTab->DeleteTrace( vectorName, traceType | subType ); } else { plotTab->DeleteTrace( vectorName, traceType ); } } else { if( plotTab->GetSimType() == ST_AC ) { for( int subType : { SPT_AC_GAIN, SPT_AC_PHASE } ) { if( TRACE* trace = plotTab->GetTrace( vectorName, traceType | subType ) ) trace->SetName( aNewSignals.at( id ) ); } } else if( plotTab->GetSimType() == ST_SP ) { for( int subType : { SPT_SP_AMP, SPT_AC_PHASE } ) { if( TRACE* trace = plotTab->GetTrace( vectorName, traceType | subType ) ) trace->SetName( aNewSignals.at( id ) ); } } else { if( TRACE* trace = plotTab->GetTrace( vectorName, traceType ) ) trace->SetName( aNewSignals.at( id ) ); } } } } m_userDefinedSignals = aNewSignals; if( m_simulatorFrame->SimFinished() ) applyUserDefinedSignals(); rebuildSignalsList(); rebuildSignalsGrid( m_filter->GetValue() ); updateSignalsGrid(); updatePlotCursors(); OnModify(); } void SIMULATOR_FRAME_UI::updateTrace( const wxString& aVectorName, int aTraceType, SIM_PLOT_TAB* aPlotTab, std::vector* aDataX, bool aClearData ) { SIM_TYPE simType = SPICE_CIRCUIT_MODEL::CommandToSimType( aPlotTab->GetSimCommand() ); aTraceType &= aTraceType & SPT_Y_AXIS_MASK; aTraceType |= getXAxisType( simType ); wxString simVectorName = aVectorName; if( aTraceType & SPT_POWER ) simVectorName = simVectorName.AfterFirst( '(' ).BeforeLast( ')' ) + wxS( ":power" ); if( !SIM_TAB::IsPlottable( simType ) ) { // There is no plot to be shown simulator()->Command( wxString::Format( wxT( "print %s" ), aVectorName ).ToStdString() ); return; } std::vector data_x; std::vector data_y; if( !aDataX || aClearData ) aDataX = &data_x; // First, handle the x axis if( aDataX->empty() && !aClearData ) { wxString xAxisName( simulator()->GetXAxis( simType ) ); if( xAxisName.IsEmpty() ) return; *aDataX = simulator()->GetGainVector( (const char*) xAxisName.c_str() ); } unsigned int size = aDataX->size(); switch( simType ) { case ST_AC: if( aTraceType & SPT_AC_GAIN ) data_y = simulator()->GetGainVector( (const char*) simVectorName.c_str(), size ); else if( aTraceType & SPT_AC_PHASE ) data_y = simulator()->GetPhaseVector( (const char*) simVectorName.c_str(), size ); else wxFAIL_MSG( wxT( "Plot type missing AC_PHASE or AC_MAG bit" ) ); break; case ST_SP: if( aTraceType & SPT_SP_AMP ) data_y = simulator()->GetGainVector( (const char*) simVectorName.c_str(), size ); else if( aTraceType & SPT_AC_PHASE ) data_y = simulator()->GetPhaseVector( (const char*) simVectorName.c_str(), size ); else wxFAIL_MSG( wxT( "Plot type missing AC_PHASE or SPT_SP_AMP bit" ) ); break; case ST_DC: data_y = simulator()->GetGainVector( (const char*) simVectorName.c_str(), -1 ); break; case ST_NOISE: case ST_TRAN: case ST_FFT: data_y = simulator()->GetGainVector( (const char*) simVectorName.c_str(), size ); break; default: wxFAIL_MSG( wxT( "Unhandled plot type" ) ); } // If we did a two-source DC analysis, we need to split the resulting vector and add traces // for each input step SPICE_DC_PARAMS source1, source2; if( simType == ST_DC && circuitModel()->ParseDCCommand( aPlotTab->GetSimCommand(), &source1, &source2 ) && !source2.m_source.IsEmpty() ) { // Source 1 is the inner loop, so lets add traces for each Source 2 (outer loop) step SPICE_VALUE v = source2.m_vstart; size_t offset = 0; size_t outer = ( size_t )( ( source2.m_vend - v ) / source2.m_vincrement ).ToDouble(); size_t inner = aDataX->size() / ( outer + 1 ); wxASSERT( aDataX->size() % ( outer + 1 ) == 0 ); for( size_t idx = 0; idx <= outer; idx++ ) { if( TRACE* trace = aPlotTab->GetOrAddTrace( aVectorName, aTraceType ) ) { if( data_y.size() >= size ) { std::vector sub_x( aDataX->begin() + offset, aDataX->begin() + offset + inner ); std::vector sub_y( data_y.begin() + offset, data_y.begin() + offset + inner ); aPlotTab->SetTraceData( trace, sub_x, sub_y ); } } v = v + source2.m_vincrement; offset += inner; } } else if( TRACE* trace = aPlotTab->GetOrAddTrace( aVectorName, aTraceType ) ) { if( data_y.size() >= size ) aPlotTab->SetTraceData( trace, *aDataX, data_y ); } } void SIMULATOR_FRAME_UI::updateSignalsGrid() { SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ); for( int row = 0; row < m_signalsGrid->GetNumberRows(); ++row ) { wxString signalName = m_signalsGrid->GetCellValue( row, COL_SIGNAL_NAME ); int traceType = SPT_UNKNOWN; wxString vectorName = vectorNameFromSignalName( plotTab, signalName, &traceType ); if( TRACE* trace = plotTab ? plotTab->GetTrace( vectorName, traceType ) : nullptr ) { m_signalsGrid->SetCellValue( row, COL_SIGNAL_SHOW, wxS( "1" ) ); wxGridCellAttr* attr = new wxGridCellAttr; attr->SetRenderer( new GRID_CELL_COLOR_RENDERER( this ) ); attr->SetEditor( new GRID_CELL_COLOR_SELECTOR( this, m_signalsGrid ) ); attr->SetAlignment( wxALIGN_CENTER, wxALIGN_CENTER ); m_signalsGrid->SetAttr( row, COL_SIGNAL_COLOR, attr ); KIGFX::COLOR4D color( trace->GetPen().GetColour() ); m_signalsGrid->SetCellValue( row, COL_SIGNAL_COLOR, color.ToCSSString() ); attr = new wxGridCellAttr; attr->SetRenderer( new wxGridCellBoolRenderer() ); attr->SetReadOnly(); // not really; we delegate interactivity to GRID_TRICKS attr->SetAlignment( wxALIGN_CENTER, wxALIGN_CENTER ); m_signalsGrid->SetAttr( row, COL_CURSOR_1, attr ); attr = new wxGridCellAttr; attr->SetRenderer( new wxGridCellBoolRenderer() ); attr->SetReadOnly(); // not really; we delegate interactivity to GRID_TRICKS attr->SetAlignment( wxALIGN_CENTER, wxALIGN_CENTER ); m_signalsGrid->SetAttr( row, COL_CURSOR_2, attr ); if( trace->HasCursor( 1 ) ) m_signalsGrid->SetCellValue( row, COL_CURSOR_1, wxS( "1" ) ); else m_signalsGrid->SetCellValue( row, COL_CURSOR_1, wxEmptyString ); if( trace->HasCursor( 2 ) ) m_signalsGrid->SetCellValue( row, COL_CURSOR_2, wxS( "1" ) ); else m_signalsGrid->SetCellValue( row, COL_CURSOR_2, wxEmptyString ); } else { m_signalsGrid->SetCellValue( row, COL_SIGNAL_SHOW, wxEmptyString ); wxGridCellAttr* attr = new wxGridCellAttr; attr->SetReadOnly(); m_signalsGrid->SetAttr( row, COL_SIGNAL_COLOR, attr ); m_signalsGrid->SetCellValue( row, COL_SIGNAL_COLOR, wxEmptyString ); attr = new wxGridCellAttr; attr->SetReadOnly(); m_signalsGrid->SetAttr( row, COL_CURSOR_1, attr ); m_signalsGrid->SetCellValue( row, COL_CURSOR_1, wxEmptyString ); attr = new wxGridCellAttr; attr->SetReadOnly(); m_signalsGrid->SetAttr( row, COL_CURSOR_2, attr ); m_signalsGrid->SetCellValue( row, COL_CURSOR_2, wxEmptyString ); } } } void SIMULATOR_FRAME_UI::applyUserDefinedSignals() { auto quoteNetNames = [&]( wxString aExpression ) -> wxString { for( const auto& [netname, quotedNetname] : m_quotedNetnames ) aExpression.Replace( netname, quotedNetname ); return aExpression; }; for( const auto& [ id, signal ] : m_userDefinedSignals ) { std::string cmd = "let user{} = {}"; simulator()->Command( "echo " + fmt::format( cmd, id, signal.ToStdString() ) ); simulator()->Command( fmt::format( cmd, id, quoteNetNames( signal ).ToStdString() ) ); } } void SIMULATOR_FRAME_UI::applyTuners() { wxString errors; WX_STRING_REPORTER reporter( &errors ); for( const TUNER_SLIDER* tuner : m_tuners ) { SCH_SHEET_PATH sheetPath; wxString ref = tuner->GetSymbolRef(); KIID symbolId = tuner->GetSymbol( &sheetPath ); SCH_ITEM* schItem = sheetPath.GetItem( symbolId ); SCH_SYMBOL* symbol = dynamic_cast( schItem ); if( !symbol ) { reporter.Report( wxString::Format( _( "%s not found" ), ref ) ); continue; } const SPICE_ITEM* item = GetExporter()->FindItem( tuner->GetSymbolRef().ToStdString() ); if( !item || !item->model->GetTunerParam() ) { reporter.Report( wxString::Format( _( "%s is not tunable" ), ref ) ); continue; } double floatVal = tuner->GetValue().ToDouble(); simulator()->Command( item->model->SpiceGenerator().TunerCommand( *item, floatVal ) ); } if( reporter.HasMessage() ) DisplayErrorMessage( this, _( "Could not apply tuned value(s):" ) + wxS( "\n" ) + errors ); } bool SIMULATOR_FRAME_UI::LoadWorkbook( const wxString& aPath ) { wxTextFile file( aPath ); if( !file.Open() ) return false; wxString firstLine = file.GetFirstLine(); long dummy; bool legacy = firstLine.StartsWith( wxT( "version " ) ) || firstLine.ToLong( &dummy ); file.Close(); m_plotNotebook->DeleteAllPages(); m_userDefinedSignals.clear(); if( legacy ) { if( !loadLegacyWorkbook( aPath ) ) return false; } else { if( !loadJsonWorkbook( aPath ) ) return false; } rebuildSignalsList(); rebuildSignalsGrid( m_filter->GetValue() ); updateSignalsGrid(); updatePlotCursors(); rebuildMeasurementsGrid(); wxFileName filename( aPath ); filename.MakeRelativeTo( m_schematicFrame->Prj().GetProjectPath() ); // Remember the loaded workbook filename. simulator()->Settings()->SetWorkbookFilename( filename.GetFullPath() ); return true; } bool SIMULATOR_FRAME_UI::loadJsonWorkbook( const wxString& aPath ) { wxFFileInputStream fp( aPath, wxT( "rt" ) ); wxStdInputStream fstream( fp ); if( !fp.IsOk() ) return false; try { nlohmann::json js = nlohmann::json::parse( fstream, nullptr, true, true ); std::map traceInfo; for( const nlohmann::json& tab_js : js[ "tabs" ] ) { wxString simCommand; int simOptions = NETLIST_EXPORTER_SPICE::OPTION_ADJUST_PASSIVE_VALS; for( const nlohmann::json& cmd : tab_js[ "commands" ] ) { if( cmd == ".kicad adjustpaths" ) simOptions |= NETLIST_EXPORTER_SPICE::OPTION_ADJUST_INCLUDE_PATHS; else if( cmd == ".save all" ) simOptions |= NETLIST_EXPORTER_SPICE::OPTION_SAVE_ALL_VOLTAGES; else if( cmd == ".probe alli" ) simOptions |= NETLIST_EXPORTER_SPICE::OPTION_SAVE_ALL_CURRENTS; else if( cmd == ".probe allp" ) simOptions |= NETLIST_EXPORTER_SPICE::OPTION_SAVE_ALL_DISSIPATIONS; else simCommand += wxString( cmd.get() ).Trim(); } SIM_TAB* simTab = NewSimTab( simCommand ); SIM_PLOT_TAB* plotTab = dynamic_cast( simTab ); simTab->SetSimOptions( simOptions ); if( plotTab ) { if( tab_js.contains( "traces" ) ) traceInfo[plotTab] = tab_js[ "traces" ]; if( tab_js.contains( "measurements" ) ) { for( const nlohmann::json& m_js : tab_js[ "measurements" ] ) plotTab->Measurements().emplace_back( m_js[ "expr" ], m_js[ "format" ] ); } plotTab->SetDottedSecondary( tab_js[ "dottedSecondary" ] ); plotTab->ShowGrid( tab_js[ "showGrid" ] ); if( tab_js.contains( "fixedY1scale" ) ) { const nlohmann::json& scale_js = tab_js[ "fixedY1scale" ]; plotTab->SetY1Scale( true, scale_js[ "min" ], scale_js[ "max" ] ); plotTab->GetPlotWin()->LockY( true ); } if( tab_js.contains( "fixedY2scale" ) ) { const nlohmann::json& scale_js = tab_js[ "fixedY2scale" ]; plotTab->SetY2Scale( true, scale_js[ "min" ], scale_js[ "max" ] ); plotTab->GetPlotWin()->LockY( true ); } if( tab_js.contains( "fixedY3scale" ) ) { plotTab->EnsureThirdYAxisExists(); const nlohmann::json& scale_js = tab_js[ "fixedY3scale" ]; plotTab->SetY3Scale( true, scale_js[ "min" ], scale_js[ "max" ] ); plotTab->GetPlotWin()->LockY( true ); } if( tab_js.contains( "legend" ) ) { const nlohmann::json& legend_js = tab_js[ "legend" ]; plotTab->SetLegendPosition( wxPoint( legend_js[ "x" ], legend_js[ "y" ] ) ); plotTab->ShowLegend( true ); } if( tab_js.contains( "margins" ) ) { const nlohmann::json& margins_js = tab_js[ "margins" ]; plotTab->GetPlotWin()->SetMargins( margins_js[ "top" ], margins_js[ "right" ], margins_js[ "bottom" ], margins_js[ "left" ] ); } } } int ii = 0; if( js.contains( "user_defined_signals" ) ) { for( const nlohmann::json& signal_js : js[ "user_defined_signals" ] ) m_userDefinedSignals[ii++] = wxString( signal_js.get() ); } auto addCursor = [this]( SIM_PLOT_TAB* aPlotTab, TRACE* aTrace, const wxString& aSignalName, int aCursorId, const nlohmann::json& aCursor_js ) { if( aCursorId == 1 || aCursorId == 2 ) { CURSOR* cursor = new CURSOR( aTrace, aPlotTab ); cursor->SetName( aSignalName ); cursor->SetPen( wxPen( aTrace->GetTraceColour() ) ); cursor->SetCoordX( aCursor_js[ "position" ] ); aTrace->SetCursor( aCursorId, cursor ); aPlotTab->GetPlotWin()->AddLayer( cursor ); } m_cursorFormats[aCursorId-1][0].FromString( aCursor_js[ "x_format" ] ); m_cursorFormats[aCursorId-1][1].FromString( aCursor_js[ "y_format" ] ); }; for( const auto& [ plotTab, traces_js ] : traceInfo ) { for( const nlohmann::json& trace_js : traces_js ) { wxString signalName = trace_js[ "signal" ]; wxString vectorName = vectorNameFromSignalName( plotTab, signalName, nullptr ); TRACE* trace = plotTab->GetOrAddTrace( vectorName, trace_js[ "trace_type" ] ); if( trace ) { if( trace_js.contains( "cursor1" ) ) addCursor( plotTab, trace, signalName, 1, trace_js[ "cursor1" ] ); if( trace_js.contains( "cursor2" ) ) addCursor( plotTab, trace, signalName, 2, trace_js[ "cursor2" ] ); if( trace_js.contains( "cursorD" ) ) addCursor( plotTab, trace, signalName, 3, trace_js[ "cursorD" ] ); if( trace_js.contains( "color" ) ) { wxColour color; color.Set( wxString( trace_js["color"].get() ) ); trace->SetTraceColour( color ); plotTab->UpdateTraceStyle( trace ); } } } plotTab->UpdatePlotColors(); } if( SIM_TAB* simTab = GetCurrentSimTab() ) { m_simulatorFrame->LoadSimulator( simTab->GetSimCommand(), simTab->GetSimOptions() ); simTab = dynamic_cast( m_plotNotebook->GetPage( 0 ) ); wxCHECK( simTab, false ); simTab->SetLastSchTextSimCommand( js[ "last_sch_text_sim_command" ] ); } } catch( nlohmann::json::parse_error& error ) { wxLogTrace( traceSettings, wxT( "Json parse error reading %s: %s" ), aPath, error.what() ); return false; } return true; } bool SIMULATOR_FRAME_UI::SaveWorkbook( const wxString& aPath ) { updateMeasurementsFromGrid(); wxFileName filename = aPath; filename.SetExt( FILEEXT::WorkbookFileExtension ); wxFile file; file.Create( filename.GetFullPath(), true /* overwrite */ ); if( !file.IsOpened() ) return false; nlohmann::json tabs_js = nlohmann::json::array(); for( size_t i = 0; i < m_plotNotebook->GetPageCount(); i++ ) { SIM_TAB* simTab = dynamic_cast( m_plotNotebook->GetPage( i ) ); if( !simTab ) continue; SIM_TYPE simType = simTab->GetSimType(); nlohmann::json commands_js = nlohmann::json::array(); commands_js.push_back( simTab->GetSimCommand() ); int options = simTab->GetSimOptions(); if( options & NETLIST_EXPORTER_SPICE::OPTION_ADJUST_INCLUDE_PATHS ) commands_js.push_back( ".kicad adjustpaths" ); if( options & NETLIST_EXPORTER_SPICE::OPTION_SAVE_ALL_VOLTAGES ) commands_js.push_back( ".save all" ); if( options & NETLIST_EXPORTER_SPICE::OPTION_SAVE_ALL_CURRENTS ) commands_js.push_back( ".probe alli" ); if( options & NETLIST_EXPORTER_SPICE::OPTION_SAVE_ALL_DISSIPATIONS ) commands_js.push_back( ".probe allp" ); nlohmann::json tab_js = nlohmann::json( { { "analysis", SPICE_SIMULATOR::TypeToName( simType, true ) }, { "commands", commands_js } } ); if( SIM_PLOT_TAB* plotTab = dynamic_cast( simTab ) ) { nlohmann::json traces_js = nlohmann::json::array(); auto findSignalName = [&]( const wxString& aVectorName ) -> wxString { for( const auto& [ id, signal ] : m_userDefinedSignals ) { if( aVectorName == vectorNameFromSignalId( id ) ) return signal; } return aVectorName; }; for( const auto& [name, trace] : plotTab->GetTraces() ) { nlohmann::json trace_js = nlohmann::json( { { "trace_type", (int) trace->GetType() }, { "signal", findSignalName( trace->GetName() ) }, { "color", COLOR4D( trace->GetTraceColour() ).ToCSSString() } } ); if( CURSOR* cursor = trace->GetCursor( 1 ) ) { trace_js["cursor1"] = nlohmann::json( { { "position", cursor->GetCoords().x }, { "x_format", m_cursorFormats[0][0].ToString() }, { "y_format", m_cursorFormats[0][1].ToString() } } ); } if( CURSOR* cursor = trace->GetCursor( 2 ) ) { trace_js["cursor2"] = nlohmann::json( { { "position", cursor->GetCoords().x }, { "x_format", m_cursorFormats[1][0].ToString() }, { "y_format", m_cursorFormats[1][1].ToString() } } ); } if( trace->GetCursor( 1 ) || trace->GetCursor( 2 ) ) { trace_js["cursorD"] = nlohmann::json( { { "x_format", m_cursorFormats[2][0].ToString() }, { "y_format", m_cursorFormats[2][1].ToString() } } ); } traces_js.push_back( trace_js ); } nlohmann::json measurements_js = nlohmann::json::array(); for( const auto& [ measurement, format ] : plotTab->Measurements() ) { measurements_js.push_back( nlohmann::json( { { "expr", measurement }, { "format", format } } ) ); } tab_js[ "traces" ] = traces_js; tab_js[ "measurements" ] = measurements_js; tab_js[ "dottedSecondary" ] = plotTab->GetDottedSecondary(); tab_js[ "showGrid" ] = plotTab->IsGridShown(); double min, max; if( plotTab->GetY1Scale( &min, &max ) ) tab_js[ "fixedY1scale" ] = nlohmann::json( { { "min", min }, { "max", max } } ); if( plotTab->GetY2Scale( &min, &max ) ) tab_js[ "fixedY2scale" ] = nlohmann::json( { { "min", min }, { "max", max } } ); if( plotTab->GetY3Scale( &min, &max ) ) tab_js[ "fixedY3scale" ] = nlohmann::json( { { "min", min }, { "max", max } } ); if( plotTab->IsLegendShown() ) { tab_js[ "legend" ] = nlohmann::json( { { "x", plotTab->GetLegendPosition().x }, { "y", plotTab->GetLegendPosition().y } } ); } mpWindow* plotWin = plotTab->GetPlotWin(); tab_js[ "margins" ] = nlohmann::json( { { "left", plotWin->GetMarginLeft() }, { "right", plotWin->GetMarginRight() }, { "top", plotWin->GetMarginTop() }, { "bottom", plotWin->GetMarginBottom() } } ); } tabs_js.push_back( tab_js ); } nlohmann::json userDefinedSignals_js = nlohmann::json::array(); for( const auto& [ id, signal ] : m_userDefinedSignals ) userDefinedSignals_js.push_back( signal ); nlohmann::json js = nlohmann::json( { { "version", 6 }, { "tabs", tabs_js }, { "user_defined_signals", userDefinedSignals_js } } ); // Store the value of any simulation command found on the schematic sheet in a SCH_TEXT // object. If this changes we want to warn the user and ask them if they want to update // the corresponding panel's sim command. if( m_plotNotebook->GetPageCount() > 0 ) { SIM_TAB* simTab = dynamic_cast( m_plotNotebook->GetPage( 0 ) ); js[ "last_sch_text_sim_command" ] = simTab->GetLastSchTextSimCommand(); } std::stringstream buffer; buffer << std::setw( 2 ) << js << std::endl; bool res = file.Write( buffer.str() ); file.Close(); // Store the filename of the last saved workbook. if( res ) { filename.MakeRelativeTo( m_schematicFrame->Prj().GetProjectPath() ); simulator()->Settings()->SetWorkbookFilename( filename.GetFullPath() ); } return res; } SIM_TRACE_TYPE SIMULATOR_FRAME_UI::getXAxisType( SIM_TYPE aType ) const { switch( aType ) { /// @todo SPT_LOG_FREQUENCY case ST_AC: return SPT_LIN_FREQUENCY; case ST_SP: return SPT_LIN_FREQUENCY; case ST_FFT: return SPT_LIN_FREQUENCY; case ST_DC: return SPT_SWEEP; case ST_TRAN: return SPT_TIME; case ST_NOISE: return SPT_LIN_FREQUENCY; default: wxFAIL_MSG( wxS( "Unhandled simulation type" ) ); return SPT_UNKNOWN; } } wxString SIMULATOR_FRAME_UI::getNoiseSource() const { wxString output; wxString ref; wxString source; wxString scale; SPICE_VALUE pts; SPICE_VALUE fStart; SPICE_VALUE fStop; bool saveAll; if( GetCurrentSimTab() ) { circuitModel()->ParseNoiseCommand( GetCurrentSimTab()->GetSimCommand(), &output, &ref, &source, &scale, &pts, &fStart, &fStop, &saveAll ); } return source; } void SIMULATOR_FRAME_UI::ToggleDarkModePlots() { m_darkMode = !m_darkMode; // Rebuild the color list to plot traces SIM_PLOT_COLORS::FillDefaultColorList( m_darkMode ); // Now send changes to all SIM_PLOT_TAB for( size_t page = 0; page < m_plotNotebook->GetPageCount(); page++ ) { wxWindow* curPage = m_plotNotebook->GetPage( page ); // ensure it is truly a plot plotTab and not the (zero plots) placeholder // which is only SIM_TAB SIM_PLOT_TAB* plotTab = dynamic_cast( curPage ); if( plotTab ) plotTab->UpdatePlotColors(); } } void SIMULATOR_FRAME_UI::onPlotClose( wxAuiNotebookEvent& event ) { OnModify(); } void SIMULATOR_FRAME_UI::onPlotClosed( wxAuiNotebookEvent& event ) { CallAfter( [this]() { rebuildSignalsList(); rebuildSignalsGrid( m_filter->GetValue() ); updatePlotCursors(); SIM_TAB* panel = GetCurrentSimTab(); if( !panel || panel->GetSimType() != ST_OP ) { SCHEMATIC& schematic = m_schematicFrame->Schematic(); schematic.ClearOperatingPoints(); m_schematicFrame->RefreshOperatingPointDisplay(); m_schematicFrame->GetCanvas()->Refresh(); } } ); } void SIMULATOR_FRAME_UI::updateMeasurementsFromGrid() { if( SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ) ) { std::vector>& measurements = plotTab->Measurements(); measurements.clear(); for( int row = 0; row < m_measurementsGrid->GetNumberRows(); ++row ) { if( !m_measurementsGrid->GetCellValue( row, COL_MEASUREMENT ).IsEmpty() ) { measurements.emplace_back( m_measurementsGrid->GetCellValue( row, COL_MEASUREMENT ), m_measurementsGrid->GetCellValue( row, COL_MEASUREMENT_FORMAT ) ); } } } } void SIMULATOR_FRAME_UI::onPlotChanging( wxAuiNotebookEvent& event ) { updateMeasurementsFromGrid(); event.Skip(); } void SIMULATOR_FRAME_UI::OnPlotSettingsChanged() { rebuildSignalsList(); rebuildSignalsGrid( m_filter->GetValue() ); updatePlotCursors(); rebuildMeasurementsGrid(); for( int row = 0; row < m_measurementsGrid->GetNumberRows(); ++row ) UpdateMeasurement( row ); } void SIMULATOR_FRAME_UI::onPlotChanged( wxAuiNotebookEvent& event ) { if( SIM_TAB* simTab = GetCurrentSimTab() ) simulator()->Command( "setplot " + simTab->GetSpicePlotName().ToStdString() ); OnPlotSettingsChanged(); event.Skip(); } void SIMULATOR_FRAME_UI::rebuildMeasurementsGrid() { m_measurementsGrid->ClearRows(); if( SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ) ) { for( const auto& [ measurement, format ] : plotTab->Measurements() ) { int row = m_measurementsGrid->GetNumberRows(); m_measurementsGrid->AppendRows(); m_measurementsGrid->SetCellValue( row, COL_MEASUREMENT, measurement ); m_measurementsGrid->SetCellValue( row, COL_MEASUREMENT_FORMAT, format ); } if( plotTab->GetSimType() == ST_TRAN || plotTab->GetSimType() == ST_AC || plotTab->GetSimType() == ST_DC || plotTab->GetSimType() == ST_SP ) { m_measurementsGrid->AppendRows(); // Empty row at end } } } void SIMULATOR_FRAME_UI::onPlotDragged( wxAuiNotebookEvent& event ) { } std::shared_ptr SIMULATOR_FRAME_UI::simulator() const { return m_simulatorFrame->GetSimulator(); } std::shared_ptr SIMULATOR_FRAME_UI::circuitModel() const { return m_simulatorFrame->GetCircuitModel(); } void SIMULATOR_FRAME_UI::updatePlotCursors() { SUPPRESS_GRID_CELL_EVENTS raii( this ); m_cursorsGrid->ClearRows(); SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ); if( !plotTab ) return; // Update cursor values CURSOR* cursor1 = nullptr; wxString cursor1Name; wxString cursor1Units; CURSOR* cursor2 = nullptr; wxString cursor2Name; wxString cursor2Units; auto getUnitsY = [&]( TRACE* aTrace ) -> wxString { if( ( aTrace->GetType() & SPT_AC_PHASE ) || ( aTrace->GetType() & SPT_CURRENT ) ) return plotTab->GetUnitsY2(); else if( aTrace->GetType() & SPT_POWER ) return plotTab->GetUnitsY3(); else return plotTab->GetUnitsY1(); }; auto getNameY = [&]( TRACE* aTrace ) -> wxString { if( ( aTrace->GetType() & SPT_AC_PHASE ) || ( aTrace->GetType() & SPT_CURRENT ) ) return plotTab->GetLabelY2(); else if( aTrace->GetType() & SPT_POWER ) return plotTab->GetLabelY3(); else return plotTab->GetLabelY1(); }; auto formatValue = [this]( double aValue, int aCursorId, int aCol ) -> wxString { if( ( !m_simulatorFrame->SimFinished() && aCol == 1 ) || std::isnan( aValue ) ) return wxS( "--" ); else return SPICE_VALUE( aValue ).ToString( m_cursorFormats[ aCursorId ][ aCol ] ); }; for( const auto& [name, trace] : plotTab->GetTraces() ) { if( CURSOR* cursor = trace->GetCursor( 1 ) ) { cursor1 = cursor; cursor1Name = getNameY( trace ); cursor1Units = getUnitsY( trace ); wxRealPoint coords = cursor->GetCoords(); int row = m_cursorsGrid->GetNumberRows(); m_cursorFormats[0][0].UpdateUnits( plotTab->GetUnitsX() ); m_cursorFormats[0][1].UpdateUnits( cursor1Units ); m_cursorsGrid->AppendRows( 1 ); m_cursorsGrid->SetCellValue( row, COL_CURSOR_NAME, wxS( "1" ) ); m_cursorsGrid->SetCellValue( row, COL_CURSOR_SIGNAL, cursor->GetName() ); m_cursorsGrid->SetCellValue( row, COL_CURSOR_X, formatValue( coords.x, 0, 0 ) ); m_cursorsGrid->SetCellValue( row, COL_CURSOR_Y, formatValue( coords.y, 0, 1 ) ); break; } } for( const auto& [name, trace] : plotTab->GetTraces() ) { if( CURSOR* cursor = trace->GetCursor( 2 ) ) { cursor2 = cursor; cursor2Name = getNameY( trace ); cursor2Units = getUnitsY( trace ); wxRealPoint coords = cursor->GetCoords(); int row = m_cursorsGrid->GetNumberRows(); m_cursorFormats[1][0].UpdateUnits( plotTab->GetUnitsX() ); m_cursorFormats[1][1].UpdateUnits( cursor2Units ); m_cursorsGrid->AppendRows( 1 ); m_cursorsGrid->SetCellValue( row, COL_CURSOR_NAME, wxS( "2" ) ); m_cursorsGrid->SetCellValue( row, COL_CURSOR_SIGNAL, cursor->GetName() ); m_cursorsGrid->SetCellValue( row, COL_CURSOR_X, formatValue( coords.x, 1, 0 ) ); m_cursorsGrid->SetCellValue( row, COL_CURSOR_Y, formatValue( coords.y, 1, 1 ) ); break; } } if( cursor1 && cursor2 && cursor1Units == cursor2Units ) { wxRealPoint coords = cursor2->GetCoords() - cursor1->GetCoords(); wxString signal; m_cursorFormats[2][0].UpdateUnits( plotTab->GetUnitsX() ); m_cursorFormats[2][1].UpdateUnits( cursor1Units ); if( cursor1->GetName() == cursor2->GetName() ) signal = wxString::Format( wxS( "%s[2 - 1]" ), cursor2->GetName() ); else signal = wxString::Format( wxS( "%s - %s" ), cursor2->GetName(), cursor1->GetName() ); m_cursorsGrid->AppendRows( 1 ); m_cursorsGrid->SetCellValue( 2, COL_CURSOR_NAME, _( "Diff" ) ); m_cursorsGrid->SetCellValue( 2, COL_CURSOR_SIGNAL, signal ); m_cursorsGrid->SetCellValue( 2, COL_CURSOR_X, formatValue( coords.x, 2, 0 ) ); m_cursorsGrid->SetCellValue( 2, COL_CURSOR_Y, formatValue( coords.y, 2, 1 ) ); } // Set up the labels m_cursorsGrid->SetColLabelValue( COL_CURSOR_X, plotTab->GetLabelX() ); wxString valColName = _( "Value" ); if( !cursor1Name.IsEmpty() ) { if( cursor2Name.IsEmpty() || cursor1Name == cursor2Name ) valColName = cursor1Name; } else if( !cursor2Name.IsEmpty() ) { valColName = cursor2Name; } m_cursorsGrid->SetColLabelValue( COL_CURSOR_Y, valColName ); } void SIMULATOR_FRAME_UI::onPlotCursorUpdate( wxCommandEvent& aEvent ) { updatePlotCursors(); OnModify(); } void SIMULATOR_FRAME_UI::OnSimUpdate() { if( SIM_PLOT_TAB* plotTab = dynamic_cast( GetCurrentSimTab() ) ) plotTab->ResetScales( true ); m_simConsole->Clear(); // Do not export netlist, it is already stored in the simulator applyTuners(); m_refreshTimer.Start( REFRESH_INTERVAL, wxTIMER_ONE_SHOT ); } void SIMULATOR_FRAME_UI::OnSimReport( const wxString& aMsg ) { m_simConsole->AppendText( aMsg + "\n" ); m_simConsole->SetInsertionPointEnd(); } std::vector SIMULATOR_FRAME_UI::SimPlotVectors() const { std::vector signals; for( const std::string& vec : simulator()->AllVectors() ) signals.emplace_back( vec ); return signals; } std::vector SIMULATOR_FRAME_UI::Signals() const { std::vector signals; for( const wxString& signal : m_signals ) signals.emplace_back( signal ); for( const auto& [ id, signal ] : m_userDefinedSignals ) signals.emplace_back( signal ); sortSignals( signals ); return signals; } void SIMULATOR_FRAME_UI::OnSimRefresh( bool aFinal ) { if( aFinal ) m_refreshTimer.Stop(); SIM_TAB* simTab = GetCurrentSimTab(); if( !simTab ) return; SIM_TYPE simType = simTab->GetSimType(); wxString msg; if( aFinal ) applyUserDefinedSignals(); // If there are any signals plotted, update them if( SIM_TAB::IsPlottable( simType ) ) { simTab->SetSpicePlotName( simulator()->CurrentPlotName() ); if( simType == ST_NOISE && aFinal ) { m_simConsole->AppendText( _( "\n\nSimulation results:\n\n" ) ); m_simConsole->SetInsertionPointEnd(); // The simulator will create noise1 & noise2 on the first run, noise3 and noise4 // on the second, etc. The first plot for each run contains the spectral density // noise vectors and second contains the integrated noise. long number; simulator()->CurrentPlotName().Mid( 5 ).ToLong( &number ); for( const std::string& vec : simulator()->AllVectors() ) { std::vector val_list = simulator()->GetRealVector( vec, 1 ); wxString value = SPICE_VALUE( val_list[ 0 ] ).ToSpiceString(); msg.Printf( wxS( "%s: %sV\n" ), vec, value ); m_simConsole->AppendText( msg ); m_simConsole->SetInsertionPointEnd(); } simulator()->Command( fmt::format( "setplot noise{}", number - 1 ) ); simTab->SetSpicePlotName( simulator()->CurrentPlotName() ); } SIM_PLOT_TAB* plotTab = dynamic_cast( simTab ); wxCHECK_RET( plotTab, wxT( "not a SIM_PLOT_TAB" ) ); struct TRACE_INFO { wxString Vector; int TraceType; bool ClearData; }; std::map traceMap; for( const auto& [ name, trace ] : plotTab->GetTraces() ) traceMap[ trace ] = { wxEmptyString, SPT_UNKNOWN, false }; // NB: m_signals are already broken out into gain/phase, but m_userDefinedSignals are // as the user typed them for( const wxString& signal : m_signals ) { int traceType = SPT_UNKNOWN; wxString vectorName = vectorNameFromSignalName( plotTab, signal, &traceType ); if( TRACE* trace = plotTab->GetTrace( vectorName, traceType ) ) traceMap[ trace ] = { vectorName, traceType, false }; } for( const auto& [ id, signal ] : m_userDefinedSignals ) { int traceType = SPT_UNKNOWN; wxString vectorName = vectorNameFromSignalName( plotTab, signal, &traceType ); if( simType == ST_AC ) { int baseType = traceType &= ~( SPT_AC_GAIN | SPT_AC_PHASE ); for( int subType : { baseType | SPT_AC_GAIN, baseType | SPT_AC_PHASE } ) { if( TRACE* trace = plotTab->GetTrace( vectorName, subType ) ) traceMap[ trace ] = { vectorName, subType, !aFinal }; } } else if( simType == ST_SP ) { int baseType = traceType &= ~( SPT_SP_AMP | SPT_AC_PHASE ); for( int subType : { baseType | SPT_SP_AMP, baseType | SPT_AC_PHASE } ) { if( TRACE* trace = plotTab->GetTrace( vectorName, subType ) ) traceMap[trace] = { vectorName, subType, !aFinal }; } } else { if( TRACE* trace = plotTab->GetTrace( vectorName, traceType ) ) traceMap[ trace ] = { vectorName, traceType, !aFinal }; } } // Two passes so that DC-sweep sub-traces get deleted and re-created: for( const auto& [ trace, traceInfo ] : traceMap ) { if( traceInfo.Vector.IsEmpty() ) plotTab->DeleteTrace( trace ); } for( const auto& [ trace, info ] : traceMap ) { std::vector data_x; if( !info.Vector.IsEmpty() ) updateTrace( info.Vector, info.TraceType, plotTab, &data_x, info.ClearData ); } plotTab->GetPlotWin()->UpdateAll(); if( aFinal ) { for( int row = 0; row < m_measurementsGrid->GetNumberRows(); ++row ) UpdateMeasurement( row ); plotTab->ResetScales( true ); } plotTab->GetPlotWin()->Fit(); updatePlotCursors(); } else if( simType == ST_OP && aFinal ) { m_simConsole->AppendText( _( "\n\nSimulation results:\n\n" ) ); m_simConsole->SetInsertionPointEnd(); for( const std::string& vec : simulator()->AllVectors() ) { std::vector val_list = simulator()->GetRealVector( vec, 1 ); if( val_list.empty() ) continue; wxString value = SPICE_VALUE( val_list[ 0 ] ).ToSpiceString(); wxString signal; SIM_TRACE_TYPE type = circuitModel()->VectorToSignal( vec, signal ); const size_t tab = 25; //characters size_t padding = ( signal.length() < tab ) ? ( tab - signal.length() ) : 1; switch( type ) { case SPT_VOLTAGE: value.Append( wxS( "V" ) ); break; case SPT_CURRENT: value.Append( wxS( "A" ) ); break; case SPT_POWER: value.Append( wxS( "W" ) ); break; default: value.Append( wxS( "?" ) ); break; } msg.Printf( wxT( "%s%s\n" ), ( signal + wxT( ":" ) ).Pad( padding, wxUniChar( ' ' ) ), value ); m_simConsole->AppendText( msg ); m_simConsole->SetInsertionPointEnd(); if( signal.StartsWith( wxS( "V(" ) ) || signal.StartsWith( wxS( "I(" ) ) ) signal = signal.SubString( 2, signal.Length() - 2 ); m_schematicFrame->Schematic().SetOperatingPoint( signal, val_list.at( 0 ) ); } } else if( simType == ST_PZ && aFinal ) { m_simConsole->AppendText( _( "\n\nSimulation results:\n\n" ) ); m_simConsole->SetInsertionPointEnd(); simulator()->Command( "print all" ); } } void SIMULATOR_FRAME_UI::OnModify() { m_simulatorFrame->OnModify(); }