/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright 2012 Torsten Hueter, torstenhtr gmx.de * Copyright 2017-2021 Kicad Developers, see AUTHORS.txt for contributors. * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include using namespace KIGFX; #define TS( string ) wxString( _HKI( string ) ).ToStdString() // We can't have this as a plain static variable, because it is referenced during the initialization // of other static variables, so we must initialize it explicitly on first use. const StructColors* colorRefs() { static StructColors s_ColorRefs[NBCOLORS] = { { 0, 0, 0, BLACK, TS( "Black" ), DARKDARKGRAY }, { 72, 72, 72, DARKDARKGRAY, TS( "Gray 1" ), DARKGRAY }, { 132, 132, 132, DARKGRAY, TS( "Gray 2" ), LIGHTGRAY }, { 194, 194, 194, LIGHTGRAY, TS( "Gray 3" ), WHITE }, { 255, 255, 255, WHITE, TS( "White" ), WHITE }, { 194, 255, 255, LIGHTYELLOW, TS( "L.Yellow" ), WHITE }, { 191, 229, 255, LIGHTERORANGE, TS( "L.Orange" ), WHITE }, { 72, 0, 0, DARKBLUE, TS( "Blue 1" ), BLUE }, { 0, 72, 0, DARKGREEN, TS( "Green 1" ), GREEN }, { 72, 72, 0, DARKCYAN, TS( "Cyan 1" ), CYAN }, { 0, 0, 72, DARKRED, TS( "Red 1" ), RED }, { 72, 0, 72, DARKMAGENTA, TS( "Magenta 1" ), MAGENTA }, { 0, 72, 72, DARKBROWN, TS( "Brown 1" ), BROWN }, { 0, 77, 128, DARKORANGE, TS( "Orange 1" ), ORANGE }, { 132, 0, 0, BLUE, TS( "Blue 2" ), LIGHTBLUE }, { 0, 132, 0, GREEN, TS( "Green 2" ), LIGHTGREEN }, { 132, 132, 0, CYAN, TS( "Cyan 2" ), LIGHTCYAN }, { 0, 0, 132, RED, TS( "Red 2" ), LIGHTRED }, { 132, 0, 132, MAGENTA, TS( "Magenta 2" ), LIGHTMAGENTA }, { 0, 132, 132, BROWN, TS( "Brown 2" ), YELLOW }, { 0, 102, 204, ORANGE, TS( "Orange 2" ), LIGHTORANGE }, { 194, 0, 0, LIGHTBLUE, TS( "Blue 3" ), PUREBLUE, }, { 0, 194, 0, LIGHTGREEN, TS( "Green 3" ), PUREGREEN }, { 194, 194, 0, LIGHTCYAN, TS( "Cyan 3" ), PURECYAN }, { 0, 0, 194, LIGHTRED, TS( "Red 3" ), PURERED }, { 194, 0, 194, LIGHTMAGENTA, TS( "Magenta 3" ), PUREMAGENTA }, { 0, 194, 194, YELLOW, TS( "Yellow 3" ), PUREYELLOW }, { 0, 133, 221, LIGHTORANGE, TS( "Orange 3" ), PUREORANGE }, { 255, 0, 0, PUREBLUE, TS( "Blue 4" ), WHITE }, { 0, 255, 0, PUREGREEN, TS( "Green 4" ), WHITE }, { 255, 255, 0, PURECYAN, TS( "Cyan 4" ), WHITE }, { 0, 0, 255, PURERED, TS( "Red 4" ), WHITE }, { 255, 0, 255, PUREMAGENTA, TS( "Magenta 4" ), WHITE }, { 0, 255, 255, PUREYELLOW, TS( "Yellow 4" ), WHITE }, { 0, 153, 255, PUREORANGE, TS( "Orange 4" ), WHITE }, }; return s_ColorRefs; } COLOR4D::COLOR4D( EDA_COLOR_T aColor ) { if( aColor <= UNSPECIFIED_COLOR || aColor >= NBCOLORS ) { *this = COLOR4D::UNSPECIFIED; return; } int candidate = 0; for( ; candidate < NBCOLORS; ++candidate ) { if( colorRefs()[candidate].m_Numcolor == aColor ) break; } if( candidate >= NBCOLORS ) { *this = COLOR4D::UNSPECIFIED; return; } r = colorRefs()[candidate].m_Red / 255.0; g = colorRefs()[candidate].m_Green / 255.0; b = colorRefs()[candidate].m_Blue / 255.0; a = 1.0; } #ifdef WX_COMPATIBILITY COLOR4D::COLOR4D( const wxColour& aColor ) { r = aColor.Red() / 255.0; g = aColor.Green() / 255.0; b = aColor.Blue() / 255.0; a = aColor.Alpha() / 255.0; } bool COLOR4D::SetFromWxString( const wxString& aColorString ) { wxColour c; if( c.Set( aColorString ) ) { r = c.Red() / 255.0; g = c.Green() / 255.0; b = c.Blue() / 255.0; a = c.Alpha() / 255.0; return true; } return false; } wxString COLOR4D::ToWxString( long flags ) const { wxColour c = ToColour(); return c.GetAsString( flags ); } bool COLOR4D::SetFromHexString( const wxString& aColorString ) { wxString str = aColorString; str.Trim( true ); str.Trim( false ); if( str.length() < 7 || str.GetChar( 0 ) != '#' ) return false; unsigned long tmp; if( wxSscanf( str.wx_str() + 1, wxT( "%lx" ), &tmp ) != 1 ) return false; if( str.length() >= 9 ) { r = ( (tmp >> 24) & 0xFF ) / 255.0; g = ( (tmp >> 16) & 0xFF ) / 255.0; b = ( (tmp >> 8) & 0xFF ) / 255.0; a = ( tmp & 0xFF ) / 255.0; } else { r = ( (tmp >> 16) & 0xFF ) / 255.0; g = ( (tmp >> 8) & 0xFF ) / 255.0; b = ( tmp & 0xFF ) / 255.0; a = 1.0; } return true; } wxString COLOR4D::ToHexString() const { return wxString::Format( wxT("#%02X%02X%02X%02X" ), KiROUND( r * 255.0 ), KiROUND( g * 255.0 ), KiROUND( b * 255.0 ), KiROUND( a * 255.0 ) ); } wxColour COLOR4D::ToColour() const { using CHAN_T = wxColourBase::ChannelType; const wxColour colour( static_cast( r * 255 + 0.5 ), static_cast( g * 255 + 0.5 ), static_cast( b * 255 + 0.5 ), static_cast( a * 255 + 0.5 ) ); return colour; } COLOR4D COLOR4D::LegacyMix( const COLOR4D& aColor ) const { COLOR4D candidate; // Blend the two colors (i.e. OR the RGB values) candidate.r = ( (unsigned) ( 255.0 * r ) | (unsigned) ( 255.0 * aColor.r ) ) / 255.0, candidate.g = ( (unsigned) ( 255.0 * g ) | (unsigned) ( 255.0 * aColor.g ) ) / 255.0, candidate.b = ( (unsigned) ( 255.0 * b ) | (unsigned) ( 255.0 * aColor.b ) ) / 255.0, // the alpha channel can be reinitialized but what is the best value? candidate.a = ( aColor.a + a ) / 2; return candidate; } unsigned int COLOR4D::ToU32() const { return ToColour().GetRGB(); } void COLOR4D::FromU32( unsigned int aPackedColor ) { wxColour c; c.SetRGB( aPackedColor ); r = c.Red() / 255.0; g = c.Green() / 255.0; b = c.Blue() / 255.0; a = c.Alpha() / 255.0; } #endif namespace KIGFX { const bool operator==( const COLOR4D& lhs, const COLOR4D& rhs ) { return lhs.a == rhs.a && lhs.r == rhs.r && lhs.g == rhs.g && lhs.b == rhs.b; } const bool operator!=( const COLOR4D& lhs, const COLOR4D& rhs ) { return !( lhs == rhs ); } const bool operator<( const COLOR4D& lhs, const COLOR4D& rhs ) { if( lhs.r < rhs.r ) return true; else if( lhs.g < rhs.g ) return true; else if( lhs.b < rhs.b ) return true; else if( lhs.a < rhs.a ) return true; return false; } std::ostream &operator<<( std::ostream &aStream, COLOR4D const &aColor ) { return aStream << aColor.ToWxString( wxC2S_CSS_SYNTAX ); } void to_json( nlohmann::json& aJson, const COLOR4D& aColor ) { aJson = nlohmann::json( aColor.ToWxString( wxC2S_CSS_SYNTAX ).ToStdString() ); } void from_json( const nlohmann::json& aJson, COLOR4D& aColor ) { aColor.SetFromWxString( aJson.get() ); } } void COLOR4D::ToHSL( double& aOutHue, double& aOutSaturation, double& aOutLightness ) const { auto min = std::min( r, std::min( g, b ) ); auto max = std::max( r, std::max( g, b ) ); auto diff = max - min; aOutLightness = ( max + min ) / 2.0; if( aOutLightness >= 1.0 ) aOutSaturation = 0.0; else aOutSaturation = diff / ( 1.0 - std::abs( 2.0 * aOutLightness - 1.0 ) ); double hue; if( diff <= 0.0 ) hue = 0.0; else if( max == r ) hue = ( g - b ) / diff; else if( max == g ) hue = ( b - r ) / diff + 2.0; else hue = ( r - g ) / diff + 4.0; aOutHue = hue > 0.0 ? hue * 60.0 : hue * 60.0 + 360.0; while( aOutHue < 0.0 ) aOutHue += 360.0; } void COLOR4D::FromHSL( double aInHue, double aInSaturation, double aInLightness ) { const auto P = ( 1.0 - std::abs( 2.0 * aInLightness - 1.0 ) ) * aInSaturation; const auto scaled_hue = aInHue / 60.0; const auto Q = P * ( 1.0 - std::abs( std::fmod( scaled_hue, 2.0 ) - 1.0 ) ); r = g = b = aInLightness - P / 2.0; if (scaled_hue < 1.0) { r += P; g += Q; } else if (scaled_hue < 2.0) { r += Q; g += P; } else if (scaled_hue < 3.0) { g += P; b += Q; } else if (scaled_hue < 4.0) { g += Q; b += P; } else if (scaled_hue < 5.0) { r += Q; b += P; } else { r += P; b += Q; } } void COLOR4D::ToHSV( double& aOutHue, double& aOutSaturation, double& aOutValue, bool aAlwaysDefineHue ) const { double min, max, delta; min = r < g ? r : g; min = min < b ? min : b; max = r > g ? r : g; max = max > b ? max : b; aOutValue = max; // value delta = max - min; if( max > 0.0 ) { aOutSaturation = ( delta / max ); } else // for black color (r = g = b = 0 ) saturation is set to 0. { aOutSaturation = 0.0; aOutHue = aAlwaysDefineHue ? 0.0 : NAN; return; } /* Hue in degrees (0...360) is coded according to this table * 0 or 360 : red * 60 : yellow * 120 : green * 180 : cyan * 240 : blue * 300 : magenta */ if( delta != 0.0 ) { if( r >= max ) aOutHue = ( g - b ) / delta; // between yellow & magenta else if( g >= max ) aOutHue = 2.0 + ( b - r ) / delta; // between cyan & yellow else aOutHue = 4.0 + ( r - g ) / delta; // between magenta & cyan aOutHue *= 60.0; // degrees if( aOutHue < 0.0 ) aOutHue += 360.0; } else // delta = 0 means r = g = b. hue is set to 0.0 { aOutHue = aAlwaysDefineHue ? 0.0 : NAN; } } void COLOR4D::FromHSV( double aInH, double aInS, double aInV ) { if( aInS <= 0.0 ) { r = aInV; g = aInV; b = aInV; return; } double hh = aInH; while( hh >= 360.0 ) hh -= 360.0; /* Hue in degrees (0...360) is coded according to this table * 0 or 360 : red * 60 : yellow * 120 : green * 180 : cyan * 240 : blue * 300 : magenta */ hh /= 60.0; int i = (int) hh; double ff = hh - i; double p = aInV * ( 1.0 - aInS ); double q = aInV * ( 1.0 - ( aInS * ff ) ); double t = aInV * ( 1.0 - ( aInS * ( 1.0 - ff ) ) ); switch( i ) { case 0: r = aInV; g = t; b = p; break; case 1: r = q; g = aInV; b = p; break; case 2: r = p; g = aInV; b = t; break; case 3: r = p; g = q; b = aInV; break; case 4: r = t; g = p; b = aInV; break; case 5: default: r = aInV; g = p; b = q; break; } } COLOR4D& COLOR4D::Saturate( double aFactor ) { // One can saturate a color only when r, v, b are not equal if( r == g && r == b ) return *this; double h, s, v; ToHSV( h, s, v, true ); FromHSV( h, aFactor, 1.0 ); return *this; } const COLOR4D COLOR4D::UNSPECIFIED( 0, 0, 0, 0 ); const COLOR4D COLOR4D::WHITE( 1, 1, 1, 1 ); const COLOR4D COLOR4D::BLACK( 0, 0, 0, 1 ); const COLOR4D COLOR4D::CLEAR( 1, 0, 1, 0 ); int COLOR4D::Distance( const COLOR4D& other ) const { return ( r - other.r ) * ( r - other.r ) + ( g - other.g ) * ( g - other.g ) + ( b - other.b ) * ( b - other.b ); } EDA_COLOR_T COLOR4D::FindNearestLegacyColor( int aR, int aG, int aB ) { EDA_COLOR_T candidate = EDA_COLOR_T::BLACK; /* Find the 'nearest' color in the palette. This is fun. There is a gazilion of metrics for the color space and no one of the useful one is in the RGB color space. Who cares, this is a CAD, not a photosomething... I hereby declare that the distance is the sum of the square of the component difference. Think about the RGB color cube. Now get the euclidean distance, but without the square root... for ordering purposes it's the same, obviously. Also each component can't be less of the target one, since I found this currently work better... */ int nearest_distance = 255 * 255 * 3 + 1; // Can't beat this for( EDA_COLOR_T trying = EDA_COLOR_T::BLACK; trying < EDA_COLOR_T::NBCOLORS; trying = static_cast( int( trying ) + 1 ) ) { const StructColors &c = colorRefs()[trying]; int distance = ( aR - c.m_Red ) * ( aR - c.m_Red ) + ( aG - c.m_Green ) * ( aG - c.m_Green ) + ( aB - c.m_Blue ) * ( aB - c.m_Blue ); if( distance < nearest_distance && c.m_Red >= aR && c.m_Green >= aG && c.m_Blue >= aB ) { nearest_distance = distance; candidate = trying; } } return candidate; } COLOR4D& COLOR4D::FromCSSRGBA( int aRed, int aGreen, int aBlue, double aAlpha ) { r = std::max( 0, std::min( 255, aRed ) ) / 255.0; g = std::max( 0, std::min( 255, aGreen ) ) / 255.0; b = std::max( 0, std::min( 255, aBlue ) ) / 255.0; a = std::max( 0.0, std::min( 1.0, aAlpha ) ); return *this; }