/* * KiRouter - a push-and-(sometimes-)shove PCB router * * Copyright (C) 2013-2014 CERN * Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors. * Author: Tomasz Wlostowski * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include "pns_walkaround.h" #include "pns_optimizer.h" #include "pns_utils.h" #include "pns_router.h" #include "pns_debug_decorator.h" namespace PNS { void WALKAROUND::start( const LINE& aInitialPath ) { m_iteration = 0; m_iterationLimit = 50; } NODE::OPT_OBSTACLE WALKAROUND::nearestObstacle( const LINE& aPath ) { NODE::OPT_OBSTACLE obs = m_world->NearestObstacle( &aPath, m_itemMask, m_restrictedSet.empty() ? nullptr : &m_restrictedSet ); if( m_restrictedSet.empty() ) return obs; else if( obs && m_restrictedSet.find ( obs->m_item ) != m_restrictedSet.end() ) return obs; return NODE::OPT_OBSTACLE(); } WALKAROUND::WALKAROUND_STATUS WALKAROUND::singleStep( LINE& aPath, bool aWindingDirection ) { OPT& current_obs = aWindingDirection ? m_currentObstacle[0] : m_currentObstacle[1]; if( !current_obs ) return DONE; VECTOR2I initialLast = aPath.CPoint( -1 ); SHAPE_LINE_CHAIN path_walk; bool s_cw = aPath.Walkaround( current_obs->m_hull, path_walk, aWindingDirection ); PNS_DBG( Dbg(), BeginGroup, "hull/walk" ); char name[128]; snprintf( name, sizeof( name ), "hull-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration ); PNS_DBG( Dbg(), AddLine, current_obs->m_hull, RED, 1, name ); snprintf( name, sizeof( name ), "path-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration ); PNS_DBG( Dbg(), AddLine, aPath.CLine(), GREEN, 1, name ); snprintf( name, sizeof( name ), "result-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration ); PNS_DBG( Dbg(), AddLine, path_walk, BLUE, 10000, name ); PNS_DBG( Dbg(), Message, wxString::Format( "Stat cw %d", !!s_cw ) ); PNS_DBGN( Dbg(), EndGroup ); path_walk.Simplify(); aPath.SetShape( path_walk ); // If the end of the line is inside an obstacle, additional walkaround iterations are not // going to help. Exit now to prevent pegging the iteration limiter and causing lag. if( current_obs && current_obs->m_hull.PointInside( initialLast ) && !current_obs->m_hull.PointOnEdge( initialLast ) ) { return ALMOST_DONE; } current_obs = nearestObstacle( LINE( aPath, path_walk ) ); return IN_PROGRESS; } const WALKAROUND::RESULT WALKAROUND::Route( const LINE& aInitialPath ) { LINE path_cw( aInitialPath ), path_ccw( aInitialPath ); WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS; SHAPE_LINE_CHAIN best_path; RESULT result; // special case for via-in-the-middle-of-track placement if( aInitialPath.PointCount() <= 1 ) { if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(), m_itemMask ) ) return RESULT( STUCK, STUCK ); return RESULT( DONE, DONE, aInitialPath, aInitialPath ); } start( aInitialPath ); m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath ); m_recursiveBlockageCount = 0; result.lineCw = aInitialPath; result.lineCcw = aInitialPath; if( m_forceWinding ) { s_cw = m_forceCw ? IN_PROGRESS : STUCK; s_ccw = m_forceCw ? STUCK : IN_PROGRESS; m_forceSingleDirection = true; } else { m_forceSingleDirection = false; } // In some situations, there isn't a trivial path (or even a path at all). Hitting the // iteration limit causes lag, so we can exit out early if the walkaround path gets very long // compared with the initial path. If the length exceeds the initial length times this factor, // fail out. const int maxWalkDistFactor = 10; long long lengthLimit = aInitialPath.CLine().Length() * maxWalkDistFactor; while( m_iteration < m_iterationLimit ) { if( s_cw != STUCK && s_cw != ALMOST_DONE ) s_cw = singleStep( path_cw, true ); if( s_ccw != STUCK && s_ccw != ALMOST_DONE ) s_ccw = singleStep( path_ccw, false ); if( s_cw != IN_PROGRESS ) { result.lineCw = path_cw; result.statusCw = s_cw; } if( s_ccw != IN_PROGRESS ) { result.lineCcw = path_ccw; result.statusCcw = s_ccw; } if( s_cw != IN_PROGRESS && s_ccw != IN_PROGRESS ) break; // Safety valve if( path_cw.Line().Length() > lengthLimit && path_ccw.Line().Length() > lengthLimit ) break; m_iteration++; } if( s_cw == IN_PROGRESS ) { result.lineCw = path_cw; result.statusCw = ALMOST_DONE; } if( s_ccw == IN_PROGRESS ) { result.lineCcw = path_ccw; result.statusCcw = ALMOST_DONE; } if( result.lineCw.SegmentCount() < 1 || result.lineCw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) ) { result.statusCw = STUCK; } if( result.lineCw.PointCount() > 0 && result.lineCw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) ) { result.statusCw = ALMOST_DONE; } if( result.lineCcw.SegmentCount() < 1 || result.lineCcw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) ) { result.statusCcw = STUCK; } if( result.lineCcw.PointCount() > 0 && result.lineCcw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) ) { result.statusCcw = ALMOST_DONE; } return result; } WALKAROUND::WALKAROUND_STATUS WALKAROUND::Route( const LINE& aInitialPath, LINE& aWalkPath, bool aOptimize ) { LINE path_cw( aInitialPath ), path_ccw( aInitialPath ); WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS; SHAPE_LINE_CHAIN best_path; // special case for via-in-the-middle-of-track placement if( aInitialPath.PointCount() <= 1 ) { if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(), m_itemMask ) ) return STUCK; aWalkPath = aInitialPath; return DONE; } start( aInitialPath ); m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath ); m_recursiveBlockageCount = 0; aWalkPath = aInitialPath; if( m_forceWinding ) { s_cw = m_forceCw ? IN_PROGRESS : STUCK; s_ccw = m_forceCw ? STUCK : IN_PROGRESS; m_forceSingleDirection = true; } else { m_forceSingleDirection = false; } while( m_iteration < m_iterationLimit ) { if( s_cw != STUCK ) s_cw = singleStep( path_cw, true ); if( s_ccw != STUCK ) s_ccw = singleStep( path_ccw, false ); if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw ); else aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw ); break; } else if( s_cw == DONE && !m_forceLongerPath ) { aWalkPath = path_cw; break; } else if( s_ccw == DONE && !m_forceLongerPath ) { aWalkPath = path_ccw; break; } m_iteration++; } if( m_iteration == m_iterationLimit ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw ); else aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw ); } aWalkPath.Line().Simplify(); if( aWalkPath.SegmentCount() < 1 ) return STUCK; if( aWalkPath.CPoint( -1 ) != aInitialPath.CPoint( -1 ) ) return ALMOST_DONE; if( aWalkPath.CPoint( 0 ) != aInitialPath.CPoint( 0 ) ) return STUCK; WALKAROUND_STATUS st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK; if( st == DONE ) { if( aOptimize ) OPTIMIZER::Optimize( &aWalkPath, OPTIMIZER::MERGE_OBTUSE, m_world ); } return st; } }