/* * This program source code file is part of KICAD, a free EDA CAD application. * * Copyright (C) 2021 Ola Rinta-Koski * Copyright (C) 2021 Kicad Developers, see AUTHORS.txt for contributors. * * Outline font class * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you may find one here: * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * or you may search the http://www.gnu.org website for the version 2 license, * or you may write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include using namespace KIFONT; OUTLINE_DECOMPOSER::OUTLINE_DECOMPOSER( FT_Outline& aOutline ) : m_outline( aOutline ), m_contours( nullptr ) { } static VECTOR2D toVector2D( const FT_Vector* aFreeTypeVector ) { return VECTOR2D( aFreeTypeVector->x * GLYPH_SIZE_SCALER, aFreeTypeVector->y * GLYPH_SIZE_SCALER ); } void OUTLINE_DECOMPOSER::newContour() { CONTOUR contour; contour.orientation = FT_Outline_Get_Orientation( &m_outline ); m_contours->push_back( contour ); } void OUTLINE_DECOMPOSER::addContourPoint( const VECTOR2D& p ) { // don't add repeated points if( m_contours->back().points.empty() || m_contours->back().points.back() != p ) m_contours->back().points.push_back( p ); } int OUTLINE_DECOMPOSER::moveTo( const FT_Vector* aEndPoint, void* aCallbackData ) { OUTLINE_DECOMPOSER* decomposer = static_cast( aCallbackData ); decomposer->m_lastEndPoint = toVector2D( aEndPoint ); decomposer->newContour(); decomposer->addContourPoint( decomposer->m_lastEndPoint ); return 0; } int OUTLINE_DECOMPOSER::lineTo( const FT_Vector* aEndPoint, void* aCallbackData ) { OUTLINE_DECOMPOSER* decomposer = static_cast( aCallbackData ); decomposer->m_lastEndPoint = toVector2D( aEndPoint ); decomposer->addContourPoint( decomposer->m_lastEndPoint ); return 0; } int OUTLINE_DECOMPOSER::quadraticTo( const FT_Vector* aControlPoint, const FT_Vector* aEndPoint, void* aCallbackData ) { return cubicTo( aControlPoint, nullptr, aEndPoint, aCallbackData ); } int OUTLINE_DECOMPOSER::cubicTo( const FT_Vector* aFirstControlPoint, const FT_Vector* aSecondControlPoint, const FT_Vector* aEndPoint, void* aCallbackData ) { OUTLINE_DECOMPOSER* decomposer = static_cast( aCallbackData ); GLYPH_POINTS bezier; bezier.push_back( decomposer->m_lastEndPoint ); bezier.push_back( toVector2D( aFirstControlPoint ) ); if( aSecondControlPoint ) { // aSecondControlPoint == nullptr for quadratic Beziers bezier.push_back( toVector2D( aSecondControlPoint ) ); } bezier.push_back( toVector2D( aEndPoint ) ); GLYPH_POINTS result; decomposer->approximateBezierCurve( result, bezier ); for( const VECTOR2D& p : result ) decomposer->addContourPoint( p ); decomposer->m_lastEndPoint = toVector2D( aEndPoint ); return 0; } void OUTLINE_DECOMPOSER::OutlineToSegments( CONTOURS* aContours ) { m_contours = aContours; FT_Outline_Funcs callbacks; callbacks.move_to = moveTo; callbacks.line_to = lineTo; callbacks.conic_to = quadraticTo; callbacks.cubic_to = cubicTo; callbacks.shift = 0; callbacks.delta = 0; FT_Error e = FT_Outline_Decompose( &m_outline, &callbacks, this ); if( e ) { // TODO: handle error != 0 } for( CONTOUR& c : *m_contours ) c.winding = winding( c.points ); } // use converter in kimath bool OUTLINE_DECOMPOSER::approximateQuadraticBezierCurve( GLYPH_POINTS& aResult, const GLYPH_POINTS& aBezier ) const { wxASSERT( aBezier.size() == 3 ); // BEZIER_POLY only handles cubic Bezier curves, even though the // comments say otherwise... // // Quadratic to cubic Bezier conversion: // cpn = Cubic Bezier control points (n = 0..3, 4 in total) // qpn = Quadratic Bezier control points (n = 0..2, 3 in total) // cp0 = qp0, cp1 = qp0 + 2/3 * (qp1 - qp0), cp2 = qp2 + 2/3 * (qp1 - qp2), cp3 = qp2 GLYPH_POINTS cubic; cubic.push_back( aBezier[0] ); // cp0 cubic.push_back( aBezier[0] + ( ( aBezier[1] - aBezier[0] ) * 2 / 3 ) ); // cp1 cubic.push_back( aBezier[2] + ( ( aBezier[1] - aBezier[2] ) * 2 / 3 ) ); // cp2 cubic.push_back( aBezier[2] ); // cp3 return approximateCubicBezierCurve( aResult, cubic ); } bool OUTLINE_DECOMPOSER::approximateCubicBezierCurve( GLYPH_POINTS& aResult, const GLYPH_POINTS& aCubicBezier ) const { wxASSERT( aCubicBezier.size() == 4 ); // minimumSegmentLength defines the "smoothness" of the // curve-to-straight-segments conversion: the larger, the coarser // TODO: find out what the minimum segment length should really be! constexpr int minimumSegmentLength = 10; BEZIER_POLY converter( aCubicBezier ); converter.GetPoly( aResult, minimumSegmentLength ); return true; } bool OUTLINE_DECOMPOSER::approximateBezierCurve( GLYPH_POINTS& aResult, const GLYPH_POINTS& aBezier ) const { switch( aBezier.size() ) { case 4: // cubic return approximateCubicBezierCurve( aResult, aBezier ); break; case 3: // quadratic return approximateQuadraticBezierCurve( aResult, aBezier ); break; default: // error, only 3 and 4 are acceptable values return false; } } int OUTLINE_DECOMPOSER::winding( const GLYPH_POINTS& aContour ) const { // -1 == counterclockwise, 1 == clockwise const int cw = 1; const int ccw = -1; if( aContour.size() < 2 ) { // zero or one points, so not a clockwise contour - in fact not a contour at all // // It could also be argued that a contour needs 3 extremum points at a minimum to be // considered a proper contour (ie. a glyph (subpart) outline, or a hole) return 0; } unsigned int i_lowest_vertex = 0; double lowest_y = std::numeric_limits::max(); for( unsigned int i = 0; i < aContour.size(); i++ ) { VECTOR2D p = aContour[i]; if( p.y < lowest_y ) { i_lowest_vertex = i; lowest_y = p.y; // note: we should also check for p.y == lowest_y and then choose the point with // leftmost.x, but as p.x is a double, equality is a dubious concept; however // this should suffice in the general case } } unsigned int i_prev_vertex = ( i_lowest_vertex + aContour.size() - 1 ) % aContour.size(); unsigned int i_next_vertex = ( i_lowest_vertex + 1 ) % aContour.size(); const VECTOR2D& lowest = aContour[i_lowest_vertex]; VECTOR2D prev( aContour[i_prev_vertex] ); while( prev == lowest ) { if( i_prev_vertex == 0 ) i_prev_vertex = aContour.size() - 1; else i_prev_vertex--; if( i_prev_vertex == i_lowest_vertex ) { // ERROR: degenerate contour (all points are colinear with equal Y coordinate) // TODO: signal error // for now let's just return something at random return cw; } prev = aContour[i_prev_vertex]; } VECTOR2D next( aContour[i_next_vertex] ); while( next == lowest ) { if( i_next_vertex == aContour.size() - 1 ) i_next_vertex = 0; else i_next_vertex++; if( i_next_vertex == i_lowest_vertex ) { // ERROR: degenerate contour (all points are equal) // TODO: signal error // for now let's just return something at random return cw; } next = aContour[i_next_vertex]; } // winding is figured out based on the angle between the lowest // vertex and its neighbours // // prev.x < lowest.x && next.x > lowest.x -> ccw // // prev.x > lowest.x && next.x < lowest.x -> cw // // prev.x < lowest.x && next.x < lowest.x: // ? // // prev.x > lowest.x && next.x > lowest.x: // ? // if( prev.x < lowest.x && next.x > lowest.x ) return ccw; if( prev.x > lowest.x && next.x < lowest.x ) return cw; double prev_deltaX = prev.x - lowest.x; double prev_deltaY = prev.y - lowest.y; double next_deltaX = next.x - lowest.x; double next_deltaY = next.y - lowest.y; double prev_atan = atan2( prev_deltaY, prev_deltaX ); double next_atan = atan2( next_deltaY, next_deltaX ); if( prev_atan > next_atan ) return ccw; else return cw; }