/****************************************************/ /* PCB EDITOR: autorouting and "graphics" routines. */ /****************************************************/ #include "fctsys.h" #include "gr_basic.h" #include "common.h" #include "pcbnew.h" #include "autorout.h" #include "zones.h" #include "trigo.h" #include "cell.h" int ToMatrixCoordinate( int aPhysicalCoordinate ); void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color ); void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer, int color, int op_logique ); static void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logique ); static void TraceFilledCercle( BOARD* Pcb, int cx, int cy, int rayon, int masque_layer, int color, int op_logique ); static void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logique ); /* Macro call to update cell. */ #define OP_CELL( layer, dy, dx ) \ { \ if( layer < 0 ) \ { \ WriteCell( dy, dx, BOTTOM, color ); \ if( Nb_Sides ) \ WriteCell( dy, dx, TOP, color ); \ } \ else \ { \ if( layer == Route_Layer_BOTTOM ) \ WriteCell( dy, dx, BOTTOM, color ); \ if( Nb_Sides ) \ if( layer == Route_Layer_TOP ) \ WriteCell( dy, dx, TOP, color ); \ } \ } /** Function ToMatrixCoordinate * compute the coordinate in the routing matrix from the real (board) value * @param aPhysicalCoordinate = value to convert * @return the coordinate relative to the matrix */ int ToMatrixCoordinate( int aPhysicalCoordinate ) { return aPhysicalCoordinate / g_GridRoutingSize; } /* Initialize a color value, the cells included in the board edge of the * pad surface by pt_pad, with the margin reserved for isolation and the * half width of the runway * Parameters: * Pt_pad: pointer to the description of the pad * color: mask write in cells * margin: add a value to the radius or half the score pad * op_logique: type of writing in the cell (WRITE, OR) */ void Place_1_Pad_Board( BOARD* Pcb, D_PAD* pt_pad, int color, int marge, int op_logique ) { int dx, dy; wxPoint shape_pos = pt_pad->ReturnShapePos();; dx = pt_pad->m_Size.x / 2; dx += marge; if( pt_pad->m_PadShape == PAD_CIRCLE ) { TraceFilledCercle( Pcb, shape_pos.x, shape_pos.y, dx, pt_pad->m_Masque_Layer, color, op_logique ); return; } dy = pt_pad->m_Size.y / 2; dy += marge; if( pt_pad->m_PadShape == PAD_TRAPEZOID ) { dx += abs( pt_pad->m_DeltaSize.y ) / 2; dy += abs( pt_pad->m_DeltaSize.x ) / 2; } if( ( pt_pad->m_Orient % 900 ) == 0 ) /* The pad is a rectangle * horizontally or vertically. */ { /* Orientation turned 90 deg. */ if( ( pt_pad->m_Orient == 900 ) || ( pt_pad->m_Orient == 2700 ) ) { EXCHG( dx, dy ); } TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx, shape_pos.y + dy, pt_pad->m_Masque_Layer, color, op_logique ); } else { TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx, shape_pos.y + dy, (int) pt_pad->m_Orient, pt_pad->m_Masque_Layer, color, op_logique ); } } /* Initialize a color value, the cells included in the board rea of the * circle center cx, cy. * Parameters: * radius: a value add to the radius or half the score pad * masque_layer: layer occupied * color: mask write in cells * op_logique: type of writing in the cell (WRITE, OR) */ void TraceFilledCercle( BOARD* Pcb, int cx, int cy, int rayon, int masque_layer, int color, int op_logique ) { int row, col; int ux0, uy0, ux1, uy1; int row_max, col_max, row_min, col_min; int trace = 0; float fdistmin, fdistx, fdisty; void (* WriteCell)( int, int, int, BoardCell ); int tstwrite = 0; int distmin; /* Determine occupied layer. */ /* Single routing layer on bitmap and BOTTOM * Route_Layer_B = Route_Layer_A */ if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] ) trace = 1; /* Trace on BOTTOM */ if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) if( Nb_Sides ) trace |= 2; /* Trace on TOP */ if( trace == 0 ) return; switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } cx -= Pcb->m_BoundaryBox.m_Pos.x; cy -= Pcb->m_BoundaryBox.m_Pos.y; distmin = rayon; /* Calculate the bounding rectangle of the circle. */ ux0 = cx - rayon; uy0 = cy - rayon; ux1 = cx + rayon; uy1 = cy + rayon; /* Calculate limit coordinates of cells belonging to the rectangle. */ row_max = uy1 / g_GridRoutingSize; col_max = ux1 / g_GridRoutingSize; row_min = uy0 / g_GridRoutingSize; // if (uy0 > row_min*g_GridRoutingSize // ) row_min++; col_min = ux0 / g_GridRoutingSize; // if (ux0 > col_min*g_GridRoutingSize // ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= (Nrows - 1) ) row_max = Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= (Ncols - 1) ) col_max = Ncols - 1; /* Calculate coordinate limits of cell belonging to the rectangle. */ if( row_min > row_max ) row_max = row_min; if( col_min > col_max ) col_max = col_min; fdistmin = (float) distmin * distmin; for( row = row_min; row <= row_max; row++ ) { fdisty = (float) ( cy - ( row * g_GridRoutingSize ) ); fdisty *= fdisty; for( col = col_min; col <= col_max; col++ ) { fdistx = (float) ( cx - ( col * g_GridRoutingSize ) ); fdistx *= fdistx; if( fdistmin <= ( fdistx + fdisty ) ) continue; if( trace & 1 ) WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) WriteCell( row, col, TOP, color ); tstwrite = 1; } } if( tstwrite ) return; /* If no cell has been written, it affects the 4 neighboring diagonal * (Adverse event: pad off grid in the center of the 4 neighboring * diagonal) */ distmin = g_GridRoutingSize / 2 + 1; fdistmin = ( (float) distmin * distmin ) * 2; /* Distance to center point * diagonally */ for( row = row_min; row <= row_max; row++ ) { fdisty = (float) ( cy - ( row * g_GridRoutingSize ) ); fdisty *= fdisty; for( col = col_min; col <= col_max; col++ ) { fdistx = (float) ( cx - ( col * g_GridRoutingSize ) ); fdistx *= fdistx; if( fdistmin <= ( fdistx + fdisty ) ) continue; if( trace & 1 ) WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) WriteCell( row, col, TOP, color ); } } } /* Draws a segment of track on the BOARD. */ void TraceSegmentPcb( BOARD* Pcb, TRACK* pt_segm, int color, int marge, int op_logique ) { int demi_pas, demi_largeur; int ux0, uy0, ux1, uy1; demi_pas = g_GridRoutingSize / 2; demi_largeur = ( pt_segm->m_Width / 2 ) + marge; /* Calculate the bounding rectangle of the segment (if H, V or Via) */ ux0 = pt_segm->m_Start.x - Pcb->m_BoundaryBox.m_Pos.x; uy0 = pt_segm->m_Start.y - Pcb->m_BoundaryBox.m_Pos.y; ux1 = pt_segm->m_End.x - Pcb->m_BoundaryBox.m_Pos.x; uy1 = pt_segm->m_End.y - Pcb->m_BoundaryBox.m_Pos.y; /* Test if VIA (filled circle was drawn) */ if( pt_segm->Type() == TYPE_VIA ) { int mask_layer = 0; if( pt_segm->IsOnLayer( Route_Layer_BOTTOM ) ) mask_layer = 1 << Route_Layer_BOTTOM; if( pt_segm->IsOnLayer( Route_Layer_TOP ) ) { if( mask_layer == 0 ) mask_layer = 1 << Route_Layer_TOP; else mask_layer = -1; } if( color == VIA_IMPOSSIBLE ) mask_layer = -1; if( mask_layer ) TraceFilledCercle( Pcb, pt_segm->m_Start.x, pt_segm->m_Start.y, demi_largeur, mask_layer, color, op_logique ); return; } int layer = pt_segm->GetLayer(); if( color == VIA_IMPOSSIBLE ) layer = -1; /* The segment is here a straight line or a circle or an arc.: */ if( pt_segm->m_Shape == S_CIRCLE ) { TraceCercle( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique ); return; } if( pt_segm->m_Shape == S_ARC ) { TraceArc( ux0, uy0, ux1, uy1, pt_segm->m_Param, demi_largeur, layer, color, op_logique ); return; } /* The segment is here a line segment. */ if( ( ux0 != ux1 ) && ( uy0 != uy1 ) ) // Segment tilts. { DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique ); return; } // The segment is horizontal or vertical. // DrawHVSegment(ux0,uy0,ux1,uy1,demi_largeur,layer,color,op_logique); // F4EXB 051018-01 DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique ); // F4EXB 051018-01 return; // F4EXB 051018-01 } /* Draws a line, if layer = -1 on all layers */ void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color, int op_logique ) { int dx, dy, lim; int cumul, inc, il, delta; void (* WriteCell)( int, int, int, BoardCell ); switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } if( x0 == x1 ) // Vertical. { if( y1 < y0 ) EXCHG( y0, y1 ); dy = y0 / g_GridRoutingSize; lim = y1 / g_GridRoutingSize; dx = x0 / g_GridRoutingSize; /* Clipping limits of board. */ if( ( dx < 0 ) || ( dx >= Ncols ) ) return; if( dy < 0 ) dy = 0; if( lim >= Nrows ) lim = Nrows - 1; for( ; dy <= lim; dy++ ) { OP_CELL( layer, dy, dx ); } return; } if( y0 == y1 ) // Horizontal { if( x1 < x0 ) EXCHG( x0, x1 ); dx = x0 / g_GridRoutingSize; lim = x1 / g_GridRoutingSize; dy = y0 / g_GridRoutingSize; /* Clipping limits of board. */ if( ( dy < 0 ) || ( dy >= Nrows ) ) return; if( dx < 0 ) dx = 0; if( lim >= Ncols ) lim = Ncols - 1; for( ; dx <= lim; dx++ ) { OP_CELL( layer, dy, dx ); } return; } /* Here is some perspective: using the algorithm LUCAS. */ if( abs( x1 - x0 ) >= abs( y1 - y0 ) ) /* segment slightly inclined/ */ { if( x1 < x0 ) { EXCHG( x1, x0 ); EXCHG( y1, y0 ); } dx = x0 / g_GridRoutingSize; lim = x1 / g_GridRoutingSize; dy = y0 / g_GridRoutingSize; inc = 1; if( y1 < y0 ) inc = -1; il = lim - dx; cumul = il / 2; delta = abs( y1 - y0 ) / g_GridRoutingSize; for( ; dx <= lim; ) { if( ( dx >= 0 ) && ( dy >= 0 ) && ( dx < Ncols ) && ( dy < Nrows ) ) { OP_CELL( layer, dy, dx ); } dx++; cumul += delta; if( cumul > il ) { cumul -= il; dy += inc; } } } else { if( y1 < y0 ) { EXCHG( x1, x0 ); EXCHG( y1, y0 ); } dy = y0 / g_GridRoutingSize; lim = y1 / g_GridRoutingSize; dx = x0 / g_GridRoutingSize; inc = 1; if( x1 < x0 ) inc = -1; il = lim - dy; cumul = il / 2; delta = abs( x1 - x0 ) / g_GridRoutingSize; for( ; dy <= lim; ) { if( ( dx >= 0 ) && ( dy >= 0 ) && ( dx < Ncols ) && ( dy < Nrows ) ) { OP_CELL( layer, dy, dx ); } dy++; cumul += delta; if( cumul > il ) { cumul -= il; dx += inc; } } } } /* Overloaded functions. * * Uses the color value of all cells included in the board coordinate of * the rectangle ux0, uy0 (top left corner) * A UX1, UY1 (bottom right corner) * The rectangle is horizontal (or vertical) * Contact PCBs. */ void TraceFilledRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1, int masque_layer, int color, int op_logique ) { int row, col; int row_min, row_max, col_min, col_max; int trace = 0; void (* WriteCell)( int, int, int, BoardCell ); if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] ) trace = 1; /* Trace on BOTTOM */ if( ( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) && Nb_Sides ) trace |= 2; /* Trace on TOP */ if( trace == 0 ) return; switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y; ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y; /* Calculating limits coord cells belonging to the rectangle. */ row_max = uy1 / g_GridRoutingSize; col_max = ux1 / g_GridRoutingSize; row_min = uy0 / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize ) row_min++; col_min = ux0 / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= ( Nrows - 1 ) ) row_max = Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= ( Ncols - 1 ) ) col_max = Ncols - 1; for( row = row_min; row <= row_max; row++ ) { for( col = col_min; col <= col_max; col++ ) { if( trace & 1 ) WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) WriteCell( row, col, TOP, color ); } } } /* Overloaded functions. * * Uses the color value of all cells included in the board coordinate of the * rectangle ux0, uy0 (top right corner) * a UX1, UY1 (lower left corner) * the rectangle is the value of turning angle (in degrees 0.1) * contact PCBs. */ void TraceFilledRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1, int angle, int masque_layer, int color, int op_logique ) { int row, col; int cx, cy; /* Center of rectangle */ int rayon; /* Radius of the circle */ int row_min, row_max, col_min, col_max; int rotrow, rotcol; int trace = 0; void (* WriteCell)( int, int, int, BoardCell ); if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] ) trace = 1; /* Trace on BOTTOM */ if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) if( Nb_Sides ) trace |= 2; /* Trace on TOP */ if( trace == 0 ) return; switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y; ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y; cx = (ux0 + ux1) / 2; cy = (uy0 + uy1) / 2; rayon = (int) sqrt( (double) ( cx - ux0 ) * ( cx - ux0 ) + (double) ( cy - uy0 ) * ( cy - uy0 ) ); /* Calculating coordinate limits belonging to the rectangle. */ row_max = ( cy + rayon ) / g_GridRoutingSize; col_max = ( cx + rayon ) / g_GridRoutingSize; row_min = ( cy - rayon ) / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize ) row_min++; col_min = ( cx - rayon ) / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize ) col_min++; if( row_min < 0 ) row_min = 0; if( row_max >= ( Nrows - 1 ) ) row_max = Nrows - 1; if( col_min < 0 ) col_min = 0; if( col_max >= ( Ncols - 1 ) ) col_max = Ncols - 1; for( row = row_min; row <= row_max; row++ ) { for( col = col_min; col <= col_max; col++ ) { rotrow = row * g_GridRoutingSize; rotcol = col * g_GridRoutingSize; RotatePoint( &rotcol, &rotrow, cx, cy, -angle ); if( rotrow <= uy0 ) continue; if( rotrow >= uy1 ) continue; if( rotcol <= ux0 ) continue; if( rotcol >= ux1 ) continue; if( trace & 1 ) WriteCell( row, col, BOTTOM, color ); if( trace & 2 ) WriteCell( row, col, TOP, color ); } } } /* Fills all cells BOARD contained in the segment * half-width lg, org ux, ux end y0, y1 is set to color. * coordinates in PCB units (0.1 million) relating to the origin * pt_pcb-> m_PcbBox.m_Xmin, Y's board. */ void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logique ) { int row, col; int inc; int row_max, col_max, row_min, col_min; int demi_pas; void (* WriteCell)( int, int, int, BoardCell ); int angle; int cx, cy, dx, dy; switch( op_logique ) { default: case WRITE_CELL: WriteCell = SetCell; break; case WRITE_OR_CELL: WriteCell = OrCell; break; case WRITE_XOR_CELL: WriteCell = XorCell; break; case WRITE_AND_CELL: WriteCell = AndCell; break; case WRITE_ADD_CELL: WriteCell = AddCell; break; } /* Make coordinate ux1 tj > ux0 to simplify calculations */ if( ux1 < ux0 ) { EXCHG( ux1, ux0 ); EXCHG( uy1, uy0 ); } /* Calculating the incrementing the Y axis */ inc = 1; if( uy1 < uy0 ) inc = -1; demi_pas = g_GridRoutingSize / 2; col_min = ( ux0 - lg ) / g_GridRoutingSize; if( col_min < 0 ) col_min = 0; col_max = ( ux1 + lg + demi_pas ) / g_GridRoutingSize; if( col_max > ( Ncols - 1 ) ) col_max = Ncols - 1; if( inc > 0 ) { row_min = ( uy0 - lg ) / g_GridRoutingSize; row_max = ( uy1 + lg + demi_pas ) / g_GridRoutingSize; } else { row_min = ( uy1 - lg ) / g_GridRoutingSize; row_max = ( uy0 + lg + demi_pas ) / g_GridRoutingSize; } if( row_min < 0 ) row_min = 0; if( row_min > ( Nrows - 1 ) ) row_min = Nrows - 1; if( row_max < 0 ) row_max = 0; if( row_max > ( Nrows - 1 ) ) row_max = Nrows - 1; dx = ux1 - ux0; dy = uy1 - uy0; if( dx ) angle = (int) ( atan2( (double) dy, (double) dx ) * 1800 / M_PI ); else { angle = 900; if( dy < 0 ) angle = -900; } RotatePoint( &dx, &dy, angle ); /* dx = length, dy = 0 */ for( col = col_min; col <= col_max; col++ ) { int cxr; cxr = ( col * g_GridRoutingSize ) - ux0; for( row = row_min; row <= row_max; row++ ) { cy = (row * g_GridRoutingSize) - uy0; cx = cxr; RotatePoint( &cx, &cy, angle ); if( abs( cy ) > lg ) continue; /* The point is too far on the Y axis. */ /* This point a test is close to the segment: the position * along the X axis must be tested. */ if( ( cx >= 0 ) && ( cx <= dx ) ) { OP_CELL( layer, row, col ); continue; } /* Examination of extremities are rounded. */ if( ( cx < 0 ) && ( cx >= -lg ) ) { if( ( ( cx * cx ) + ( cy * cy ) ) <= ( lg * lg ) ) OP_CELL( layer, row, col ); continue; } if( ( cx > dx ) && ( cx <= ( dx + lg ) ) ) { if( ( ( ( cx - dx ) * ( cx - dx ) ) + ( cy * cy ) ) <= ( lg * lg ) ) OP_CELL( layer, row, col ); continue; } } } } /* Fills all cells BOARD contained in the circle * half-width lg center ux, ux through y0, y1 is set to color. * coord in PCB units (0.1 million) relating to the origin * pt_pcb-> m_PcbBox.m_Xmin, Y's board. */ void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer, int color, int op_logique ) { int rayon, nb_segm; int x0, y0, // Starting point of the current segment trace. x1, y1; // End point. int ii; int angle; rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) ); x0 = x1 = rayon; y0 = y1 = 0; if( lg < 1 ) lg = 1; nb_segm = ( 2 * rayon ) / lg; if( nb_segm < 5 ) nb_segm = 5; if( nb_segm > 100 ) nb_segm = 100; for( ii = 1; ii < nb_segm; ii++ ) { angle = (3600 * ii) / nb_segm; x1 = (int) ( rayon * fcosinus[angle] ); y1 = (int) ( rayon * fsinus[angle] ); DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logique ); x0 = x1; y0 = y1; } DrawSegmentQcq( x1 + ux0, y1 + uy0, ux0 + rayon, uy0, lg, layer, color, op_logique ); } /* Fills all cells BOARD contained in the arc of "L" angle * half-width lg ux center, starting in ux y0, y1 is set to color. * coord in PCB units (0.1 million) relating to the origin * Pt_pcb->m_PcbBox.m_Xmin, Y's board. */ void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer, int color, int op_logique ) { int rayon, nb_segm; int x0, y0, // Starting point of the current segment trace x1, y1; // End point int ii; int angle, StAngle; rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) ); x0 = ux1 - ux0; y0 = uy1 - uy0; StAngle = ArcTangente( uy1 - uy0, ux1 - ux0 ); if( lg < 1 ) lg = 1; nb_segm = ( 2 * rayon ) / lg; nb_segm = ( nb_segm * abs( ArcAngle ) ) / 3600; if( nb_segm < 5 ) nb_segm = 5; if( nb_segm > 100 ) nb_segm = 100; for( ii = 1; ii <= nb_segm; ii++ ) { angle = ( ArcAngle * ii ) / nb_segm; angle += StAngle; while( angle >= 3600 ) angle -= 3600; while( angle < 0 ) angle += 3600; x1 = (int) ( rayon * fcosinus[angle] ); y1 = (int) ( rayon * fsinus[angle] ); DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logique ); x0 = x1; y0 = y1; } // DrawSegmentQcq(x1+ux0,y1+uy0, ux0+rayon, uy0,lg,layer, color, // op_logique); }